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Electronic spin systems with S > 1/2 provide an efficient method for dc vector magnetometry, since the
conventional electron spin resonance spectra at a given magnetic field reflect not only the field strength but also
orientation in the presence of strong spin-spin interactions. S = 1 spins, e.g., the nitrogen-vacancy centers in
diamond, have been intensively investigated for such a purpose. In this report, we compare S = 1 and 3/2 spins,
and discuss how one can apply general principles for the use of high-spin systems as a vector magnetometer
to the S = 3/2 spin systems. We find analytical solutions which allow a reconstruction of the magnetic field
strength and polar angle using the observed resonance transitions if a uniaxial symmetry exists for the spin-spin
interaction as in S = 1 systems. We also find that an ambiguity of determining the field parameters may arise
due to the unique properties of S = 3/2 systems, and present solutions for it utilizing additional transitions in
the low-field region. The electronic spins of the silicon vacancy in silicon carbide will be introduced as a model
for the S = 3/2 dc vector magnetometer and the practical usage of it, including the magic-angle spinning type
method, will be presented too.
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I. INTRODUCTION

Electronic spins in highly localized defects, such as the
nitrogen-vacancy (NV) centers in diamond [1,2] and vacancy
related defects in silicon carbide (SiC) [3–14], may expe-
rience a strong spin-spin interaction, e.g., a dipole-dipole
interaction, which results in the so-called zero-field splitting
(ZFS), partially (or completely) lifting degeneracy of energy
eigenstates at zero magnetic field [15,16]. If this interaction is
strong enough, the eigenvalues of the spin Hamiltonian show a
strong dependence on the orientation of the applied magnetic
field. Such dependence causes a nonlinear shift of resonance
transitions in electron spin resonance (ESR) spectra. Thus the
information about the applied external magnetic field can be
extracted from ESR spectra provided the ZFS is known.

One well-known example is the NV center in diamond. Its
application to dc field vector magnetometry has been reported
and well understood in the field strength from sub-micro-tesla
to a few tenth tesla [17–20]. The NV center has a triplet ground
state of S = 1 and when shifts of the ESR transition at a
given dc magnetic field are directly monitored in the frequency
domain, typically a ∼0.1 mT minimum detectable magnetic
field is achieved [21]. This resolution is limited by the ESR
linewidth, which can be broadened by strong RF fields thus
lowering the resolution. Lower RF power can be used to avoid
power broadening, but the decreased signal strength requires
a very long accumulation time. If time-domain experiments,
e.g., a Ramsey fringe experiment, in which the magnetic field
strength is imprinted in the phase of the superpositioned state,
is conducted, a large signal strength can be maintained without
power broadening, thus a sensitivity up to ∼0.4 μT/

√
Hz,

limited by the T ∗
2 of ∼1 μs, can be realized using a single

NV center [2,19]. Further enhancement (below 1 nT/
√

Hz)
is possible by using the NV center ensemble combined with
the lock-in detection [20]. When the NV center is used for ac
magnetic field sensing, spin echo type measurements can be
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used in which the long coherence time allows high sensitivity
up to ∼1 nT/

√
Hz using a single NV [22] and ∼0.9 pT/

√
Hz

using an NV ensemble [23].
Higher spin systems (S > 1) can also be used as a vector

magnetometer in a similar way. For example, the silicon
vacancy (VSi) in silicon carbide (SiC) is known to possess
a quartet manifold of S = 3/2 in its electronic ground state
[24–26]. Because its ESR signal can be detected at ambient
condition [4,11,27–29] even from a single defect [5] and the
ZFS is in a range around a few millitesla depending on the
polytype of SiC [3,4], its application as a dc magnetometer
has been suggested [28,29]. Note that Simin et al. have
recently shown an experimental application of VSi in SiC
as a submillitesla dc magnetometer based on approximated
solutions for the spin Hamiltonian at weak magnetic fields [28].

In a spin system with a spin quantum number S, the strength
and orientation of the applied magnetic field vector B0 deter-
mines the Zeeman splitting, thus one should experimentally
obtain the Zeeman splitting to get information about B0. For
S = 1/2, the Zeeman splitting is calculated from an observed
single resonant transition energy hν = gμBB0, where g is the
Landé g-factor, μB is the Bohr magneton, and h is Planck’s
constant. The information for the orientation can be extracted
only if g is anisotropic. In high-spin systems, the orientation-
related terms remain in the eigenvalue equation, which results
in the orientation dependent shift of ESR spectra, which
cannot be explained by gμBB0. It is, therefore, mandatory to
reconstruct the energy eigenstates using the observed resonant
energies. Because there exist 2S + 1 eigenstates, 2S resonant
transition energies should be experimentally determined. For
example, when the applied magnetic field strength is much
larger than the ZFS, i.e., gμB |B0| � ZFS, at least two
transition energies should be known for S = 1 while three
values are necessary for S = 3/2 as explained in Fig. 1. In
this high-field range, the two transitions for S = 1 and two
out of the three transitions for S = 3/2 cross each other as
shown in Figs. 1(c) and 1(d). This leads to ambiguity in
determining which observed ESR peak corresponds to which
transition energy experimentally. In this report, we discuss
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FIG. 1. (Color online) Energy eigenvalues and ESR transition
energies of high-spin systems as a function of orientation at a high
magnetic field gμBB0 = 100 × ZFS. (a) and (b) are the eigenvalues
of the spin triplet (S = 1) and quartet (S = 3/2) states calculated
numerically from Eq. (1), respectively. For numerical calculation,
D,E > 0 and a uniaxial symmetry E � D are assumed, thus, only
the polar angle θ dependence is shown. Eigenstates are labeled in
ascending order of corresponding energy eigenvalues. The most
dominant transitions are indicated by the solid arrows with labels
fi,j indicating a transition between |i〉 and |j〉. They are shown in (c)
and (d) for the spin triplet and quartet states, respectively. All the
energy values are normalized by ZFS.

how this ambiguity can be removed and thus show how to
use the S = 3/2 system for vector magnetometry. For this, we
will provide analytical solutions for the given B0 vector as a
function of the resonant transition energies. We will present VSi

spins in SiC as a model system and also a novel magnetometry
scheme using the magic angle. The discussion in this report
is also applicable to other S = 3/2 systems, which have been
found in fullerene [30–34], organic molecules [35–37], Ni
impurities in diamond [38], and calcium oxide crystals [39].

II. VECTOR MAGNETOMETRY BASED ON S = 3/2 SPINS

In order to derive formulas for B0 ≡ |B0| and its orientation
expressed by only three transition energies for S = 3/2, we
will first construct the electronic spin Hamiltonian consisting
of the ZFS and Zeeman term. The ZFS in high-spin systems
can be described by the dipole-dipole interaction term in
the spin Hamiltonian, S · D · S, where D is the dipole-dipole
coupling tensor. For simplicity, we assume an isotropic Landé
g factor. Therefore, in the principal axis system of D, in which
the z axis is set to the symmetry axis, the electronic spin
Hamiltonian at B0 is

H = gμBB0 · S + D
[
S2

z − S(S + 1)/3
] + E(S2

+ + S2
−)/2,

(1)

where E and D are the ZFS parameters, assumed to be
positive, and E � D if an uniaxial symmetry exists. For
S = 3/2, the eigenvalue equation from Eq. (1) is, in the polar
coordinate system,

λ4 − (
2D2 + 6E2 + 5

2β2
0

)
λ2 − 2β2

0 [D(3 cos2 θ − 1) + 3E sin2 θ cos 2φ]λ + 9
16β4

0 + D4 − 1
2D2β2

0 − D2β2
0 (3 cos2 θ − 1)

+ 3E2(3E2 + 2D2) + Eβ2
0

(
6D sin2 θ cos 2φ + 9

2E cos 2θ
) = 0, (2)

where β0 ≡ gμBB0. The numerically calculated eigenvalues at various orientations are shown in Fig. 2. When B0 is either parallel
or perpendicular to the symmetry axis, the closed form solutions for each eigenvalue can be found as [16]

λ = 1
2β0 ±

√
(D + β0)2 + 3E2 or − 1

2β0 ±
√

(D − β0)2 + 3E2 for B0‖z axis,

λ = 1
2β0 ±

√
β2

0 + D2 + 3E2 − (D − 3E)β0 or − 1
2β0 ±

√
β2

0 + D2 + 3E2 + (D − 3E)β0 for B0‖x axis, (3)

which gives the eigenvalues at zero magnetic field, λB0=0 =
±ZFS/2, where ZFS ≡ 2

√
D2 + 3E2. The eigenvalue

equation for the general case can be expressed as

2S+1∑
n=0

Cnλ
n = 0. (4)

By plugging each eigenvalue λi into Eq. (4), one can obtain
2S + 1 equations. The basic idea in order to find formulas for
the B0 vector expressed by the observed resonant energies,
is to remove all λi terms using the transition energy fi,i−1 ≡
λi − λi−1. Note that the energy eigenstates are not necessarily
sorted with respect to the corresponding energy values. In other
word, the indices can be randomly assigned to the states. Here,
however, we keep the relation λi > λi−1 for convenience. We
follow this approach, which has been frequently used for S = 1

systems [17,40]. First, (2S − 1) sets of three simultaneous
equations are obtained by plugging λi + fi+1,i , λi , and λi −
fi,i−1 (i = 2,3, . . . ,2S) into Eq. (4). In each set, calculating

2S+1∑
n=0

Cn

[
(λi + fi+1,i)n − λn

i

]
C2S+1

= 0 and

2S+1∑
n=0

Cn

[
(λi − fi,i−1)n − λn

i

]
C2S+1

= 0, (5)

results in two new simultaneous equations:

2S∑
n=0

C ′
i,nλ

n
i = 0 and

2S∑
n=0

C ′′
i,nλ

n
i = 0. (6)
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FIG. 2. (Color online) B0 dependence of the energy eigenvalues
of a spin quartet state at various magnetic field orientations. Eigen-
states are labeled in ascending order of the corresponding energy
eigenvalues. As B0 → ∞ at θ = 0 ◦, |4〉 → |mS = +3/2〉, |3〉 →
|mS = +1/2〉, |2〉 → |mS = −1/2〉, and |1〉 → |mS = −3/2〉.

Again, by taking the difference of the above terms divided
by the coefficient of the highest-order term of each equation,
respectively,

2S∑
n=0

C ′
i,nλ

n
i

C ′
i,2S

− C ′′
i,nλ

n
i

C ′′
i,2S

= 0, (7)

we obtain a new equation for the eigenvalue of the energy
eigenstate |i〉 in which the highest power is (2S − 1),

2S−1∑
n=0

C
(2S−1)
i,n λn

i = 0, (8)

where i = 2,3, . . . ,2S. By repeating this procedure until only
one linear equation for a single eigenvalue remains, one can
find a formula for an eigenvalue expressed in terms of resonant
energies, which allows us to find expressions for all other
eigenvalues again using fi,i−1. We use this procedure to find
solutions for S = 3/2.

Following the procedure explained above, we obtain two
equations for two energy eigenvalues, λ2 and λ3, expressed by
only f2,1 and f3,2, and f3,2 and f4,3, respectively, and B0, θ ,
and φ, which are present in both equations. Then using f3,2 ≡
λ3 − λ2 once again, we obtain formulas for each eigenvalue
expressed by only the resonant energies as below

λ1 = − 3
4f2,1 − 1

2f3,2 − 1
4f4,3,

λ2 = 1
4f2,1 − 1

2f3,2 − 1
4f4,3,

(9)
λ3 = 1

4f2,1 + 1
2f3,2 − 1

4f4,3,

λ4 = 1
4f2,1 + 1

2f3,2 + 3
4f4,3.

By plugging one of these, e.g., λ2, back into one of the
equations found in the preceding steps, we finally obtain
formulas for β2

0 , and a new quantity related to θ and φ,
η ≡ E(2cos2φ sin2θ + cos2θ ) + Dcos2 θ ,

β2
0 =

(√
3

2 f4,3 + f3,2 +
√

3
2 f2,1

)2 + (1 − √
3)(f4,3 + f2,1)f3,2 − f4,3f2,1 − ZFS2

5
, (10)

η = 4[8(D + 3E) + 5(f4,3 − f2,1)]β2
0 + (f4,3 − f2,1)

[
4ZFS2 − (f4,3 − f2,1)2 − 4f 2

3,2

]
96β2

0

. (11)

Thus, in general, if D and E values are known and
three resonant energies are observable, the applied magnetic
field strength can be extracted from Eq. (10). In addi-
tion, if an uniaxial symmetry exists (E � D), because of
η � D cos2 θ , the polar angle can also be extracted from
Eq. (11).

However, when one wants to use these formulas to find
the external magnetic field vector, one may face a problem:
how can one determine which observed resonant energy is
from which transition? This is explained in Figs. 1 and 3.
At a given magnetic field vector (e.g., gμB0 � ZFS),
there will appear three strong transitions for S = 3/2 as in
Fig. 3(a). The resonant energies are varying depending on the
orientation for fixed B0 and some of them even cross each
other, thus it is hard to determine fi,j explicitly only taking
into account these three transitions. However, in certain spin
systems bound to certain localized defects in solids and at a
certain magnetic field range, this ambiguity can be relaxed as
will be shown in the following sections. We will focus on two
distinguishable cases for gμBB0 � ZFS and gμBB0 � ZFS.
The case for gμBB0 ∼ ZFS, however, will not be discussed
because complex spectra appear due to a strong interaction

among each eigenstate [21] via, e.g., the level anticrossing
as in the NV centers [41], thus, high-spin systems are not
an appropriate sensor for this field range. In the following
sections, we will consider the uniaxial symmetry for all
the numerical simulations unless noticed. This will allow
us to utilize Eq. (11) to extract at least one orientation
component θ .

A. High field, gμB B0 � ZFS

Figure 3(a) depicts how each transition evolves at varying
orientation θ at high static magnetic fields (gμBB0 = 100 ×
ZFS) together with ESR transition probabilities. B1 is assumed
to have only an x-axis component. At high fields, three
transitions are visible. Without knowing the information about
B0, it is not possible to assign them correctly because, as
will be seen later, there appear also three or even more than
three resonances that originate from different transitions at low
magnetic fields. However, one can guess B0 roughly from the
observed resonant energies because they are approximately
proportional to B0 at high field. For example, f3,2 shows very
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FIG. 3. Orientation dependence of ESR transitions at (a) high
(gμBB0 = 100 × ZFS) and (b) low (gμBB0 = ZFS/10) magnetic
field strength. The dashed lines indicate the magic angle θm. The gray
color scale depicts the normalized ESR transition probabilities for
B1‖x axis.

weak orientation dependence thus can be used to estimate
B0. Once the B0 scale is roughly guessed, one can try to
assign the observed resonant energies. Because f3,2 always
stays in the middle of all resonance transitions, this can be
explicitly determined. And because Eq. (10) is invariant under
switching of f4,3 and f2,1, B0 can be unambiguously extracted.

In contrast, Eq. (11) will result in a systematic error if f4,3

and f2,1 are not correctly assigned. Thus a magnetometer
based on a S = 3/2 system can be used only to extract B0

at a high magnetic field. This is a disadvantage compared to
S = 1 because a similar equation to Eq. (11) is also invariant
under switching of two observed resonant energies [17]. This
problem, however, may be overcome by manipulating the
ZFS [42]. If the electric dipole moment is large enough and
their contribution to the ZFS Hamiltonian, the Stark-effect,
is well-known, manipulation of the ZFS by either applying an
electric field [42] or pressure [43] along a favored direction can
result in shifts of each ESR transitions in different manners.
Thus monitoring the additional shift upon the change in ZFS,
may allow to determine all the necessary transitions and
subsequently Eq. (11) can be used without systematic errors.

B. Low field, gμB B0 � ZFS

Figure 3(b) shows that one can see up to five transitions at
low field. At a small angle, there are three dominant transitions,
f2,1, f3,1, and f4,2, and two additional transitions, f3,2 and f4,1,
which arise at large angle. Alternate forms of Eqs. (10) and
(11) using only the most dominant transitions can be found for
small angles (not shown). These forms, however, are not useful
because f4,2 and f3,1 are changing their relative positions at
a larger angle. Instead, f4,1 and f3,2 can be used since their
relative positions are not changing and in certain S = 3/2
systems, e.g., VSi in SiC (see Sec. III), these transitions show
good intensities at every orientation [28]. The other useful
formulas can be found by plugging f4,3 = f4,1 − f3,2 − f2,1

into Eqs. (10) and (11) as

β2
0 = (

√
3favg + f2,1)2 − 2f4,1f3,2 + (1 − √

3)f3,2f2,1 − (1 + √
3)f41f21 − ZFS2

5
, (12)

η = 1

96β2
0

{
4[8(D + 3E) + 5�fout − 10f2,1]β2

0 − 8f2,1
(
ZFS2 − f 2

2,1 − f 2
3,2

)

+�fout
[
4
(
ZFS2 − 3f 2

2,1 − f 2
3,2

) + �fout(6f2,1 − �fout)
]}

, (13)

where �fout ≡ f4,1 − f3,2 and favg ≡ (f3,1 + f4,2)/2 =
(f3,2 + f4,1)/2. These are useful, because if f4,1 and f3,2

are observable together with f4,2 and f3,1, one always can
unambiguously determine the two outermost transitions, and
f4,2 and f3,1 are not in use or necessary only for calculating
favg.

So far, strategies to use S = 3/2 systems as a dc vector
magnetometer have been discussed in both high- and low-
magnetic field ranges. Though only B0 can be obtained at high
fields using only a conventional experimental method, both B0

and polar angle can be determined at low field. However, in
many high-spin systems bound to localized defects in solids,
spin-dependent intersystem crossing may induce a strong
polarization into specific spin states as in VSi in SiC [10,25].
Thus, some transitions may be hardly observable. In addition,
because only the polar angle can be obtained, it is still not
possible to realize a genuine vector magnetometry. In the
following sections, we will present S = 3/2 spins of VSi in

SiC as a model system and discuss the practical usage of them
and a possible way to use them as a vector magnetometer.

III. SILICON VACANCY SPINS IN SILICON CARBIDE
AS A DC VECTOR MAGNETOMETER

We present VSi in SiC as a model system to provide
explanations about how the formulas, found in previous
sections, can be used to experimentally reconstruct the applied
external magnetic field vector. Because spin properties are
different depending on the polytype, here we discuss only a
specific polytype, namely 4H-SiC. In addition, because there
exist two inequivalent lattice sites, there appear two different
silicon vacancies with different ZFS, and we choose only one
of them known as TV 2a center [3,4]. In the TV 2a center, it
is known that there exist an uniaxial symmetry around the
c axis thus E � D and ZFS/h � 2D/h � 70 MHz [3,4].
It is also known that optical polarization results in equal
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populations in two substates, |mS = ±1/2〉. This is responsible
for the absence of a transition between |mS = +1/2〉 and
|mS = −1/2〉 while another two transitions, between |mS =
+3/2〉 and |mS = +1/2〉 and between |mS = −3/2〉 and
|mS = −1/2〉, are observable in the ESR spectra of TV 2a for
B0‖c axis [3,5,9–11,27–29]. In the B0 orientation dependence
at low [28] and high magnetic fields [3,10,27,29], one of the
allowed transitions, corresponding to the transition between
|mS = +1/2〉 and |mS = −1/2〉 for B0‖c axis, has not been
observed probably due to that this equal population is somehow
maintained. This will prevent Eqs. (10)–(13) from being used
because f3,2 at high fields and f2,1 at low fields will not
be observable. This transition, however, can become visible
once electron-electron double resonance (ELDOR) is applied.
The population difference between |mS = ±1/2〉 states can be
induced by applying, e.g., a resonant π pulse between |mS =
+3/2〉 and |mS = +1/2〉 (or |mS = −1/2〉 and |mS = −3/2〉)
states, which enable detection of this missing transition [25].
This will allow unambiguous determination of one transition
f2,1 at low fields or f3,2 at high fields experimentally.

At high magnetic field (e.g., B0 ∼ 300 mT) as in Fig. 3(a),
two outer transitions, f4,3 and f2,1 have been observed
experimentally at almost all orientations at both cryogenic
[3,10] and room temperature [29] except the central peak. The
central peak is observable by ELDOR experiments [25], thus
Eq. (10) can be used as explained in Sec II A. However, the
polar angle, θ , can be determined from Eq. (11) only at small
angles because of the ambiguity on determining f4,3 and f2,1

at larger angles.
ESR spectra of TV 2a centers at a low magnetic field

(e.g., submillitesla), as in Fig. 3(b), allow an unambiguous
determination of both B0 and polar angle as long as the
ELDOR can be used to determine f2,1 as explained in
Sec. II B. However, one can consider another case in which
either ELDOR experiments are not available or f2,1 is
hardly observed in the ELDOR spectrum. In such a case,
if f4,1 and f3,2 are observable, using relations f3,1 + f4,2 =
f3,2 + f4,1, f4,3 = f4,2 − f3,2, and f2,1 = f3,1 − f3,2 from
Eq. (9), we again obtain alternative forms of Eqs. (10) and
(11) as

B2
0 = (

√
3favg + f3,2)2 − f4,2f3,1 − 2(

√
3 + 1)f3,2favg − ZFS2

5
, (14)

η = [32(D + 3E) + 20�fin]B2
0 + �fin

(
4ZFS2 − �f 2

i − 4f 2
3,2

)
96B2

0

, (15)

where �fin ≡ f4,2 − f3,1. Note that f3,2 appears in both
formulas but because it is always the lowest energy transition,
this can be explicitly determined. Similarly, one can find
additional alternatives using f4,1 instead of f3,2. Therefore,
even if ELDOR is not available, as long as either f4,1 or f3,2

is observable together with f4,2 and f3,1, B0 can be extracted
using Eq. (14) because it is invariant under switching f4,2

and f3,1. This scheme is feasible since f4,1 and f3,2 are
observable from TV 2a in SiC by cw methods with a decent
signal strength at sub-milli-tesla as recently reported [28].
Equation (15), however, still cannot provide an unambiguous
way to determine the polar angle because of �fin, which
changes signs if f4,2 and f3,1 are not correctly determined.

So far, the strategies to use VSi in SiC as a vector
magnetometer has been discussed. While the magnetic field
strength can be extracted in both high and low magnetic
field ranges, the orientation can be extracted only if there
exists a uniaxial symmetry at a low magnetic field, and the
azimuthal angle cannot be determined in any case. Note that
the S = 1 system with the uniaxial symmetry also can provide
only the polar angle. But in the case of the NV center in
diamond, because the NV centers can be in four different
orientations along the diamond bond axes, one can determine
both the polar and azimuthal angles from the shift of transitions
of the inequivalently oriented NV centers. Similarly, VSi in
inequivalent lattice sites, e.g., TV 1a and TV 2a in 4H-SiC, and
TV 1a , TV 2a , and TV 3a in 6H-SiC [4] can also be utilized.
However, ESR spectra of TV 1a and TV 3a are hardly visible at
room temperature [4,9,27]. Thus, an alternate method relying
only on the TV 2a center that can be used for any magnetic field
strength at room temperature is necessary. In the next section,

another method using a magic angle that allows for the use of
S = 3/2 as a vector magnetometer will be discussed.

IV. VECTOR MAGNETOMETRY USING MAGIC ANGLE

We start from the eigenvalue equation (2). In this equation,
one can find terms including (3cos2θ − 1), which becomes
zero at the magic angle θm � 54.7 ◦. Equation (2) can be
simplified for θ = θm and E � D as

λ4 − (
2D2 + 5

2β2
0

)
λ2 + 9

16β4
0 + D4 − 1

2D2β2
0 = 0, (16)

and the eigenvalues are simply

λ = ± 1
2

√
4D2 + 5β2

0 ± 4
√

3β2
0D2

0 + β4
0 , (17)

as depicted in Fig. 2(c). For high B0, these can be again
approximated as

λ = ± 3
2β0 or ± 1

2β0 (for gμBB0 � ZFS). (18)

Thus, at θm, we obtain |λ1| = |λ4| and |λ2| = |λ3|, and can see
the least number of transitions as seen in Fig. 3. We can use this
aspect to use S = 3/2 system as a vector magnetometer. If the
spin sensor is being rotated around an axis and the orientation
between the c axis and the rotational axis is fixed to θm, one
expects to see the least number of transitions whose widths
are the narrowest when the rotational axis is aligned to the
applied external magnetic field. In contrast, when the rotational
axis is misaligned, very broad ESR transitions appear due to
orientation sweeping.
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FIG. 4. (Color online) Magic angle dc magnetometry based on a
S = 3/2 spin system. (a) describes the frames used for the numerical
simulation. See text for details. (b) shows the numerical simulations
of the cw ESR spectra when the S = 3/2 spin is misaligned by θ = θm

relative to the rotational axis at various orientations of B0 vector in
y ′-z′ plane at low field B0 = 6 G. For the simulation, the ZFS of TV 2a

center in SiC, ZFS/h � 2D/h � 70 MHz is assumed. (c) shows the
same simulation but for the case when θ �= θm and θ = 30 ◦.

Figure 4 describes such an experiment in which the SiC
crystal is attached to a rotational axis forming θm with respect
to the c axis of the crystal. The resonant RF can be applied
using a miniature coil surrounding either the rotational axis
or the SiC crystal, similar to what has been suggested for
the quantum gyroscope based on the NV center [44]. For the
detection, a small sized ESR cavity can be used for conven-
tional ESR detection. Fiber coupling also can be considered
for ODMR. If an electrically detected magnetic resonance is
possible, which has recently been shown in high-spin systems
[45] and also in SiC [46], additional small circuits can be
utilized. B1 field modulation can be used to enhance the signal
to noise ratio [47] because the ELDOR experiment, which
requires B1 pulses, is not necessary for this experiment. For
the simulation of ESR spectra in this experiment, a laboratory
frame is assumed: the z′ axis is set to the rotational axis. The
angle 
 between the c axis of the crystal, rotating with a
constant speed around the z′ axis, and the external magnetic
field can be derived and replace θ in Eq. (2). For convenience,
the RF field is assumed to be in the x axis of the rotating frame.
By assuming a Lorentzian lineshape with 3 MHz FWHM,
the numerically simulated ESR spectra at varying θ ′ while φ′
is fixed to 90 ◦ are simulated for a low field (B0 = 6G) as
shown in Fig. 4(b). As expected, when θ ′ = 0, equivalently,

 = θm or B0‖z′ − axis, the narrowest transitions are found,
while seriously broadened peaks like a powder pattern appear
when misaligned (θ ′ �= 0). Note that in order to present
a general S = 3/2 case, f2,1 is assumed to be visible in
cw ESR spectra at low field. Therefore by monitoring the
linewidth of the observed transition spectra, while moving the
rotational axis, z′ axis, one can explicitly find the orientation
of the external magnetic field. The field strength also can be
extracted from the observed resonant energy of the strongest
transition using Eq. (17). For very small field gμBB0 � ZFS,
f3,1 = f4,2 ≈ gμBB0 + 4gμBB0D

2/3. We also can observe
spectra consisting of the narrow transitions even if θ �= θm

as long as θ ′ = 0. However, because many transitions whose
intensities are comparable to each other appear as in Fig. 4(c),
it is more convenient to use the magic angle because the most
dominant transition is easily distinguishable.

V. CONCLUSION

We have shown that using the VSi in SiC as a model
system, S = 3/2 electronic spins with the uniaxial symmetry
can be used to find the strength and polar angle of the applied
external magnetic field if at least three ESR transitions can be
found experimentally and the ZFS parameters are known. At
a high B0 field (gμBB0 � ZFS), B0 can be obtained from the
observed ESR spectra but the polar angle cannot be determined
due to the ambiguity of differentiating two outer transitions. In
contrast, at low gμBB0 (�ZFS), as long as one can explicitly
identify at least three transitions including the allowed lowest
energy transition, the external magnetic field vector can be
reconstructed. In a field strength comparable to the ZFS, it is
hard to find a useful scheme because very complex patterns
appear due to mixing of some of the eigenstates. In the case of
the NV centers in diamond (ZFS/h = 2.87 GHz), this missing
range is around ∼100 mT. The VSi in SiC can fill out this gap
since its ZFS is quite small (ZFS/h ∼ 100 MHz) thus this
magnetic field range can be considered as a high-field range
in which the three necessary transitions are well observable
[25,29], and at least the field strength can be experimentally
determined. When the VSi in SiC is used to realize such
schemes at submillitesla, if the lowest transition energy is
observable by ELDOR, one can determine both B0 and θ

without ambiguity. Even if ELDOR is not available, thanks
to the additional transitions that appear at low fields, the field
strength can be determined.

The magic angle terms in the eigenvalue equation allow
for an alternative method to use S = 3/2 systems as a dc
vector magnetometer. If the S = 3/2 spins fixed in a crystal
can be rotated around the rotational axis, the unambiguous
determination of the applied magnetic field vector is feasible
by monitoring the linewidth of the observed ESR spectra while
the symmetry axis of the crystal is oriented at θm relative
to the rotational axis and the rotational axis is moving. This
configuration also can be realized by producing an array of
crystals such that the symmetry axes of each crystal form a
cone whose opening angle is twice the magic angle.

These findings provide a better understanding of the
S = 3/2 electronic spin Hamiltonian, especially at low fields.
They also provide an outlook for the application of VSi in SiC
to quantum magnetometry, which is promising thanks to the
electrical properties of SiC, which outstand the host material
of the NV centers, and the mature fabrication technology,
which allows an efficient fabrication of electronic devices
even at the atomic scale [48].
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