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Discretized Abelian Chern-Simons gauge theory on arbitrary graphs
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In this paper, we show how to discretize the Abelian Chern-Simons gauge theory on generic planar
lattices/graphs (with or without translational symmetries) embedded in arbitrary two-dimensional closed
orientable manifolds. We find that, as long as a one-to-one correspondence between vertices and faces can
be defined on the graph such that each face is paired up with a neighboring vertex (and vice versa), a discretized
Abelian Chern-Simons theory can be constructed consistently. We further verify that all the essential properties
of the Chern-Simons gauge theory are preserved in the discretized setup. In addition, we find that the existence
of such a one-to-one correspondence is not only a sufficient condition for discretizing a Chern-Simons gauge
theory but, for the discretized theory to be nonsingular and to preserve some key properties of the topological
field theory, this correspondence is also a necessary one. A specific example will then be provided, in which we
discretize the Abelian Chern-Simons gauge theory on a tetrahedron.
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I. INTRODUCTION

As the prototypical topological field theory, the Chern-
Simons gauge theory has had a deep and broad impact on
a wide range of physics research, ranging from knot theory [1]
and parity anomalies in quantum field theory [2] to the theory
of the integer and fractional quantum Hall effects [3–5] and
the effective field theory description of chiral spin liquids [6,7]
in condensed matter physics (for a review see, e.g., Ref. [8]).
Although well understood as a continuum field theory, there is
still limited understanding on how to discretize this topological
field theory on two-dimensional (2D) lattices or graphs [9].
This task turns out to be highly nontrivial. In particular, the
topological and gauge-theoretic nature of the Chern-Simons
gauge theory enforces strong constraints on the dynamics of
the gauge fields. These constraints, if not treated carefully,
can result in inconsistencies in the discretized theory, making
the theory ill defined [10,11]. Until recently, the discretization
has been done only for a very special case, i.e., on a square
lattice (with only nearest bonds) embedded in a torus [10,11].
It remains highly unclear as to whether similar construction
can be extended for other lattices, or for lattices embedded on
other 2D manifolds aside from the torus, or in any discretized
systems without translation symmetries (e.g., a graph). In a
recent publication [12], we presented a consistent construction
of the Chern-Simons gauge theory on one of the simplest
nonbipartite lattices in two dimensions, the kagome lattice,
and used it to study the magnetizations plateaus of the spin- 1

2
frustrated quantum Heisenberg antiferromagnet on this lattice.

The main purpose of this paper is to develop a consistent
discretization of the Chern-Simons Abelian U(1) gauge theory
on general planar lattices and graphs. There are several
motivations to search for a discretized Chern-Simons gauge
theory on generic lattices/graphs. For example, it has been
known that the Chern-Simons gauge theory plays a crucial
role in the study of chiral spin liquid. Such an exotic
state of matter can only be stabilized in the presence of
strong geometric frustration. Much of the work in frustrated
antiferromagnets uses the fact that these systems are equivalent

to a system of (generally interacting) hard-core bosons on the
same lattice. The hard-core bosons are then mapped into a
system of fermions coupled to a discretized Chern-Simons
gauge field [9]. Except for some very special exactly solvable
models, in the study of such frustrated systems the dynamics
and quantum fluctuations of the effective gauge fields are
typically ignored, and frustrated quantum antiferromagnets
are frequently described only at the level of the average
field approximation [13,14]. However, such an approximation
is unreliable, and has a strong and obvious bias towards
time-reveal breaking ground states. As shown in Ref. [15], to
correctly address the competition between different quantum
ground states, it is necessary to go beyond the average field
approximation by carefully introducing the correct quantum
dynamics.

It was recently realized that, in addition to the well-known
case of two-dimensional electron gases (in the continuum)
in strong magnetic fields, the fractional quantum Hall effect
can also be stabilized in lattices even with zero net magnetic
field [16–21]. Fractional quantum Hall states have also been
explored on lattice systems earlier on [22,23] and, more
recently, also in optical lattice systems [24–27]. This type
of (discrete) fractional topological state is now often referred
to as the fractional Chern insulators or the fractional quantum
anomalous Hall state. In particular, it has been shown that
these (discrete) fractional Chern insulators are adiabatically
connected to the corresponding fractional quantum Hall states
in the continuum [28–30].

The Chern-Simons gauge theory is known to be the
low-energy, hydrodynamic, theory of topological phases such
as the fractional quantum Hall fluids [5]; they are also
expected to describe the low-energy and long-distance limit
of topological Chern insulators, fractional or not [31–35].
Although Chern-Simons theories yield a natural description of
the hydrodynamic behavior of topological phases, a priori they
are not absolutely necessary in the microscopic construction of
a theory of such states [5]. However, all known fractionalized
phases are in inherently strongly coupled systems and, notably
in the case of the fractional quantum Hall fluids, the use of
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Chern-Simons gauge theory in the microscopic derivations has
been invaluable [3,4]. Aside from some recent and promising
work [36,37], it is not yet clear what role Chern-Simons gauge
theory plays in the theory of fractional topological Chern
insulators. Although adiabatic continuity strongly implies that
the theory of factional Chern insulators should be smoothly
related to the theory of the fractional Hall effect on lattice
systems [22,23], where discrete Chern-Simons gauge theory is
expected to be generally applicable, the general answer to these
questions has remained problematic in view of the fact that the
Chern-Simons gauge theory has not been discretized on most
of the lattices on which lattice fractional Chern insulators are
known to occur (e.g., the checkerboard lattice, the kagome
lattice, and the multiple-orbital square lattice). Although we
will not give an answer for systems on lattices as general as
it is needed, we will give an explicit construction for a large
class of lattices, which include some of clear physical interest.

In this paper, we propose and study a discretized Chern-
Simons gauge theory on generic planar graphs embedded in
arbitrary 2D closed and orientable manifolds [38]. Same as in a
lattice gauge theory, we will define the space components of the
gauge field to live on the nearest-neighbor bonds of the lattice
and the time components on the sites (vertices) of the lattice.
We will consider only planar lattices (and hence with only
noncrossing bonds). This is a lattice gauge theory [39–42], but
one with a broken time-reversal and parity invariance. Here,
we will be interested in a version of Chern-Simons theory
on a class of spatial lattices with continuous time. Earlier
work focused on the square lattice [9–11,43], and recently
we discussed the case of the kagome lattice [12]. Discretized
versions of Chern-Simons gauge theory have been discussed
both in Euclidean space-time lattices [44], which suffer from
the species doubling problem analogous to those of lattice
fermions. By enlarging the scope of investigation from periodic
lattices to graphs (with or without translational symmetries),
our conclusions are generally applicable for a wide range of
systems.

We will require the discretized theory to retain the central
features a topological field theory. Chern-Simons gauge
theory on a continuous space-time manifold has several key
features [1]. It is gauge theory which means that it has a local
symmetry under local (in space-time) gauge transformations.
At the quantum level, this requires that the quantum states
of the physical Hilbert space be gauge invariant [45], and
hence that the generators of local time-independent gauge
transformations must generate superselection sectors, i.e., the
Gauss law is satisfied as constraint on the physical space of
states. For this requirement to be consistently implemented,
the generators of local gauge transformations must commute
with each other on different spatial locations. In the case of the
Chern-Simons theory, this implies that the local magnetic flux
must commute with each other (since they are the generator
of time-independent gauge transformations). This condition
imposes stringent constraints on the possible form of the
discretized theories [10,11], and it is the main focus of this
work.

On the other hand, at the classical level, the Chern-Simons
theory is topological in the sense that the action is invariant
under general coordinate transformations and hence it is
independent of the metric. A consequence of this feature is

FIG. 1. Part of a planar graph, on which a local vertex-face
correspondence is defined. The disks and solid lines represent vertices
and edges of the graph, respectively. Each face is marked by a cross.
The local vertex-face correspondence is indicated by dotted lines, that
pair up each face with one (and only one) adjacent vertex.

that the energy-momentum tensor classically vanishes and,
consequently, the Hamiltonian is also zero. Clearly, any lattice
discretization implies a choice of coordinates, i.e., a fixed
spatial metric. Furthermore, a change of the lattice stricture
leads to a change in the form of the metric. Therefore, a
lattice version of Chern-Simons theory cannot be explicitly
independent of the metric and, in this sense, it cannot be
formally topological. However, we will show in the following
that one can construct a Chern-Simons gauge theory for
a large class of lattices a U(1) lattice gauge theory with
continuous time (i.e., in “Hamiltonian” form [40]) which is
gauge invariant. We will see that the resulting discretized
theory nevertheless has a vanishing Hamiltonian since the
content of the action reduces to a set of (reasonably local)
equal-time commutation relations and a set of local and
commuting constraints. This theory is topological in the sense
that it does not have local excitations, and that only the
global degrees of freedom (nontrivial Wilson loops) matter.
In the long-wavelength limit, the discretized theory becomes
(formally) the continuum Chern-Simons gauge theory.

We find that such a Chern-Simons gauge theory can be
constructed for arbitrary 2D planar graphs (lattices) as long
as a local vertex-face correspondence can be defined on the
graph/lattice. We adopt the following definition:

Definition. A local vertex-face correspondence is a one-to-
one correspondence between faces and vertices defined on a
graph such that every vertex is adjacent to its corresponding
face (and vice versa).

An example of such a correspondence is shown in Fig. 1.
The relevance of this correspondence to Chern-Simons theory
lies in the nature of this gauge theory. In the continuum, the
(Abelian) Chern-Simons Lagrangian of a gauge field Aμ in
2+1 dimensions is (coupled to a matter current Jμ)

LCS[A] = k

4π
εμνλAμ∂νAλ − JμAμ. (1.1)

The Chern-Simons (CS) gauge theory is a topological field
theory [1]. At the classical level, the CS action is independent
on the metric of the manifold on which it is defined. The
content of this Lagrangian [Eq. (1.1)] is seen in Cartesian
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components

LCS[A] = k

2π
A0B − J0A0 − k

4π
εijAi∂tAj − J · A. (1.2)

At the quantum level, the first term of the right-hand side
becomes the requirement that the states in the physical Hilbert
space {|Phys〉} obey the “Gauss law” as a local constraint.
Thus, the physical states are gauge invariant and are annihilated
by the generator of local gauge transformations[

k

2π
B(x) − J0(x)

]
|Phys〉 = 0. (1.3)

Hence, the physical states are those in which the local charge
density J0 and the local magnetic flux B = εij ∂iAj are
precisely related, i.e., flux attachment. The second term of
the right-hand side of Eq. (1.2) implies that the components of
the gauge field obey the equal-time commutation relations

[Ai(x),Aj ( y)] = i
2π

k
εij δ(x − y). (1.4)

Further, the Hamiltonian of this system is zero unless sources
are present, i.e.,

H = J · A, (1.5)

which is a consequence that a topological field theory does not
have any excited states with finite energy.

As with any lattice gauge theory, in a discretized Chern-
Simons gauge theory the gauge fields (which are connections
and hence are 1-forms) are naturally defined on the links of
the lattice while the matter fields are defined on the sites of
the lattice [39,40]. The field strength is a 2-form and it is
defined on the elementary plaquettes of the lattice. While in
a conventional lattice gauge theory the lattice is generally
hypercubic (i.e., square in 2D), here we will consider more
general (and translationally invariant) planar lattices. For
instance, in Ref. [9] (and in Refs. [10,11]) the Chern-Simons
theory was defined on a square lattice and in Ref. [12] the
theory was defined on a kagome lattice. In both cases, the
Gauss law of Eq. (1.3) is naturally implemented as a constraint
that relates the occupation number of a site (or vertex) to the
gauge flux through a (uniquely defined) adjoint plaquette (or
face). While in the case of the square lattice all plaquettes
are identical (squares), in the case of the kagome lattice has
three inequivalent sites in its unit cell and, correspondingly,
three faces (two triangles and a hexagon) in its unit cell.
Nevertheless, the correspondence of vertices to faces is one-
to-one in both lattices.

We will see here that this correspondence is a key feature
which will allow us to impose the constraint (and hence gauge
invariance) in a unique way which, in addition, does not break
the point-group (or space-group) symmetries of the lattice.
Following, we will find a construction of the Chern-Simons
gauge theory on lattices for which for a charge located at a
vertex, the magnetic field attached to it by the Chern-Simons
gauge theory, is located at the face that is naturally paired up
with this vertex.

Whether or not a local vertex-face correspondence can be
defined for a graph is fully determined by the connectivity
of the graph. In Sec. II, we will provide a sufficient and
necessary condition, which can be used to decide whether

(a) (b)

(c) (d)

FIG. 2. (Color online) Examples of lattices and graphs that sup-
port local vertex-face correspondences. (a) A square lattice with 1
vertex and 1 face per unit cell, (b) a kagome lattice with 3 vertices
and 3 faces per unit cell, (c) a dice lattice with 3 vertices and 3
faces per unit cell, and (d) a lattice that contains 9 vertices, 18 edges,
and 9 faces per unit cell. The (red) parallelogram marks a unit cell
with lattice vectors indicated by the two (red) arrows. It is easy to
verify that for all these lattices Nv = Nf and for any subgraphs the
number of faces never exceeds the number of vertices, which is a
sufficient and necessary condition for the existence of (at least) one
local vertex-face correspondence.

such a correspondence exists or not for an arbitrary graph. In
Fig. 2, we show some examples of lattices that support such a
correspondence (i.e., a discretized Chern-Simons gauge theory
can be constructed on these lattices). These examples include
some of the lattices used in the study of chiral spin liquids and
the lattice fractional quantum Hall effect (e.g., the kagome
lattice).

It is also worthwhile to emphasize that in the continuum,
the Chern-Simons gauge theory can be defined on arbitrary
2D closed and orientable manifolds. This plays a critical role
in the phenomenon of topological degeneracy in fractional
quantum Hall systems [46]. In addition, it is also known that
all the essential physics of the Chern-Simons gauge theory
(in the continuum) is stable against the explicit breaking of
the translational symmetry, which is the underlying reason
for the stability of the quantum Hall states against weak
disorders. On the discretized side, however, it is still unclear
whether the Chern-Simons gauge theory can be defined on any
manifold aside from a torus and/or on a discrete graph without
translational symmetries. Our study will provide an answer to
these questions.

In addition to those geometric considerations, a key
consistency requirement of the gauge theory is that the lattice
version of the local constraints of Eq. (1.3) must commute
with each other and hence act as superselection rules on the
Hilbert space [10,11] (otherwise, these constraints cannot be
simultaneously satisfied). This consistency condition places
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restrictions on the commutation relations satisfied by the
gauge fields defined on the links. For the square lattice, this
problem was solved by Eliezer and Semenoff [10,11], and was
more recently generalized by us to the case of the kagome
lattice [12]. In this paper, we will show that the commutation
relations can be defined consistently on any lattice (and graph)
which obeys the one-to-one correspondence between vertices
and faces. We will show that this restriction is implemented in
terms of a suitably defined nonsingular (and hence invertible)
matrix. Therefore, the lattice Chern-Simons theory can be
defined as a consistent gauge theory at the quantum level on
these planar lattices and graphs.

This paper is organized in the following way. In Sec. II,
we present a necessary and sufficient criterion for determining
whether a local vertex-face correspondence can be defined
for an arbitrary graph/lattice. In Sec. III, we write the
action of the discretized Chern-Simons gauge theory for
generic graphs with a local vertex-face correspondence. In
Secs. IV–IX, we prove that our discretized gauge theory
preserves all key features of the Chern-Simons gauge theory,
including the gauge invariance, flux attachment, commutation
relations, duality transformation, and the locality condition.
In Sec. X, we show that the existence of a local vertex-face
correspondence is the necessary condition for discretizing the
Chern-Simons theory, if we want the theory to be nonsingular
and to preserve the key properties of the Chern-Simons gauge
theory. In Sec. XI, we present a simple example by discretizing
the Chern-Simons gauge theory on a tetrahedron, which is a 2D
planar graph on a sphere. In Sec. XII, we conclude our paper
by discussing open problems and applications of this theory
to a number of systems of interest. Details of the calculations
are presented in several appendixes.

II. LOCAL VERTEX-FACE CORRESPONDENCE

We start our discussion by presenting all constraints and
assumptions that will be enforced on the graphs (and lattices)
that we will consider. In this paper, we study generic planar
simple graphs embedded on arbitrary closed and orientable
2D manifolds. Here, “planar” indicates that the graph can be
drawn on a 2D manifold without any crossing bonds, while
“simple” means no multiple bonds connecting the same pair
of sites and no bond connecting a site to itself (see Fig. 11 in
Appendix A for an explicit example). The “simple” condition
is automatically implied for most (if not all) lattices studied in
physics, while the “planar” condition holds for many (but not
all) of them.

For a planar graph G, we can construct the dual graph G∗
by mapping vertices to faces, and vice versa. Because, as will
be discussed in the following, the dual graph will be needed for
the dual gauge theory, we will also require the dual graph G∗
to be simple. For the original graph G, this condition implies
that G cannot contain any dangling bonds, and that two faces
in G can share at most one common edge.

From now on, we will focus our study on graphs, on which a
local vertex-face correspondence can be defined. In Sec. X, we
will prove that this constraint is necessary in order to preserve
certain key defining properties of the Chern-Simons gauge
theory.

(a) Nv < Nf (b) Nv > Nf

(c) Nf = Nv

FIG. 3. (Color online) Examples of lattices/graphs that do not
support a local vertex-face correspondence. (a) A triangular lattice,
which has 1 vertex and 2 faces per unit cell (Nv < Nf ), (b) a
honeycomb lattice, which has 2 vertices and 1 face per unit cell
(Nv > Nf ), and (c) a lattice with Nv = Nf but some of the subgraph
has more faces than vertices, e.g., the dark area, which has 18 faces
and 16 vertices. The (red) parallelogram marks a unit cell with lattice
vectors indicated by the two (red) arrows. Each unit cell of this lattice
contains 27 vertices, 54 edges, and 27 faces (Nv = Nf ).

To determine whether a graph can support such a lo-
cal vertex-face correspondence, we will use the following
criterion:

Criterion. A local vertex-face correspondence can be
defined on a 2D planar graph G, if and only if the graph has
the same number of vertices and faces (i.e., Nv = Nf ), and
that for any subgraph of G the number of faces never exceeds
the number of vertices (i.e., N ′

v � N ′
f ).

That this criterion is a sufficient and necessary condition
is proved in Appendix B. The proof utilizes Hall’s marriage
theorem by mapping the local vertex-face correspondence to
Hall’s marriage problem [47]. The marriage theorem is named
after the British mathematician, Philip Hall, who should not be
confused with the physicist Edwin Hall, after whom the Hall
effect is named.

Using this criterion it is straightforward to determine
whether or not a graph or lattice can support a local vertex-face
correspondence. In Fig. 2 (Fig. 3), we provide examples of
lattices/graphs, on which such a local correspondence exists
(does not exist). In Fig. 3, the first two lattices do not support
any one-to-one correspondence between vertices and faces
because the number of faces does not match the number
of vertices. The third example, shown in Fig. 3(c), has the
same number of faces and vertices and, thus, in principle, a
one-to-one correspondence between vertices and faces could
be defined. However, in this case such a correspondence cannot
be local, as proven in Appendix B, because this lattice contains
some subgraph, whose number of faces exceeds the number
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of vertices. For example, the dark area in Fig. 3(c) shows a
subgraph with 18 faces and 16 vertices.

In Figs. 2(b) and 2(c), the two lattices are dual to each
other. Generically, if a graph G has a local vertex-face
correspondence, so does its dual graph G∗. This is because
one can construct such a correspondence for G∗ by simply
swapping the vertices and faces in the original vertex-face
correspondence defined on G. As a result, our discretized
Chern-Simons gauge theory always arises in pairs (one on the
graph G and the other on the dual graph G∗). In Sec. VI, we will
prove that these two gauge theories are dual to each other. This
duality relation is different from the continuum, in which the
Chern-Simons theory is self-dual. A discretized Chern-Simons
gauge theory is in general not self-dual, unless the underlying
graph is self-dual. One example of a self-dual graph is shown
in Fig. 2(a), i.e., a square lattice. Another self-dual graph will
be presented in Sec. XI, i.e., a tetrahedron.

We conclude this section by highlighting some conventions
adopted in this paper. For a graph G, we label the numbers
of vertices, edges, and faces as Nv , Ne, and Nf , respectively,
and we use the subindices v, e, and, f to label each vertex,
edge, and face, respectively, where v, e, and f take integer
values (1 � v � Nv , 1 � e � Ne, and 1 � f � Nf ). For the
dual graph G∗, we will use the “∗” symbol to label every
object. For example, vertices, edges, and faces of the dual
graph are labeled as v∗, e∗, and f ∗, respectively. In addition,
for convenience, if a vertex v in graph G is mapped to the
face f ∗ in the dual graph, we will use the same integer to
label them, i.e., v = f ∗. Same is true for corresponding e and
e∗ (f and v∗). Throughout the paper, repeated indices will be
summed over unless specified otherwise. For the gauge field,
the time component lives on vertices and thus will be labeled
as Av . The spatial components (i.e., the vector potential) are
defined on edges, and thus will be shown as Ae. Because the
vector potential is a vector, we must choose a positive direction
for each edge (from one of its ends to the other). The vector
potential Ae on an edge e is positive (negative), if it is along
(against) the direction of the edge e. In graph theory, after a
direction is assigned to each edge, the graph is called a directed
graph (or a digraph) [47].

III. DISCRETIZED CHERN-SIMONS ACTION

In this section, we construct the action of the discretized
Chern-Simons gauge theory. We should emphasize that as long
as the conditions discussed in the previous section are satisfied,
our construction is applicable for arbitrary graphs.

A. The M matrix and the K matrix

In this section, we define two matrices for arbitrary
graphs with a local vertex-face correspondence. For a graph
satisfying the criterion given in the previous section, typically
there is more than one way to define the local vertex-face
correspondence, and different choices here will in general
result in different M and K matrices and thus lead to slightly
different actions. Here, we choose a specific (albeit arbitrary)
one, consistently throughout the lattice.

The vertex-face correspondence defines a matrix Mv,f with
dimensions Nv × Nf . The first index of this matrix runs over

all vertices, while the second one indicates faces in the graph.
If vertex v and face f are paired up according to the vertex-
face correspondence, then Mv,f = 1. Otherwise, the matrix
element is zero. Hence,

Mv,f =
{

1 if v is paired with f ,

0 otherwise.
(3.1)

Because the vertex-face correspondence requires Nv = Nf ,
the matrix M is a square matrix. In addition, it is easy to
realize that, by definition, M is an invertible and orthogonal
matrix, i.e., the inverse matrix M−1 is the transpose matrix
MT = M−1.

In addition to M , the local vertex-face correspondence can
be used to define another Ne × Ne square matrix, which we
will denote by K , whose two indices run over all edges of the
graph (with Ne being the number of edges):

Ke,e′ =
{

± 1
2 if e and e′ belongs to the same face,

0 otherwise.
(3.2)

If there exists a face f such that e and e′ are both edges of
this face, the component of the matrix Ke,e′ is ± 1

2 . Otherwise,
the matrix element vanishes. For nonzero Ke,e′ , the ± sign is
determined by the following formula:

Ke,e′ = −η1 × η2

2
= ±1

2
, (3.3)

where η1 = ±1 and η2 = ±1 are two Z2 integers.
The sign of η1 is determined using the following rule. As

shown in Fig. 4, we first mark the vertex that is paired up with
f in the local vertex-face correspondence using a (red) circle.
After that, we go from the edge e to the edge e′ by moving
counterclockwise around the face f . If the path goes though
the specially marked vertex (the red circle in Fig. 4), η1 = +1,
and otherwise η1 = −1.

The sign of η2 is determined by the directions of the two
edges e and e′. As discussed above, to define the vector
potential, we must specify the direction for each edge. When
we go around the face f in the counterclockwise direction, if
both e and e′ are pointing along (or opposite to) the direction
of the path, η2 = +1. If one of them points along the path
while the other is opposite, η2 = −1.

With η1 and η2, their product (multiplied by −1) −η1 ×
η2 = ±1 determines the sign of Ke,e′ in Eq. (3.2). Some
examples can be found in Fig. 4.

B. Action

With the two matrices defined above, we can now write the
action of our discretized Chern-Simons gauge theory:

S = k

2π

∫
dt

[
AvMv,f 	f − 1

2
AeKe,e′Ȧe′

]
. (3.4)

Here, we sum over all repeated indices. The indices v, f , and
e run over all vertices, faces, and edges, respectively. Av is
the time component of the gauge field, which lives on vertices
and Ae represents the spatial components, which are defined
on edges. Here, Ȧ represents the time derivative, K and M are
the two matrices defined in the previous subsection, and 	f

is the magnetic flux on the face f , which equals to the loop
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e

e'

(a) η1 = +1 and η2 = +1

e

e'

(b) η1 = +1 and η2 = −1

e

e'
(c) η1 = −1 and η2 = +1

e

e'
(d) η1 = −1 and η2 = −1

FIG. 4. (Color online) Nonzero components of the K matrix.
Here, we consider two edges e and e′, which belong to the same face f

(otherwise Ke,e′ = 0). Based on the local vertex-face correspondence,
the face f is paired up with one of its vertices, which is marked by
the (red) circle. We go around the face f from e to e′ by following
the direction of the positive orientation marked by the (blue) circle
at the center of the face. In (a) and (b), the path from e to e′ goes
through the special site (marked by the red circle), and thus η1 = +1.
For (c) and (d), the special site is not on our path, and thus η1 = −1.
The sign of η2 is determined by the orientation of e and e′. If their
directions are both along (or opposite) to the direction of the positive
orientation [(a) and (c)], η2 = +1. Otherwise [(b) and (d)], η2 = −1.
Once η1 and η2 are determined, the value of Ke,e′ can be obtained as
Ke,e′ = −η1 × η2/2 = ±1/2.

integral of Ae around f :

	f = ξf,eAe. (3.5)

Here, we sum over all edges and

ξf,e =

⎧⎪⎨
⎪⎩

+1, e is an edge of f with positive orientation

−1, e is an edge of f with negative orientation

0, e is not an edge of f .

(3.6)

The sign of ξf,e is determined by going around the face f

along the counterclockwise direction. If the direction of the
edge e is along this path, ξf,e = +1. Otherwise, ξf,e = −1. As
can be seen from Eq. (3.5), the matrix ξf,e is a discretized curl
operator (∇×) for planar graphs.

On a square lattice, the action that we constructed here
reduces to the action found in Refs. [10,11], which can be
considered as a special situation of our generic construction.
Similarly, for the kagome lattice this general construction
reduces to the construction that we presented in Ref. [12].

We conclude this section by comparing our discretized
theory with the Chern-Simons gauge theory in the continuum.

For comparison, we choose to write the action in the continuum
in a special form

S = k

2π

∫
dt dx

(
A0B − 1

2
Aiεi,j Ȧj

)
. (3.7)

Here, A0 is the time component of the gauge field. Ai and
Aj are the spatial components with i and j being x or y.
εi,j is the Levi-Civita symbol and B is the magnetic field
perpendicular to the 2D plane. The first term here enforces the
flux attachment and the second term dictates the dynamics of
the vector potentials Ax and Ay .

By comparing Eq. (3.4) with (3.7), we find that our
discretized theory is in close analogy to the continuum case.
Here, the M matrix dictates the flux attachment (i.e., Gauss’
law) and the K matrix plays the role of the Levi-Civita symbol.
It is worthwhile to highlight that, just as the Levi-Civita
symbol, the K matrix is antisymmetric

Ke,e′ = −Ke′,e. (3.8)

This can be verified easily by noticing that η1 → −η1 and
η2 → η2, if we swap e and e′. This antisymmetry property is
in fact expected. If we look at the second term in our action
[Eq. (3.4)] because

∫
dt AeȦe′ = − ∫

dt ȦeAe′ (integration by
part), only the antisymmetric part of K contributes to the
action.

In the next six sections, we will demonstrate that our action
indeed offers a discretized Chern-Simons gauge theory on
generic graphs by showing that all the key properties of the
Chern-Simons gauge theory are preserved by our action.

IV. GAUGE INVARIANCE

For a gauge theory, the action must be gauge invariant. In
this section, we will verify that our action [Eq. (3.4)] preserves
the gauge symmetry. In the case of Chern-Simons, this is also
true provided the manifold has no boundaries. Furthermore,
invariance under large gauge transformations (which wind
around noncontractible loops of the systems) holds only if
the index k is an integer [1]. These conditions are satisfied by
our discretized Chern-Simons theory.

A. Gauge transformation on a graph

For a graph/lattice, a gauge transformation takes the
following form:

Av →Av − ∂tφv, (4.1)

Ae →Ae − Dv,eφv, (4.2)

where φv is an arbitrary scalar function defined on vertices.
The first formula [Eq. (4.1)] is the gauge transformation for
the time component of the gauge field, while the second one
[Eq. (4.2)] is for the spatial components. The matrix Dv,e in
Eq. (4.2) is the incident matrix of the graph [48]

Dv,e =

⎧⎪⎨
⎪⎩

+1 if v is the positive end of e,

−1 if v is the negative end of e,

0 otherwise.

(4.3)
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Here, we called the vertex v a positive (negative) end of the
edge e, if v is one of the two ends of e and the direction of
the edge e is pointing towards (away from) v. The incident
matrix contains all the information about the connectivity of
the graph, as well as the direction assigned to each edge [48].
The incident matrix plays the role of a (discretized) gradient
operator ∇, which can be seen easily by noticing that

Dv,eφv = φv1 − φv2 , (4.4)

where φv is an arbitrary scalar function and the edge e points
from v2 to v1. As a result, Eq. (4.2) can be considered as a
discretized version of A → A − ∇φ. Later, we will show that
the incident matrix also serves as a discretized divergence ∇·.

B. Gauge symmetry

As proven in Appendix C, the sufficient and necessary
condition for the action of Eq. (3.4) to be gauge invariant
is that the following identity is satisfied:

Mv,f ξf,e = Ke,e′Dv,e′ , (4.5)

where ξf,e is defined in Eq. (3.6) and the incident matrix Dv,e′

is defined in Eq. (4.3). In this section, we prove that this
condition is indeed valid for the M and K matrices constructed
in Sec. III A.

To verify Eq. (4.5), we need to prove that the relation holds
for any e and v. Here, we classify all possible situations into
three cases:

(1) e and v do not belong to the same face.
(2) e and v belong to a same face, but v is not an end of e.
(3) v is an end of e.
Here, we verify Eq. (4.5) for each of these three cases.

1. Case I

The first case, where e and v do not belong to the same face,
represents the situation where e and v are separated far away
from each other. It is easy to verify that in this case, both sides
of Eq. (4.5) vanish.

For the left-hand side, Mv,f �= 0 requires v being a vertex of
the face f and ξf,e �= 0 requires e being an edge of f . For Case
I, these two conditions cannot be satisfied simultaneously, and
thus Mv,f ξf,e = 0.

For the right-hand side, Ke,e′ �= 0 implies that e and e′ are
edges of the same face, which will be called the face f . If
Dv,e′ �= 0, v must be one end of e′, which means that v is
a vertex of f . As a result, to get a nonzero Ke,e′Dv,e′ , both
e and v must both belong to the same face f . This is in
contradiction with the assumption of Case I, and thus we must
have Ke,e′De′,v = 0.

Because both sides of the equation are zero, then Eq. (4.5)
holds for Case I.

2. Case II

The second case, where e and v belong to one same face
but v is not an end of e, is shown in Fig. 5(a). In this figure,
without loss of generality, we choose a specific direction for
each edge. As proved in Appendix D, Eq. (4.5) is independent
of the choice of the edge directions. Therefore, although we

vf1
e

e1

e2

(a) Case II

v

f1

f2

e

e1

e2

(b) Case III

FIG. 5. Gauge invariance of our theory for (a) Case II and (b)
Case III. In (a), we marked two additional edges of v, e1, and e2,
which are edges of f1. In (b), we labeled two faces f1 and f2 and
two additional edges e1 and e2, such that e is the common edge
shared by f1 and f2, while e1 and e2 are two edges of v, which are
adjacent to f1 and f2, respectively. Dashed lines represent (possible)
additional edges of v, which are irrelevant for our proof and thus are
not labeled. Although we assume a specific set of orientations for
edges in these two figures, none of our final conclusions rely on the
choice of orientations for each edge, as proven in Appendix C.

only consider one specific direction arrangement here, the
conclusion is generic.

In Fig. 5(a), both v and e belong to the same face, f1.
Because v is a vertex of the face f1, two of the edges of the
face f1 must have v as their end. These two edges are labeled
as e1 and e2 in Fig. 5(a).

Using the edge directions shown in Fig. 5(a), it is easy to
verify that

Ke,e1 = − η1;e,e1η2;e,e1

2
= −η1;e,e1

2
, (4.6)

Ke,e2 = − η1;e,e2η2;e,e2

2
= −η1;e,e2

2
, (4.7)

Dv,e1 = − 1, (4.8)

Dv,e2 = + 1, (4.9)

and thus

Ke,e′Dv,e′ = Ke,e1Dv,e1 + Ke,e2Dv,e2 = η1;e,e1 − η1;e,e2

2
.

(4.10)

Here, we shall distinguish two different situations: (1) v is
paired up with f1 according to the vertex-face correspondence,
and (2) v is not paired up with f1.

If v is paired up with f1, Mv,f vanishes for all f , except
for f = f1, and, therefore,

Mv,f ξf,e = Mv,f1ξf1,e = +1. (4.11)

Here, we do not sum over the repeated index f1 and we used
the fact that Mv,f1 = 1. For the orientation shown in Fig. 5(a),
ξf1,e = +1. For the right-hand side of Eq. (4.5), we can use
Eq. (4.10). Here, we have η1;e,e1 = +1 and η1;e,e2 = −1 and,
thus,

Ke,e′De′,v = η1;e,e1 − η1;e,e2

2
= 1

2
+ 1

2
= +1. (4.12)

By comparing the two equations above, we find that
Mv,f ξf,e = Ke,e′De′,v
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If v is not paired up with f1, Mv,f1ξf1,e = 0. For the right-
hand side of Eq. (4.5), it is easy to verify that η1;e,e1 = η1;e,e2 ,
and thus

Ke,e′De′,v = η1;e,e1 − η1;e,e2

2
= 0. (4.13)

Again, we verified Eq. (4.5).

3. Case III

For the last case, shown in Fig. 5(b), because each edge in
our graph is shared by two and only two faces (as shown above
in Sec. II), we can label the two faces of the edge e as f1 and
f2. In addition, we also label two edges of v, e1, and e2, where
e1 is an edge of f1 and e2 is an edge of f2. Because we have
assumed that the graph and the dual graph are both simple (see
Sec. II), e1 �= e2.

Same as in Case II, here too we only need to consider one
specific set of directions for the edges and the conclusion will
be generic. Using the directions shown in Fig. 5(b), we have

Ke,e1 = − η1;e,e1η2;e,e1

2
= −η1;e,e1

2
, (4.14)

Ke,e2 = − η1;e,e2η2;e,e2

2
= −η1;e,e2

2
, (4.15)

Dv,e1 = − 1, (4.16)

Dv,e2 = − 1, (4.17)

and therefore

Ke,e′Dv,e′ =Ke,e1Dv,e1 + Ke,e2Dv,e2

=η1;e,e1 + η1;e,e2

2
. (4.18)

Again, we distinguish two possible situations: (1) v is paired
up with f1 or f2 according to the vertex-face correspondence.
(2) v is not paired up with either f1 or f2.

For the first situation, without loss of generality we assume
that v is paired up with f1. Using the directions shown in
Fig. 5(b), we find that

Mv,f ξf,e = Mv,f1ξf1,e = +1. (4.19)

Here, we do not sum over the repeated index f1. In addition,
we also have η1;e,e1 = η1;e,e2 = +1 and, therefore,

Ke,e′De′,v = η1;e,e1 + η1;e,e2

2
= +1. (4.20)

So, we find Mv,f ξf,e = Ke,e′De′,v .
If v is not paired up with either f1 or f2, Mv,f ξf,e = 0

because it is impossible to make both Mv,f and ξf,e nonzero.
It is also easy to verify that here η1;e,e1 = −η1;e,e1 and, thus,

Ke,e′De′,v = η1;e,e1 + η1;e,e2

2
= 0. (4.21)

Once again, we get Mv,f ξf,e = Ke,e′De′,v .
By summarizing all possible situations discussed above, we

have verified Eq. (4.5). Therefore, we conclude that our theory
is invariant under local gauge transformations.

V. FLUX ATTACHMENT

A key property of the Chern-Simons gauge theory is the
constraint of flux attachment, which binds a magnetic flux
with each charged particle. For a point charge q at location r0,
the corresponding magnetic field is

B(r) = 2π

k
q δ2(r − r0). (5.1)

In the continuum classical theory, the flux and the charge are
located at the same position, as indicated by the δ function in
Eq. (5.1). In a continuum quantum gauge theory this condition
is a constraint on the physical Hilbert space, and is the
requirement that the quantum states be invariant under local
time-independent gauge transformations [45], as we discussed
in the Introduction [cf. Eq. (1.3)]. This condition requires
regularization (in the form of splitting the position of the
charge and the flux) which leads to a proper framing of the
knots represented by Wilson loops [1,49,50]. For a discrete
system, however, because electric charges live on vertices,
while magnetic fluxes are defined on faces (which takes care
of the regularization), it is necessary to specify one additional
rule to dictate the location of the magnetic flux for charged
particles at each site. This is achieved by the local vertex-face
correspondence introduced in Sec. I. Here too, this constraint
amounts to the conditions that the states of the gauge theory be
invariant under time-independent gauge transformations [40].

Because our action [Eq. (3.4)] does not contain any
dynamics for the time component of the gauge field Av (just as
in any gauge theory), Av is not a dynamical field but its role is
to enforce a constraint [45]. By taking a variational derivative
of Av , we get the charge at the vertex v,

qv = δS

δAv

= k

2π
Mv,f 	f , (5.2)

which is proportional to the magnetic flux in the face f .
Because M is an orthogonal matrix, this equation implies that

	f = 2π

k
qvMv,f . (5.3)

This equation is the discrete version of the flux attachment,
analogous to Eq. (5.1).

Here, we find that for a charge at a vertex v, a magnetic flux
is bound to it and the flux is located at the face f , which is the
partner of v according to the vertex-face correspondence. This
is the physical content of the vertex-face correspondence.

We conclude this section by emphasizing that the flux
attachment rule here is local because we have required the
vertex-face correspondence to be local, i.e., the magnetic flux
attached to a charge is located on a neighboring face. For a
discrete system, this setup offers the closest analogy to the
delta function in Eq. (5.1).

VI. DUAL GRAPH, DUAL THEORY, AND THE
INVERTIBILITY OF THE K MATRIX

In this section, we verify two key (and essential) properties
of the discretized Chern-Simons gauge theory:

(1) The K matrix is invertible.
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(2) For any discretized Chern-Simons gauge theory con-
structed above, one can construct another discretized Chern-
Simons gauge theory on the dual graph.

Later, we will prove in Appendix E that the theory defined
on the dual graph is in fact the dual theory of the original
discretized Chern-Simons gauge theory.

As has been addressed in literature, the K matrix must be
nonsingular (invertible) in order to ensure the correct dynamics
for a discretized Chern-Simons gauge theory [10,11]. One way
to realize this is by noticing that the inverse of the K matrix
offers the commutator of the vector potential Ae (see Sec. VII
for more details), and therefore, to avoid singularities in the
commutator, the K matrix must be invertible.

Here, we will first verify the second property listed above by
directly constructing a Chern-Simons gauge theory on the dual
graph in Secs. VI A and VI B. Then, in Sec. VI C, we prove
that K is invertible by finding directly the inverse matrix of K ,
which is in fact the K∗ matrix defined on the dual graph with
a minus sign. Finally, in Sec. VI D, as a consistency check,
we prove that the gauge invariance condition for the original
graph and that of the dual graph are actually equivalent to each
other.

A. Duality transformation

For a planar graph G, one can construct the dual graph G∗
by putting a vertex v∗ in each face of G and then connecting
two vertices in G∗ if their corresponding faces in G share a
common edge. It is easy to check that the dual of a dual graph is
the original graph (G∗)∗ = G. For the lattices shown in Fig. 2,
the square lattice is self-dual, while the kagome lattice and the
dice lattice are dual to each other.

For simplicity, we will use the same integer to label f and
v∗, if f is mapped to v∗ under the duality transformation.
Similarly, we use the same integer to label e and e∗ (v and
f ∗), if they are dual to each other. In addition, we choose the
direction for each edge in the dual graph such that ne × n∗

e > 0,
where ne and n∗

e are unit vectors along the direction of the edge
e and its dual edge e∗. In other words, we rotate the edge e

counterclockwise until it aligns with e∗, and then the direction
of the rotated edge e determines the direction of e∗.

With this convention, the incident matrix of the dual graph
D∗

v∗,e∗ coincides with the ξf,e matrix of the original graph
[Eq. (3.6)]:

D∗
v∗,e∗ = ξf,e. (6.1)

Similarly, the ξ ∗
f ∗,e∗ matrix for the dual graph is in fact the

incident matrix of the original graph D, up to an overall minus
sign

ξ ∗
f ∗,e∗ = −Dv,e. (6.2)

Here, we require v∗ = f and e∗ = e as shown in the previous
paragraph. The physics meaning of these two relations is that
if the duality transformation maps a face f of a graph G into
the vertex v∗ in the dual graph G∗, then a loop around the face
f is mapped to all the edges connected to vertex v∗, and vice
versa.

It is easy to realize that under a duality transformation,
the local vertex-face correspondence in the original graph is
transformed into a local vertex-face correspondence in the dual

graph. As a result, we can use exactly the same construction
to obtain a discretized Chern-Simons gauge theory on the dual
graph

S = k∗

2π

∫
dt

[
A∗

v∗M
∗
v∗,f ∗	

∗
f ∗ − 1

2
A∗

e∗K
∗
e∗,e′∗Ȧ

∗
e′∗

]
. (6.3)

Here, A∗
v∗ and A∗

e∗ are gauge fields defined on the dual graph
with 	∗

f = ξ ∗
f ∗,e∗A∗

e being the magnetic flux of this gauge field
on face f ∗. The M∗ and K∗ matrices are constructed using the
same rules discussed above in Sec. III A. In Appendix E, we
show that if k∗ = −1/k, this action is the dual theory of the
original discretized Chern-Simons gauge theory [Eq. (3.4)].

It is straightforward to verify that the M∗ matrix is the
transpose of the M matrix. Because M is an orthogonal matrix,
it implies that M∗ is the inverse of M

M∗ = MT = M−1. (6.4)

Following, we will study the K∗ matrix and prove that it is the
inverse of the K matrix up to an overall minus sign.

B. K ∗ matrix

In this section, we show that the K∗ matrix can be
constructed directly in the original graph G, without going
to the dual graph G∗. This construction is fully equivalent
to the dual-graph construction used in the previous section.
However, as will be shown in the next section, by constructing
the K∗ matrix in the original graph, it is more convenient to
study the relation between the K matrix and the K∗ matrix.

As mentioned above, we label each edge in the dual graph
using the same index as the corresponding edge in the original
graph (i.e., e∗ = e). Therefore, we can rewrite the K∗ matrix
using the edge indices of the original graph (e and e′)

K∗
e∗,e′∗ = K∗

e,e′ , (6.5)

where e and e′ are edges of original lattice and they are dual
to e∗ and e′∗, respectively. The matrix K∗

e,e′ is now defined on
the original graph, and thus we can translate the definition of
the K∗ matrix to the original graph. Using the original graph,
it is straightforward to verify that

K∗
e,e′ =

{
± 1

2 if e and e′ share a vertex,

0 otherwise.
(6.6)

If e and e′ do not share a common end point, Ke,e′ = 0.
Otherwise,

K∗
e,e′ = −η∗

1 × η∗
2

2
= ±1

2
, (6.7)

where η∗
1 = ±1 and η∗

2 = ±1 are two Z2 integers. To deter-
mine the sign of η∗

1, we first label the common end of e and
e′ as v. Under the vertex-face correspondence (of the original
graph), v is paired up with a neighboring face f . Now, we
go from the edge e to the edge e′ by moving around v in
the counterclockwise direction. If the path goes through the
face f , η∗

1 = +1, and otherwise η∗
1 = −1. The sign of η∗

2 is
determined by the directions of edges e and e′. If both of
them point toward (or away from) v, η∗

2 = +1, and otherwise
η∗

2 = −1.
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C. K ∗ = −K−1

In this section, we prove that

K∗ = −K−1 (6.8)

and thus K is invertible. To prove Eq. (6.8), we shall verify the
following relations:

Ke,e′′K∗
e′′,e′ = K∗

e,e′′Ke′′,e′ = −δe,e′ , (6.9)

where δe,e′ is the Kronecker delta. In this section, we will only
demonstrate Ke,e′′K∗

e′′,e′ = −δe,e′ , while one can use the same
method to prove K∗

e,e′′Ke′′,e′ = −δe,e′ .
Here, we need to consider six different cases:
(1) e = e′.
(2) e �= e′, and e and e′ share an end point, and e and e′ are

edges of the same face.
(3) e �= e′, and e and e′ share an end point, but e and e′ are

not edges of the same face.
(4) e and e′ do not share any end point, but belong to the

same face.
(5) e and e′ do not belong to the same face, but there is a

face f , where e is an edge of f and one of the end points of e′
is a vertex of f .

(6) Otherwise.
Among all the six cases, δe,e′ = 1 for the first one, and

δe,e′ = 0 for all others. In Fig. 6, we show the first five cases.
Here, we mark e, e′ and all other edges that contribute to
Ke,e′′K∗

e′′,e′ using solid lines. Other (possible) edges, which do
not contribute to Ke,e′′K∗

e′′,e′ , are labeled as dashed lines. Using

e=e'

e2e1

e4e3

(a) Case 1

e'

ee1 e2

(b) Case 2

e
e1

e2

e'

(c) Case 3

e

e1
e'

e2

(d) Case 4

e2
e

e1e'

(e) Case 5

FIG. 6. Possible cases for computing Ke,e′′K∗
e′′,e′ . Solid lines mark

the edges e, e′ and all edges that will contribute to Ke,e′′K∗
e′′,e′ . Dashed

lines are (possible) additional edges, which do not contribute to
Ke,e′′K∗

e′′,e′ .

Fig. 6, it is easy to notice that for all the first five situations

Ke,e′′K∗
e′′,e′ =

∑
i

Ke,ei
K∗

ei ,e′

=
∑

i

η1;e,ei
η2;e,ei

η∗
1;ei ,e′η

∗
2;ei ,e′ . (6.10)

Here, for each ei , η1, η2, η∗
1, and η∗

2 are obtained using the
rules defined above. Following, we compute Ke,e′′K∗

e′′,e′ for
each situation using this formula.

1. Case 1

For the first situation [e = e′ as shown in Fig. 6(a)], we
have

Ke,e′′K∗
e′′,e′=e =

4∑
i=1

Ke,ei
K∗

ei ,e
. (6.11)

Here, we do not sum over repeated indices on the right-hand
side of the equation, and the four edges e1, e2, e3, and e4 are
marked in Fig. 6(a). For any ei , we can verify that η1 = η∗

1 and
η2 = −η∗

2. Therefore, Ke,ei
= −K∗

ei ,e
. As a result,

Ke,e′′K∗
e′′,e′=e = −

4∑
i=1

(Ke,ei
)2 = −

4∑
i=1

(
±1

2

)2

= −1

(6.12)

and, thus, we find that Ke,e′′K∗
e′′,e′ = −δe,e′ for e = e′.

2. Case 2

For the second case, shown in Fig. 6(b), it is straightforward
to verify that if η2;e,e1 and η2;e,e2 have the same sign, then e1

and e2 must both point towards (or away from) the two vertices
shown in Fig. 6(b). As a result, η∗

2;e1,e′ and η∗
2;e2,e′ must have

opposite sign, and thus

η2;e,e1η
∗
2;e1,e′ = −η2;e,e2η

∗
2;e2,e′ . (6.13)

Similarly, we can show that if η2;e,e1 = −η2;e,e2 , we must have
η∗

2;e1,e′ = η∗
2;e2,e′ . And, therefore, Eq. (6.13) is always valid for

Case 2.
For η1’s, we need to examine three different cases. Here,

we consider the face f formed by e, e′, e1 and (possibly) other
edges, and ask whether the vertex-face correspondence pairs
up f with one of these two vertices. In general, there are three
possibilities

(1) f is paired up with the vertex on the left.
(2) f is paired up with the vertex on the right.
(3) f is not paired up with either of them.
For the first situation, we have η1;e,e1 = −1, η∗

1;e1,e′ = −1,
and η1;e,e2 = η∗

1;e2,e′ . Therefore, we find

η1;e,e1η
∗
1;e1,e′ = η1;e,e2η

∗
1;e2,e′ . (6.14)

For the second situation, we have η1;e,e1 = −1, η∗
1;e1,e′ = +1,

and η1;e,e2 = −η∗
1;e2,e′ . Therefore, Eq. (6.14) is still valid. For

the third situation, it can be shown that η1;e,e1 = +1, η∗
1;e1,e′ =

+1, and η1;e,e2 = η∗
1;e2,e′ . Thus, Eq. (6.14) is still valid.

In summary, we find that Eqs. (6.13) and (6.14) always hold
for this case [Fig. 6(b)]. By multiplying these two equations
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together, we get

Ke,e1K
∗
e1,e′ = −Ke,e2K

∗
e2,e′ . (6.15)

Utilizing Eq. (6.10), this relation implies that Ke,e′′K∗
e′′,e′ = 0,

in agreement with the relation Ke,e′′K∗
e′′,e′ = −δe,e′ .

3. Cases 3, 4, and 5

Using the same approach, we can show that for the third
and the fourth cases, shown in Figs. 6(c) and 6(d),

η2;e,e1η
∗
2;e1,e′ =η2;e,e2η

∗
2;e2,e′ , (6.16)

η1;e,e1η
∗
1;e1,e′ = − η1;e,e2η

∗
1;e2,e′ . (6.17)

Once again, we get Ke,e′′K∗
e′′,e′ = 0 = −δe,e′ .

For the fifth case, shown in Fig. 6(e), we have

η2;e,e1η
∗
2;e1,e′ = − η2;e,e2η

∗
2;e2,e′ , (6.18)

η1;e,e1η
∗
1;e1,e′ =η1;e,e2η

∗
1;e2,e′ . (6.19)

Thus, Ke,e′′K∗
e′′,e′ = 0 = −δe,e′ .

4. Case 6

The last case, 6, is easy to verify because here e and e′ are
far away from each other, so that for any e′′, either Ke,e′′ or
K∗

e′′,e′ is zero. Therefore, Ke,e′′K∗
e′′,e′ = 0 = −δe,e′ .

By summarizing all the possible cases, we conclude that
KK∗ = −I . We can use the same method to prove that K∗K =
−I and thus K∗ = −K−1. This result also proves that the K

and K∗ matrices that we constructed above are invertible.

D. Gauge invariance in the dual graph

As shown above in Sec. IV, in the original graph, our action
of Eq. (3.4) is gauge invariant if and only if

Mv,f ξf,e = Ke,e′Dv,e′ . (6.20)

For the dual graph, there is a similar condition for the gauge
invariance

M∗
v∗,f ∗ξ

∗
f ∗,e∗ = K∗

e∗,e′∗D
∗
v∗,e′∗ . (6.21)

In this section, we prove that these two conditions are in fact
equivalent as long as M∗ = M−1 and K∗ = −K−1.

We start from Eq. (6.21) and change the dual graph (face,
edge, or vertex) labels into the corresponding labels of the
original graph

M∗
f,vDv,e = −K∗

e,e′ξf,e′ , (6.22)

and here we also use the relations D∗
v∗,e∗ = ξf,e and ξ ∗

f ∗,e∗ =
−Dv,e [Eqs. (6.1) and (6.2)].

If M∗ = M−1 and K∗ = −K−1, the formula above implies
that

M−1
f,vDv,e = K−1

e,e′ξf,e′ . (6.23)

By multiplying the matrices M and K on both sides, we
recover the condition of gauge invariance in the original graph,
Eq. (4.5). Therefore, we find that the two gauge-invariance
conditions (6.20) and (6.21) are equivalent.

VII. COMMUTATION RELATIONS AND THE K−1 MATRIX

The Chern-Simons theory in the continuum has a very
special commutation relation. In particular, the commutator
between the loop integrals of the vector potential is topologi-
cally invariant. We will show in this section that our discretized
theory has the same property.

A. Commutators for the continuum case

For the Chern-Simons gauge theory in the continuum,
for two arbitrary curves C and C ′, we have the following
commutation relation:[∫

C

A,

∫
C ′

A

]
= 2πi

k
ν
[
C,C ′], (7.1)

where ν[C,C ′] is the number of (oriented) intersections
between the two curves, i.e., the number of right-handed
interactions of C and C ′ minus the number of left-handed
ones [10].

If C and C ′ are closed loops, ν[C,C ′] is topologically
invariant, and it is easy to verify that its value cannot change
under any adiabatic procedures. In addition, if either C or C ′
can be contracted into a point (i.e., contractible), ν[C,C ′] = 0.

B. Canonical quantization

Using canonical quantization, it is straightforward to show
that the conjugate field of the vector potential field Aei

is

δS

δȦe

= k

2π
Ke,e′Ae′ . (7.2)

This formula implies that for our discretized Chern-Simons
theory, the vector potential Ae (and linear superpositions of
Ae’s) play both the role of the canonical coordinates and that
of the canonical momenta. Because canonical coordinates and
canonical momenta arise in pairs, this result requires that we
must have even number of linear independent Ae’s, i.e., the
number of edges must be even. This is indeed true for any
graphs considered here. Utilizing the Euler characteristic, we
know that the numbers of vertices, edges, and faces must
satisfy the following relation:

Nv − Ne + Nf = 2 − 2g, (7.3)

where g is the genus of the underlying manifold. Because the
vertex-face correspondence requires Nv = Nf , the number of
edges is

Ne = 2Nf − 2 + 2g, (7.4)

which is an even number.
In canonical quantization, the commutator between a

canonical coordinate and the corresponding canonical momen-
tum is i�. Therefore, for our theory, we have[

Ae,
k

2π
Ke′,e′′Ae′′

]
= iδe,e′ , (7.5)

where δe,e′ is the Kronecker delta and we set � to unity.
Multiplying both sides by the inverse matrix of K , we obtain
the commutation relation for the vector potential

[Ae,Ae′ ] = i
2π

k
K−1

e′,e = −2πi

k
K−1

e,e′ . (7.6)
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Here, we used the fact that K−1 is an antisymmetric matrix.
In order to ensure that the commutator [Ae,Ae′ ] is nonsin-

gular, we must require the K matrix being invertible.

C. Paths, contractible and noncontractible cycles

In this section, we will introduce two concepts from the
graph theory: paths and cycles, which are discrete versions of
curves and loops, respectively [47].

A path is a sequence of vertices v0 → v1 → v2 → . . . →
vm, in which any two consecutive vertices are connected by an
edge. In the literature of graph theory, it is often also assumed
that a path never go through the same vertex twice. The length
of a path is the total number of edges contained in the path.

If v0 �= vm, the path is called open. For v0 = vm, the path
is closed. A closed path (with nonzero length) is also called a
cycle. In comparison with the continuum, it is easy to realize
that open paths are discretized open curves, while cycles (i.e.,
closed paths) are discretized loops (i.e., closed curves). More
precisely, a path (cycle) corresponds to a directed curve (loop)
because a path (cycle) has a natural direction built in according
to its definition, i.e., v0 → . . . → vm.

In the continuum, loops on a 2D manifold can be classified
into two categories: contractible or noncontractible, depending
on whether or not the closed curve can be adiabatically con-
tracted to a point. For a graph, there is a similar classification
for cycles (closed paths) using a different but equivalent
definition. We call a closed path (i.e., a cycle) contractible,
if it is the boundary of some 2D area formed by a set of
faces. Otherwise, it is noncontractible. For 2D closed and
orientable surfaces in the continuum, noncontractible loops
only exist for surfaces with nonzero genus (torus, double
torus, etc.), while all loops on a genus zero surface (e.g., a
sphere) are contractible. In graph theory, the same is true for
cycles. For planar graphs defined on 2D closed and orientable
surfaces, noncontractible cycles can only exist if the genus of
the underlying 2D manifold is larger than zero.

For a directed graph (or lattice), each path (P ) can be
represented by an Ne-dimensional vector ξP , whose eth
component is

ξP,e =

⎧⎪⎨
⎪⎩

+1, e ∈ P and e is along the direction of P

−1, e ∈ P and e is opposite to the direction of P

0, e �∈ P .

(7.7)

As will be shown in the following, this object defines a
discretized line integral. In particular, if P is a cycle, ξP,e

provides a discretized loop integral.

D. Commutators and intersections

For a path P on a graph G, we can define the integral
(circulation) of the vector potential along this path as

WP = ξP,eAe. (7.8)

This object is the discretized version of a line integral
∫
C

A · dx
along a path C.

Now, we consider two different paths P and P ′, and we
define two integrals WP and WP ′ for P and P ′, respectively,
using the definition of Eq. (7.8). In this section, we prove

that the commutator between WP and WP ′ is determined by
the number of oriented intersections between the two paths
ν[P,P ′]:

[WP ,WP ′ ] = 2πi

k
ν[P,P ′], (7.9)

which is the direct analog of the corresponding commutator of
the Chern-Simons theory in the continuum (7.1).

Utilizing the commutator of Eq. (7.6), we find

[WP ,WP ′ ] = −2πi

k
ξP,eξP ′,e′K−1

e,e′ . (7.10)

If the two paths P and P ′ share no common vertex, the
intersection number is obviously zero ν[P,P ′] = 0. In the
same time, [WP ,WP ′ ] also vanishes because every term on
the right-hand side of Eq. (7.10) is zero.

If the two paths share some common vertices, only
edges connected to these common vertices contribute to the
commutator of Eq. (7.10) because K−1

e,e′ = 0 for all other edges.
Therefore, we only need to consider edges adjacent to each
common vertex. As shown in Fig. 7, we shall distinguish three
different situations, shown in Figs. 7(a)–7(c), respectively,
depending on whether the common vertex is a right-handed
intersection, a left-handed intersection, or not an intersection.
In Fig. 7, we label the edges of P as e1 and e2, while the edges
of P ′ are called e′

1 and e′
2. Using Eq. (7.10), the commutator

e1'e2

e2' e1
(a) A right-handed intersection

(ν = +1)

e1e2'

e2 e1'
(b) A left-handed intersection

(ν = −1)

e1e2

e2' e1'
(c) No intersection (ν = 0) (d) A special case (ν =?)

FIG. 7. (Color online) One common vertex shared by two paths.
Here, we consider two paths P (thin red solid lines) and P ′ (thick
blue solid lines). The arrows indicate the direction of each path. The
disk in the middle is one common vertex shared by the two paths.
Dashed lines represent other (possible) edges that are connected to
the vertex, and they do not contribte to the commutator that we want
to compute. (a) shows a right-handed intersection between P and P ′

and (b) is a left-handed one. In (c), the two paths do not intersect. (d)
Shows a special case, where one path terminates at this vertex. Here,
the number of intersections can be ±1 or 0 depending on microscopic
details. In Sec. VII E, a method will be introduced to obtain the value
of ν for (d) by defining a dual path in the dual graph.
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is given by

[WP ,WP ′ ] =2πi

k

2∑
i=1

2∑
j=1

ξP,ei
ξP ′,e′

i
K∗

ei ,e
′
i

= − 2πi

k

1

2

2∑
i=1

2∑
j=1

ξP,ei
ξP ′,e′

j
η∗

1;ei ,e
′
j
η∗

2;ei ,e
′
j
.

(7.11)

Here, we used the fact that K−1 = −K∗ and each element of
K∗ can be written as −η∗

1η
∗
2/2 as defined in Sec. VI. For the

first three figures in Fig. 7, it is easy to verify that

ξP,ei
ξP ′,e′

j
η∗

2;ei ,e
′
j
=

{+1 if i = j,

−1 if i �= j .
(7.12)

If the common vertex is a right-handed intersection of P

and P ′ [Fig. 7(a)], four possible cases need to be considered
depending on the location of the face that paired up with the
common vertex, i.e., (1) between e′

1 and e2, (2) between e2 and
e′

2, (3) between e′
2 and e1, and (4) between e1 and e′

1. For case
(1), we have η∗

1;e1,e
′
1
= −1, η∗

1;e1,e
′
2
= +1, η∗

1;e2,e
′
1
= −1, and

η∗
1;e2,e

′
2
= −1. For case (2), we have η∗

1;e1,e
′
1
= −1, η∗

1;e1,e
′
2
=

+1, η∗
1;e2,e

′
1
= +1, and η∗

1;e2,e
′
2
= +1. For case (3), η∗

1;e1,e
′
1
=

−1, η∗
1;e1,e

′
2
= −1, η∗

1;e2,e
′
1
= +1, and η∗

1;e2,e
′
2
= −1. For case

(4), η∗
1;e1,e

′
1
= +1, η∗

1;e1,e
′
2
= +1, η∗

1;e2,e
′
1
= +1, and η∗

1;e2,e
′
2
=

−1. Using Eqs. (7.11) and (7.12), we find that for all these
four cases, the commutator [WP ,WP ′ ] = 2πi/k. Therefore,
we find that each right-handed intersection contributes 2πi/k

to the commutator.
Using the same technique, we can prove [WP ,WP ′ ] =

−2πi/k for Fig. 7(b), and [WP ,WP ′ ] = 0 for Fig. 7(c).
In summary, we find that each right-handed (left-handed)
intersection contributes +2πi/k (−2πi/k) to the commutator
[WP ,WP ′ ], and thus we proved Eq. (7.9).

E. Gauge invariance and the commutation relations

In this section, we prove that the commutation relations of
Eq. (7.9) arise naturally, if we require the action to be gauge
invariant [Eq. (4.5)]. In addition, a by-product of this proof
offers a more rigorous definition for the number of oriented
intersections, which eliminates the ambiguity demonstrated in
Fig. 7(d). There, the two paths P and P ′ barely touch each
other. Shall this count as an intersection? This question will be
answered in this section.

Consider two paths P and P ′. Here, we assume that one of
the paths is a contractible cycle (P ′), while the other is an open
path with two open ends (P ). As an example, a contractible
cycle P ′ is plotted in Fig. 8. Because P ′ is contractible, it is
the edge of an area formed by a set of faces (the dark region
in Fig. 8). Utilizing the vertex-face correspondence, this set
of faces is mapped to a set of vertices, which is marked by
circles in Fig. 8. Now, we can define a cycle in the dual lattice
such that the cycle encloses (and only encloses) these vertices
(the dashed lines in Fig. 8). This new cycle will be called
the dual of P ′ and will be labeled as P ′∗. Here, we choose
the direction of P ′∗ such that its orientation is the same as
that of P ′. Following, we will prove that the gauge invariance

FIG. 8. (Color online) A cycle in a graph and the dual cycle in the
dual graph. Here, we consider a planar graph with a local face-vertex
correspondence. The vertices in the original graph are marked by
disks, while the crosses label the faces, i.e., vertices of the dual graph.
The local face-vertex correspondence is marked using the dotted lines,
which pair up each face with one of its neighboring vertex. The thick
solid (blue) lines marks a contractible cycle (a closed path) and the
orientation of the cycle is marked by the arrows. For a contractible
cycle, its interior is formed by a set of faces (dark region). For each
face inside the dark region, we find the corresponding vertex using
the local face-vertex correspondence. These vertices are marked by
circles. Then, we draw a loop in the dual graph, which encloses these
vertices (red dashed lines connecting neighboring crosses). This loop
in the dual graph is the dual of the original loop in the original graph.
And, we require the two loops to have the same orientation.

immediately implies the commutator

[WP ,WP ′ ] = 2πi

k
ν[P,P ′∗]. (7.13)

Here, instead of the number of intersections between P and
P ′, we shall count the number of intersections for P and P ′∗.
Because the cycle P ′∗ is defined in the dual graph, the number
of intersections is always well-defined and this eliminates the
ambiguity shown in Fig. 7(d).

Before proving Eq. (7.13), we would like to highlight
that although the dual cycle P ′∗ and the original cycle P

are not identical, the difference between them is local and
microscopic. This comes from the fact that our vertex-face
correspondence is local, where a face is paired with one of its
neighboring vertex. If we take the continuous limit and ignore
differences at the microscopic level, the differences between
P ′∗ and P ′ vanish and, therefore, we recover Eq. (7.1).

Now, we prove Eq. (7.13). First, we define a Nf -
dimensional vector QP ′ for the contractible cycle P ′, whose
f th component QP ′,f is

QP ′,f =
{

1 if the face f is enclosed by P ′,
0 if the face f is outside of P ′. (7.14)

With this matrix QP ′,f , the contractible cycle P ′ can be written
as

ξP ′,e = QP ′,f ξf,e, (7.15)
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where ξf,e is defined in Eq. (3.6) and ξP,e is defined in Eq. (7.7).
The proof for Eq. (7.15) is straightforward. For the right-hand
side, it is easy to notice that for any e outside the region
enclosed by the cycle P ′, QP ′,f ξf,e = 0. For an edge inside
the region enclosed by the cycle P ′, it will induce two terms
for the right-hand side because each edge is shared by two
faces. These two terms have opposite signs and thus cancel
out, and thus QP ′,f ξf,e = 0. The only way to have a nonzero
QP ′,f ξf,e is to require that e is an edge of the cycle P ′. And it
can be verified that the value and the sign of QP ′,f ξf,e match
exactly ξP ′,e.

Similarly, in the dual space, we can write the dual cycle P ′∗
as

ξ ∗
P ′∗,e∗ = Q∗

P ′∗,f ∗ξ
∗
f ∗,e∗ = −Q∗

P ′∗,vDv,e, (7.16)

where Q∗
P ′∗,f ∗ = 1 for any faces (of the dual graph) inside the

dual cycle P ′∗. Here, we relabeled the faces in the dual graph
(f ∗) using corresponding vertices in the original graph (v). We
also used the fact that ξ ∗

f ∗,e∗ = −Dv,e as shown in Eq. (6.2).
Because the vertices (of the original graph) enclosed by P ′∗
are partners of the faces enclosed by P ′, we have

Q∗
P ′∗,v = QP ′,f Mv,f . (7.17)

By combining the two equations above and relabeling e∗ as e,
we find that

ξ ∗
P ′∗,e = −QP ′,f M−1

f,vDv,e. (7.18)

In the last step, we used the fact that the M matrix is orthogonal,
Mv,f = M−1

f,v .
By substituting Eq. (7.15) into (7.10), we find that

[WP ,W ′
P ] = − 2πi

k
ξP,eK

−1
e,e′ξP ′,e′

= − 2πi

k
ξP,eK

−1
e,e′QP ′,f ξf,e′

= − 2πi

k
ξP,eQP ′,f M−1

f,vDv,e. (7.19)

Here, we utilized the condition of gauge invariance
M−1

f,vDv,e = K−1
e,e′ξf,e′ [Eq. (6.23)]. Using Eq. (7.18), the right-

hand side can be written as

[WP ,W ′
P ] = 2πi

k
ξP,eξ

∗
P ′∗,e. (7.20)

It is easy to verify that only intersections between P and P ′∗
contribute to the right-hand side of the equation. At a right-
handed/left-handed intersection, ξP,eξ

∗
P ′∗,e = ±1, and thus

[WP ,W ′
P ] = 2πi

k
ν[P,P ′∗]. (7.21)

VIII. WILSON LOOPS FOR NONCONTRACTIBLE
CYCLES

We start this section by considering a planar graph embed-
ded on a 2D torus (with genus g = 1). For this graph, there
are two independent noncontractible cycles (i.e., discretized
counterparts of the two noncontractible loops on a torus),
which will be labeled as C and C ′ in this section. These
two cycles intersect once with each other. Without loss of
generality, we choose the oriented intersection number to be

+1, instead of −1, i.e., ν[C,C ′] = +1. As we proved above in
Eq. (7.9), the commutator [WC,WC ′ ] = 2πi/k.

Here, we define Wilson loops for the two noncontractible
cycles C and C ′ of the torus

WC = exp(iWC), (8.1)

WC ′ = exp(iWC ′). (8.2)

Because the commutator [WC,WC ′ ] = 2πi/k is a complex
number (i.e., is proportional to the identity operator), it
commutes with both WC and WC ′ . Hence, using the Baker-
Hausdorff-Campbell formula, it follows that

eiWC eiWC′ = eiWC′ eiWC e[iWC,iWC′ ] (8.3)

and thus

WCWC ′ = WC ′WCe−2πi/k. (8.4)

If we consider an eigenstate of WC with eigenvalue w,

WC |�〉 = w|�〉, (8.5)

where w is a complex number, utilizing Eq. (8.4), it is
straightforward to show that WC ′ |�〉 is also an eigenstate of
WC and its eigenvalue is we−2πi/k:

WC(WC ′ |�〉) = we−2πi/k(WC ′ |�〉). (8.6)

In other words, we can consider WC ′ as a raising/lowering
operator for the operator WC , and vice versa. Starting from the
eigenstate |�〉, eigenstates of WC can be generated by applying
this raising/lowering operator

WC

(
Wn

C ′ |�〉) = we−2nπi/k
(
Wn

C ′ |�〉), (8.7)

i.e., Wn
C ′ |�〉 is an eigenstate with eigenvalue we−2nπi/k .

For an integer k, it is easy to note that when n = k, the
state Wk

C ′ |�〉 has the same eigenvalues as |�〉. If Wk
C ′ |�〉

and |�〉 are the same quantum state, Wn
P ′ |�〉 generates k

different eigenstates of WP . From this result it follows the
well-known result that a Chern-Simons gauge theory has a
k-fold topological degeneracy on a torus. This conclusion is
well known in the continuum. Our discussion above shows
that the same is true in our discretized theory.

It is straightforward to generate the discussion above to
other 2D manifolds with different genus. For a planar graph
defined on a 2D surface with genus g, there are 2g independent
noncontractible cycles. As will be discussed in Sec. X (Fig. 9),
we can choose g of these cycles such that they do not intersect

FIG. 9. (Color online) Noncontractible cycles on a surface with
nonzero genus. For a genus g surface, we can choose g-independent
noncontractible cycles, which do not intersect with one another. These
g cycles will be used as vector ξi with i = Nf ,Nf + 1, . . . ,Nf +
g − 1, in our complete basis for the edge space. Here, we show an
example with g = 3. The three red loops mark three independent
noncontractible cycles without any intersections.
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with each other, C1, C2, . . . , Cg . The other g noncontractible
cycles will be labeled C ′

1, C ′
2, . . . , C ′

g . The absence of
intersection for cycles Ci (i = 1,2, . . . ,g) implies that the
Wilson loops defined on this cycle commute with each other,
and thus we can consider common eigenstates for WC1 , WC2 ,
. . ., WCg

. The Wilson loops for the other g noncontractible
cycles serve as raising and lowering operators. Starting from
one common eigenstate of all WCi

’s, we can use WC ′
i

to
generate kg eigenstates (including the original one), which
reflects the topological degeneracy of the Chern-Simons gauge
theory on a surface with genus g.

IX. LOCALITY

In this section, we verify that our theory is local. More
precisely, we prove that (1) our action is local, i.e., the action
does not have any coupling between fields that are not around
the same face, (2) the flux attachment is local, i.e., for a
charge at the vertex v, its magnetic flux must be located on
a neighboring face, and (3) the commutator between vector
potentials is local, i.e., for any two edges that do share a
common vertex, the vector fields defined on them commute
with each other.

A. The action

In the discretized action of Eq. (3.4), there are no long-range
couplings beyond edges and vertices of the same face. In the
first term in Eq. (3.4), because Mf,v vanishes unless f and v

are adjacent to each other, the action only contains couplings
between nearby Av and Ae (i.e., e and v must belong to the
same face). For the second term, we know that Ke,e′ = 0, if
e and e′ do not belong to the same face, and therefore, only
short-range coupling (for edges of the same face) is included
in this term.

B. Flux attachment

For the Chern-Simons gauge theory in the continuum, the
flux attachment is local, i.e., for a point charge at r0, the
magnetic field is a delta function B ∝ δ(	r − 	r0), and the B

field vanishes when we move away from the point charge.
In our discretized theory, this condition of locality is

preserved to the maximum extent. As shown in Eq. (5.3), for
a charge at the site v, the corresponding magnetic field only is
present inside a single face, which is the closest analog of a
delta function in a discrete setup. As for the relative locations
of the charge and its flux, because these two objects are on
different parts of the graph (charges on vertices and fluxes on
faces), it is impossible to require their location to coincide.
Instead, we require the charge and the flux to be adjacent to
each other.

We emphasize that this locality condition plays a very
important role, if we use the Chern-Simons gauge theory as a
statistical field to change the statistics for matter fields coupled
to it. To ensure that all particles have the correct statistics, when
we move a particle A around another particle B, A must feel
all the statistical field of B. In other words, no matter which
path we choose, as long as A moves around B, the magnetic
flux attached to B must be enclosed by the path of A. For our
theory (and for the continuous Chern-Simons gauge theory),
this is always true. However, if one were to violate the locality

condition by putting the magnetic flux in a face not adjacent to
the charge, it would be possible to move A around B without
enclosing the flux inside the path. As a result, the statistics of
the matter field would become ill defined.

C. Commutation relations

As shown in Eq. (7.6), the commutator for the vector
potential is determined by the inverse of the K matrix (or
say the dual matrix K∗). As proved in Sec. VI, the K−1 matrix
is also local, where the matrix element K−1

e,e′ = 0, if e and e′
do not share a common vertex.

This results imply that a nonzero commutator can only arise
for two neighboring edges, while for two edges separated away
from each other (i.e., not sharing a common vertex), the vector
potential always commutes with each other.

X. WHY Nv = N f ?

Above, we have shown that the existence of a local vertex-
face correspondence is sufficient for the discretization of the
Chern-Simons gauge theory. In this section, we prove that
this condition is also necessary, if we want to preserve key
properties of the Chern-Simons theory.

Let us consider a generic discretized action of gauge fields
Av and Ae. Just as in the Chern-Simons gauge theory in
the continuum, we assume that the action does not contain
time derivatives of the time component of the gauge field Av ,
and that Av plays the role of a Lagrange multiplier field that
enforces a constraint on the local flux. For the coupling among
the components of the gauge fields Ae on different edges, the
action only contains product between Ae and ∂tAe′ . We ignore
possible terms with higher orders in time derivatives, which
are less relevant in the sense of the renormalization group. In
addition, we will only keep terms to the leading order in our
action.

With these assumptions, the most generic action that one
can write is

S = k

2π

∫
dt

[
AvMv,f ξf,eAe − 1

2
AeKe,e′Ȧe′

]
. (10.1)

This action is very similar to the action we constructed above
in Eq. (3.4). However, we must emphasize that here M and
K are generic matrices, and that so far we are not putting any
constraints on them. Most importantly, now we do not require
the graph to support a local vertex-face correspondence.
Instead, we will consider generic situation and show that if
we want the action to take this form, then the local vertex-face
correspondence will arise naturally.

In Sec. X A, we first introduce some mathematical tools
from algebraic graph theory. Then, in Sec. X B, we will prove
that the number of faces cannot exceed the number of vertices
(Nv � Nf ), and otherwise the theory will be singular. Then, in
Sec. X C, we show that the flux attachment requires the number
of vertices not to exceed the number of faces (Nv � Nf ).
Combining these two conclusions together, we find that the
graph must have the same number of vertices and faces (Nv =
Nf ). Finally, in Sec. X D, we prove that a local vertex-flux
correspondence is necessary, if we further require the flux
attachment to be local.
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A. Edge space, cut space, and loop space

Here, we introduce some concepts from the algebra graph
theory [48], that will be used later. In algebraic graph
theory, an Ne-dimensional vector represents each edge e of a
graph G,

εe = (0,0, . . . ,1, . . . ,0), (10.2)

where the eth component of the vector is 1 and all other
components are 0. These vectors form the basis of a Ne-
dimensional linear space, which is called the edge space of
the graph G. It is easy to realize that the K matrix defined
above is a rank-2 tensor in this linear space.

For a directed graph (i.e., a digraph), each (contractible
or noncontractible) cycle C can be represented as an Ne-
dimensional vector ξC , whose eth component is

ξC,e =

⎧⎪⎨
⎪⎩

+1, e ∈ C and e is along the direction of C

−1, e ∈ C and e is opposite to the direction of C

0, e �∈ C.

(10.3)

These vectors span a linear space, which is a subspace of the
edge space. In algebraic graph theory, this subspace is known
as the circuit subspace.

A cut set is a set of edges, where if we cut all the edges in a
cut set, the graph is cut into two disconnected pieces. A more
rigorous definition of a cut set relies on a partition of vertices.
If V is the set of all vertices of a graph G, we can separate these
vertices into two subsets V1 and V2, such that V1 ∪ V2 = V and
V1 ∩ V2 = 0. This is called a partition of the set V . For each
partition of V , we can define a cut set by collecting all edges
of G that have one end in V1 and the other in V2. For a digraph,
one can choose one of the two possible orientations for a cut
set by specifying the vertices in V1 (or V2) to be the positive
ends, while the other to be negative. If an edge in the cut set
points to the positive end of the cut set, it is a positive edge in
this cut set. Otherwise, it is a negative edge.

Similar to cycles discussed above, each cut set can also
be represented by an Ne-dimensional vector ξH , whose eth
component is

ξH,e =

⎧⎪⎨
⎪⎩

+1, e ∈ H and e is a positive edge

−1, e ∈ H and e is a negative edge

0, e �∈ H.

(10.4)

The linear space spanned by these vectors is known as the cut
subspace, which is also a subspace of the edge space. For a
planar graph, each cut set corresponds to a contractible cycle
in the dual graph.

In algebraic graph theory, it is shown that the edge space
is the direct sum of the circuit subspace and the cut subspace.
In Appendix F, we provide a proof for the planar graphs
considered here. This result implies that for the edge space,
instead of using the basis shown above in Eq. (10.2), we can
choose a new basis for the edge space by selecting a complete
basis of the circuit subspace and a complete basis of the cut
subspace.

For planar graphs, we can use all independent (contractible
or noncontractible) cycles to form a basis for the circuit
subspace. For the cut subspace, all independent contractible

cycles in the dual graph form a complete basis. Therefore, we
can span the edge space using these loops. Using this new basis,
we can rewrite all tensors defined on the edge space, including
the K−1 matrix, which will be done in the next section.

B. Nv � N f

We will now prove that for the K matrix to be nonsingular
and the discretized theory to preserve the correct commutation
relation of Eq. (7.1), the number of faces can never exceed
the number of vertices. Using the generic action shown in
Eq. (10.1) (remember that K and M are now two arbitrary
matrices), we find that for the generic setup, we shall still
expect the commutation relation

[Ae,Ae′ ] = −2πi

k
K−1

e,e′ . (10.5)

Because singularities in the commutation relations must be
avoided, the K matrix must be invertible. In addition, if we
consider two cycles (loops) C and C ′, we shall expect the
commutation relation

[WC,WC ′ ] = 2πi

k
ν[C,C ′]. (10.6)

As shown above, this commutator is a topological invariant
and it is one of the key features of the Chern-Simons gauge
theory. Thus, we will require Eq. (10.6) for our discretized
theory.

In the following, we prove that if we assume the topo-
logically invariant commutation relation (10.6), then the K

matrix must be singular if Nv < Nf . Therefore, we must have
Nv � Nf . We will start from a genus zero surface and then
expand the conclusion to other surfaces with nonzero genus.

1. Graphs on a genus zero surface

Here, we consider graphs defined on a genus zero surface
(a sphere). Instead of directly showing that the K matrix is
singular for Nv < Nf , here we take a different but equivalent
approach. We will start by assuming the K matrix is invertible
and work with the K−1 matrix. Then, using the commutation
relation, we will show that the determinant of K−1 matrix is
zero for Nv < Nf , and thus the K matrix is singular.

Using Eqs. (10.5) and (10.6), we know that

K−1
e,e′ξC,eξC ′,e′ = −ν[C,C ′]. (10.7)

Here, we choose a new basis set for the edge space. Instead
of using the vectors shown in Eq. (10.2), we use a set
of vectors ξi with i = 1,2, . . . ,Ne. For i = 1,2, . . . ,Nf − 1,
ξi are independent cycles, i.e., they form a complete basis
of the circuit subspace. For i = Nf ,Nf + 1, . . . ,Ne, the
corresponding ξi are independent cut sets, i.e., they are a
complete basis of the cut subspace. Using this new basis, we
can define a K̃−1 matrix as

K̃−1
i,j = K−1

e,e′ξi,eξj,e′ . (10.8)

For i and j smaller than Nf , ξi and ξj are contractible cycles
of the graph (for a planar defined on a closed orientable 2D
surface with genus zero, all cycles are contractible). Using
Eq. (10.7), it is easy to realize that K̃−1

i,j = 0 for i and j

smaller than Nf . (As shown above, the number of oriented
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intersections for contractible loops is always zero). Therefore,
we can write the K̃−1 matrix in a block form

K̃−1 =
(

0 A

−AT B

)
. (10.9)

Here, the first block 0 is a (Nf − 1) × (Nf − 1) zero matrix
and B is a (Ne − Nf + 1) × (Ne − Nf + 1) matrix. Using
the Euler characteristic Nv − Ne + Nf = 2 − 2g, we can
rewrite the dimensions of B as (Nv − 1) × (Nv − 1) since
we have assumed the genus being zero, g = 0. The block A

has dimension (Nf − 1) × (Nv − 1) and AT is the transpose
of A.

For a matrix with a block of zeros as shown in Eq. (10.9),
the determinant of the matrix must be zero, if the zero block
is larger than the B block (see Appendix G for a proof).
Therefore, if Nv < Nf , det K̃−1 = 0. Because ξi is a complete
basis for the edge space, this implies that det K−1 = 0 and thus
K is a singular matrix.

2. Surfaces with nonzero genus

For a surface with nonzero genus, the same conclusion can
be proved. Here, we choose the following basis of the edge
space ξ1,ξ2, . . . ,ξNe

. For i = 1,2, . . . ,Nf − 1, ξi are Nf − 1
independent contractible cycles. Then, for i = Nf ,Nf +
1, . . . ,Nf + 2g − 1, ξi are independent noncontractible cy-
cles. For these noncontractible cycles, we choose to have the
first g noncontractible cycles (Nf � i � Nf + g − 1) not to
cross with one another as shown in Fig. 9. It is easy to realize
that the first Nf + 2g − 1 vectors here form a basis of the
circuit subspace, while the rest are chosen to be a complete
basis of the cut subspace.

Using this new basis, we can define a K̃−1 matrix as

K̃−1
i,j = K−1

e,e′ξi,eξj,e′ . (10.10)

For i < Nf and j < Nf + g (or i < Nf + g and i < Nf ),
K̃−1

i,j = 0. This is because here ξi and ξj are to cycles of the
graph G and at least one of them is contractible. According
to Eq. (10.7), K̃−1

i,j = 0 because the number of oriented
intersections vanish when one of the cycles is contractible.
For Nf � i � Nf + g − 1 and Nf � j � Nf + g − 1, ξi and
ξj are two noncontractible cycles, but we have required that
these cycles do not cross each other, i.e., ν[ξi,ξj ] = 0, and
thus, K̃−1

i,j = 0.
With this knowledge, we can write the matrix K̃i,j in this

block form

K̃i,j =
(

0 A

−AT B

)
. (10.11)

Here, the upper-left corner is a zero matrix with dimension
(Nf + g − 1) × (Nf + g − 1). The dimension of the B ma-
trix is (Ne − Nf − g + 1) × (Ne − Nf − g + 1). Utilizing the
Euler characteristic Nv − Ne + Nf = 2 − 2g, we find that the
dimensions of B are in fact (Nv + g − 1) × (Nv + g − 1).

If Nf > Nv , again, we find that the 0 block is larger than
the block of B, and therefore, det K̃1 = 0 (see Appendix G for
a proof). Because {ξi} is a compete basis for the edge space,
this implies that det K−1 = 0, and thus K is a singular matrix.

In summary, we proved that in order to preserve the
commutation relations [Eq. (10.6)], we must have Nv � Nf .
Otherwise, the K matrix would be singular.

C. Flux attachment and Nv � N f

Let us now prove that the flux attachment also requires
Nv � Nf . Flux attachment implies that for each charge
distribution, there is a corresponding unique distribution for
magnetic fluxes. Because charge can be distributed on Nv

sites, to ensure that there is a corresponding flux distribution
for every charge configuration, we must have equal number or
more faces to put the fluxes.

A more rigorous proof can be formulated by taking a
functional derivative to the generic action (10.1), δS/δAv ,
which results in the flux-attachment condition

qv = k

2π
Mv,f 	f . (10.12)

If we want the flux attached to a charge to be local (i.e., the
flux for a point charge occupies only a single face), for each
vertex v, the Mv,f is nonzero only for one value of f . As a
result, the M matrix defines a mapping from v to f .

This mapping must be injective. Namely, for two different
vertices, their corresponding faces must be different. This is
so because if two different vertices v and v′ are mapped to
the same face f , then Eq. (10.12) will require that qv = q ′

v ,
i.e., two different vertices always have the same charge, which
is obviously not a physically necessary constraint. Thus, for
an injective mapping from vertices to faces, we must have
Nv � Nf .

D. Local vertex-surface correspondence

In the previous two subsections we proved that Nv � Nf

and Nv � Nf must hold simultaneously. Therefore, the graph
must have the same numbers of vertices and faces Nv = Nf .
With Nv = Nf , the mapping from vertices to faces discussed
above become a one-to-one correspondence between vertices
and faces. As addressed in Sec. IX, it is important to ensure
that this correspondence is local. As a result, the local vertex-
face correspondence arises naturally, when we try to ensure
the theory being nonsingular and the key properties of the
Chern-Simons gauge theory is preserved.

XI. CHERN-SIMONS GAUGE THEORY ON A
TETRAHEDRON

In this section, we demonstrate our generic theory by
presenting a specific example, i.e., by discretizing the Chern-
Simons gauge theory on a tetrahedron. A tetrahedron is a planar
graph defined on a manifold with g = 0 (a sphere). In addition,
it is easy to verify that a tetrahedron satisfies the criterion
presented in Sec. II, and thus a discretized Chern-Simons
gauge theory can be constructed. It is also worthwhile to
emphasize that a tetrahedron is self-dual (i.e., the dual graph
is also a tetrahedron). This is also the simplest setup for
discretizing the Chern-Simons gauge theory.
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FIG. 10. (Color online) A tetrahedron viewing from the top. The
circles represent the vertices, and the arrows are the edges (direction
assigned). Here, we label each vertices, edges, and faces using
integers. The last face (i.e., the face 4) is on the other side of the
tetrahedron invisible from the current view point.

A. The action

We label the vertices, edges, and faces of a tetrahedron as
shown in Fig. 10. In this convention, the incident matrix Dv,e

[Eq. (4.3)] is

D =

⎛
⎜⎜⎜⎝

0 +1 −1 +1 0 0

−1 0 +1 0 +1 0

+1 −1 0 0 0 +1

0 0 0 −1 −1 −1

⎞
⎟⎟⎟⎠ (11.1)

and the ξf,e matrix defined in Eq. (3.6) is

ξ =

⎛
⎜⎜⎜⎝

+1 0 0 0 +1 −1

0 +1 0 −1 0 +1

0 0 +1 +1 −1 0

−1 −1 −1 0 0 0

⎞
⎟⎟⎟⎠. (11.2)

We choose the local vertex-face correspondence such that
vertices 1, 2, 3, and 4 pairs up with faces 2, 3, 4, and 1,
respectively. Therefore, the Mv,f matrix is

M =

⎛
⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞
⎟⎠. (11.3)

Using this vertex-face correspondence, we can get the Ke,e′

matrix following the procedure described in Sec. III B, which
is

K = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 +1 +1 0 −1 −1

−1 0 −1 +1 0 −1

−1 +1 0 −1 +1 0

0 −1 +1 0 +1 −1

+1 0 −1 −1 0 −1

+1 +1 0 +1 +1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11.4)

Using these two matrices, the action can be written as shown
in Eq. (3.4).

Here, we can verify easily that the K matrix is invertible.
In addition, it is straightforward to show that MT = M−1

and KT = −K (i.e., M is an orthogonal matrix and K is

antisymmetric), in agreement with the generic result proved
above.

In addition, it is also straightforward to verify that the
matrices satisfy the gauge-invariance condition (4.5) because
Mξ = DKT .

B. Dual graph

In the dual graph, it is straightforward to get the dual of the
incident matrix and that of the ξ matrix:

D∗ =

⎛
⎜⎜⎜⎝

+1 0 0 0 +1 −1

0 +1 0 −1 0 +1

0 0 +1 +1 −1 0

−1 −1 −1 0 0 0

⎞
⎟⎟⎟⎠ (11.5)

and

ξ ∗ =

⎛
⎜⎜⎜⎝

0 −1 +1 −1 0 0

+1 0 −1 0 −1 0

−1 +1 0 0 0 −1

0 0 0 +1 +1 +1

⎞
⎟⎟⎟⎠. (11.6)

By comparing the D and ξ ∗ (ξ and D∗) matrices, we find that
D∗ = ξ and ξ ∗ = −D, which verify Eqs. (6.1) and (6.2).

In the dual graph, if we use the same vertex-face correspon-
dence, we get the M∗ matrix

M∗ =

⎛
⎜⎝

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎠ (11.7)

and the K∗ matrix is

K∗ = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 +1 +1 0 −1 −1

−1 0 −1 +1 0 −1

−1 +1 0 −1 +1 0

0 −1 +1 0 +1 −1

+1 0 −1 −1 0 −1

+1 +1 0 +1 +1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11.8)

Using the matrices M∗, K∗, and ξ ∗, we can write the action for
the discretized Chern-Simons gauge theory in the dual graph
using Eq. (6.3).

Here, we can verify that K∗ = −K−1 and M∗ = M−1,
as well as the gauge-invariance condition M∗ξ ∗ = D∗(K∗)T

[Eq. (6.21)].

XII. CONCLUSIONS AND DISCUSSION

In this paper, we proved that the Chern-Simons gauge
theory can be discretized for generic planar graphs on arbitrary
2D closed orientable manifold as long as a local vertex-face
correspondence can be defined on the graph. This condition
is also necessary if we want the theory to be nonsingular and
to preserve some key properties of the Chern-Simons gauge
theory. In particular, we showed that the gauge invariance of the
discretized theory requires that the vertex-face correspondence
to be strictly enforced.
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We also find a necessary and sufficient condition, which
can be used to determine whether such a correspondence can
be defined on a particle graph or not, based on the number of
faces and vertices in this graph and its subgraphs.

The generalized discretized Chern-Simons gauge theory
that we presented here has a number of interesting applications.
One direction of further research is to consider the fractional
quantum Hall effect on lattices, a problem that has not attracted
much attention so far [22,23]. A more general theory of the
fractional quantum Hall effect on lattices is of interest in the
context of fractionalized time-reversal breaking topological
insulators so far as adiabatic continuity holds [28,30]. These
methods are also relevant to frustrated quantum antiferromag-
nets as we showed recently [12].

There are several open as yet unsolved issues. One is to
relax somewhat the vertex-face correspondence. Since, as we
showed, this is required by gauge invariance, any violation
of this correspondence is equivalent to either the insertion of
background static charges or background static fluxes. This
viewpoint may offer a way to generalize this construction
to other lattices (e.g., triangular and honeycomb) as well as
to investigate the role of lattice topological defects such as
dislocations and disclinations of time-reversal breaking fluids,
including quantum Hall fluids, where the role of geometry has
been focus of recent interest [51–60].

As a side comment, it is also worthwhile to note that
two of the graphs shown in Fig. 2 (the kagome lattice and
the dice lattice) belong to the family of isostatic lattices.
The terminology of isostatic lattices is developed in the
study of mechanical stability transition [61] and, recently,
topologically nontrivial elastic modes are observed in some
of these isostatic systems, including protected zero-energy
edge states, nontrivial topological indices, and topological
zero-energy solitons [62–64]. Although the topological nature
of those isostatic elastic systems is very different from a
Chern-Simons gauge theory, it is not an accident that the
same lattices arise in these two seemingly unrelated areas.
As shown in Appendix H, the isostatic condition is closely
related with (and slightly stronger than) the criterion for the
existence of local vertex-face correspondence, which is the
fundamental reason why some lattices can be used for both
studies.
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APPENDIX A: SIMPLE GRAPH

Here, we demonstrate the definition of a simple graph by
presenting situations that are not allowed in a simple graph, as
shown in Fig. 11.

(a) (b)

FIG. 11. Examples of graphs that are not simple. The figures
demonstrate situations that are not allowed for a simple graph. (a)
Shows a pair of sites connected by three different edges. In (b), one
of the edges connects a site with itself (i.e., the two ends of an edge
coincide).

APPENDIX B: LOCAL VERTEX-FACE
CORRESPONDENCE

In this appendix, we prove that the criterion presented in
Sec. II is a sufficient and necessary condition for a graph
to have a local vertex-face correspondence by mapping this
problem to Hall’s marriage problem [47].

The marriage problem considers a finite set of girls, each of
whom knows several boys, and the task is to find the sufficient
and necessary condition, under which all the girls can marry
the boys in such a way that each girl marries a boy she knows
(marriage is assumed to be one-to-one here). The solution to
the marriage problem lies in Hall’s marriage theorem, which
states that a necessary and sufficient condition for the existence
of such a matching is that each set of k girls collectively knows
at least k boys.

Our goal here is to identify the sufficient and necessary
condition for a graph satisfies the local-flux-attachment condi-
tion. This problem can be mapped to the marriage problem by
mapping faces into girls and vertices as boys. If the vertex v is
the vertex of the face f , the corresponding boy and girl know
each other. Under this mapping, the local-flux-attachment
condition is exactly the marriage problem.

Here, we first prove that the criterion presented in Sec. II
is a necessary condition. We consider a subgraph of G. By
mapping to the marriage problem, all the faces in the subgraph
form a subset of girls, and the boys that they know are included
by the set of vertices of the subgraph, i.e., if the subgraph
contains N ′

f faces (girls) and N ′
v vertices (boys), the number

of boys that these girls know is equal to or smaller than N ′
v .

Therefore, based on Hall’s marriage theorem, we must have
N ′

v � N ′
f in every subgraph, if every face can marry a vertex

that is adjacent to it. In other words, this criterion is necessary
for the existence of a local vertex-face correspondence.

We can also prove that the criterion is sufficient by
considering subgraphs that satisfy the following condition:
every vertex in the subgraph is adjacent to at least one face of
the subgraph. (This condition does not hold for all subgraphs.
For example, if a subgraph contains dangling bonds, the vertex
located at the free end of a dangling bond is not adjacent to
any faces in the subgraph.) For these subgraphs (in which all
vertices are adjacent to at least one face of the subgraph), the
number of vertices (N ′

v) equals to the number of boys that are
known by the girls (faces) in the subgraph. Therefore, if the
criterion in Sec. II is satisfied, the marriage theorem ensures
immediately the existence of (at least) one local vertex-face
correspondence.
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APPENDIX C: GAUGE SYMMETRY

Here, we prove that Eq. (4.5) is the sufficient and necessary
condition to maintain the gauge symmetry in our theory
[Eq. (3.4)]. First, we substitute the magnetic flux in Eq. (3.4)
by Eq. (3.5):

S = k

2π

∫
dt

(
AvMv,f ξf,eAe − 1

2
Aei

Ke,e′Ȧe′

)
. (C1)

Under the gauge transformation

Av →Av − ∂0φv, (C2)

Ae →Ae − Dv,eφv, (C3)

the action (C1) is transferred to

S → S + k

2π

∫
dt

(
−φ̇vMv,f ξf,eAe

+ 1

2
Dv,eφvKe,eȦe′ + 1

2
AeKe,e′Dv,e′ φ̇v

)

− k

4π

∫
dt(Dv,eφvKe,e′Dv′,e′ φ̇v′). (C4)

Here, the second term on the right-hand side is linear in φ,
while the last term is O(φ2). In order to preserve the gauge
symmetry, we need both these two terms to vanish, i.e.,∫

dt(φ̇vMv,f ξf,eAe − AeKe,e′Dv,e′ φ̇v) = 0, (C5)∫
dt(Dv,eφvKe,e′Dv′,e′ φ̇v′) = 0. (C6)

In Eq. (C5), we used the fact that∫
dt Dv,eφvKe,e′Ȧe′ =

∫
dt AeKe,e′Dv,e′ φ̇v, (C7)

which can be proved via integrating by part and realizing that
the K matrix is antisymmetric.

Equations (C5) and (C6) imply that

Mv,f ξf,e = Ke,e′Dv,e′ , (C8)

Dv,eKe,e′Dv′,e′ = 0. (C9)

These two conditions are not independent to each other. In fact,
Eq. (C8) automatically implies Eq. (C9). This can be realized
by noticing that according to Eq. (C8), we have

Dv,eKe,e′Dv′,e′ = Dv,eMv′,f ξf,e. (C10)

The right-hand side of this equation is zero because Dv,eξf,e =
0, and thus Eq. (C9) arises automatically.

Here, we explain why Dv,eξf,e = 0. For any fixed f , ξf,e

represents a loop in the graph. If v is not a vertex on this
loop, Dv,eξf,e must vanish because Dv,e = 0. If the loop paths
through v, there must be two edges along these loops that
are connected to v, which we will call e1 and e2. It is easy to
realize that according to the definition of ξ and D, Dv,e1ξf,e1 =
−Dv,e2ξf,e2 (here, we do not sum over repeated indices e1 and
e2). Therefore, the contributions to Dv,eξf,e cancel out, i.e.,
Dv,eξf,e = 0. This relation can also be written in a matrix

form and the same is true for the dual graph

DξT = D∗(ξ ∗)T = 0, (C11)

which will be used below in Appendix E. Here, ξT represents
the transpose matrix of ξ .

APPENDIX D: DIRECTIONS OF EDGES

In this appendix, we prove that the condition of gauge
invariance [Eq. (4.5)] is independent of the choice on the edge
directions.

As shown in the main text, we assign a direction for each
edge in order to define the vector potential on a graph. These
directions can be assigned in arbitrary ways, and the choice of
directions will not have any impact for any physics properties.
For the condition of gauge invariance [Eq. (4.5)], this statement
is also true. To prove this statement, we flip the direction of an
arbitrary edge e0 and consider two different situations: e0 = e

and e0 �= e.
If e0 = e, as we flip the direction assigned to the edge e0, the

left-hand side of Eq. (4.5) changes sign because Mv,f → Mv,f

and ξf,e0 → −ξf,e0 . The right-hand side of the equation also
flips sign since Ke0,e′ → −Ke0,e′ and Dv,e′ → Dv,e′ . Because
both sides of the equation flip sign when we flip the direction
of e0, the equation remains invariant and thus is independent
of the choice of the direction of e0.

If e �= e0, the left-hand side of Eq. (4.5) remains invariant
because neither Mv,f nor ξf,e relies on the direction of e0. For
the right-hand side, because both Ke,e0 and De0,v flip signs as
we flip the direction of e0, their product remains the same. As
a result, the equation is again independent of the direction of
e0.

This conclusion implies that in order to prove Eq. (3.6), it
is sufficient to verify the formula for just one specific choice
of edge directions.

APPENDIX E: LATTICE DUALITY

In this appendix, we prove that the discretized Chern-
Simons theory on the original lattice and the dual lattice are
dual to each other by coupling the Chern-Simons gauge theory
with gauge fields on the dual lattice

S = SCS + Scoupling. (E1)

Here, the first term is our discrete Chern-Simons gauge theory

SCS = k

2π

∫
dt

(
AvMv,f 	f − 1

2
AeKe,e′Ȧe′

)
(E2)

and the second term couples the Chern-Simons field A with
gauge fields on the dual graph a∗

Scoupling =
∫

dt

2π
(ξ ∗

f ∗,e∗a
∗
e∗Avδf ∗,v + D∗

v∗,e∗a
∗
v∗Aeδe,e∗

− ∂0a
∗
e∗Aeδe,e∗ ). (E3)

As will be shown in Appendix E 1, this coupling is gauge
invariant.

In Appendix E 1, we first prove that same as in the
continuum, the dual gauge field a∗ can be used to describe
the charge and current on the original lattice and we will also
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show that Scoupling is gauge invariant. Then, in Appendix E 2,
we show that by integrating out the A field, the dual theory
is obtained, which matches exactly the discrete Chern-Simons
field on the dual lattice (but with a different coupling constant
k∗ = −1/k). Because our action describes a quadratic theory,
this calculation is exact.

1. Gauge field on the dual lattice

Same as in the continuum, we can consider the dual gauge
field a∗ (defined on the dual lattice) as a description for the
charge and current on the original lattice. Here, the charge that
resides at each vertex is called ρv and the current on each edge
is labeled as je:

ρv = 1

2π
ξ ∗
f ∗,e∗a

∗
e∗ , (E4)

je = 1

2π
(D∗

v∗,e∗a
∗
v∗ − ∂0a

∗
e∗ ). (E5)

In Eq. (E4), we choose f ∗ = v, and for Eq. (E5), e = e∗. It is
easy to verify that the charge and current are gauge invariant
and satisfy the charge conservation law (i.e., the continuity
equation)

∂tρv − Dv,eje = 0, (E6)

where ∂t is the time derivative and Dv,e (the incident matrix)
plays the role of a discretized divergence (multiplied by −1).

To prove the gauge invariance, we perform the gauge
transformation for a∗:

a∗
v∗ →a∗

v∗ − ∂0φ
∗
v∗ , (E7)

a∗
e∗ →a∗

e∗ − D∗
v∗,e∗φ

∗
v∗ . (E8)

Under this transformation, ρv and je are invariant:

ρv →ρv − 1

2π
ξ ∗
f ∗,e∗D

∗
v∗,e∗φ

∗
v∗ = ρv, (E9)

je →je − 1

2π
(D∗

v∗,e∗∂0φ
∗
v∗ − ∂0D

∗
v∗,e∗φ

∗
v∗ ) = je. (E10)

For Eq. (E9), we used the fact ξ ∗
f ∗,e∗D∗

v∗,e∗ = 0. This relation
is proved in Eq. (C11) and it is a discretized version
of the formula ∇ × ∇ = 0. In Eq. (E10), D∗

v∗,e∗∂0φ
∗
v∗ and

−∂0D
∗
v∗,e∗φ∗

v∗ cancels out because the incident matrix D∗
v∗,e∗ is

time independent and thus commute with the time derivative
∂0.

The continuity equation can be proved using the following
two equations:

∂0ρv = 1

2π
ξ ∗
v,e∗∂0a

∗
e∗ , (E11)

−Dv,eje = 1

2π
ξ ∗
f ∗,e∗ (D∗

v∗,e∗a
∗
v∗ − ∂0a

∗
e∗ ) = − 1

2π
ξ ∗
f ∗,e∗∂0a

∗
e∗ .

(E12)

In the second equation here, we used the fact that Dv,e =
−ξ ∗

f ∗,e∗ [Eq. (6.2)] and ξ ∗
f ∗,e∗D∗

v∗,e∗ = 0 [Eq. (C11)]. By adding
the two questions together, the continuity equation is obtained.

Using Eqs. (E4) and (E5), the coupling between the A and
a∗ fields [i.e., Eq. (E3)] can be rewritten as

Scoupling =
∫

dt(ρvAv + jeAe). (E13)

Because both ρv and je are gauge invariant, the coupling term
must also be gauge invariant.

The coupling Scoupling is also invariant under gauge trans-
formation

Av →Av − ∂0φv, (E14)

Ae →Ae − Dv,eφv. (E15)

Using Eq. (E13), we find that the gauge transformation turns
Scoupling into

S ′
coupling = Scoupling −

∫
dt(ρv∂0φv + jeDv,eφv)

= Scoupling +
∫

dt(∂0ρv − jeDv,e)φv. (E16)

After a integration by part (for t), the last term in this formula
vanishes due to the continuity equation, and thus Scoupling is
gauge invariant.

2. Duality transformation

In the path-integral approach, a gauge-fixing term Sgaugefixing

needs to be introduced

S = SCS + Scoupling + Sgaugefixing. (E17)

Without loss of generality, here we choose

Sgaugefixing = α

2

∫
dt

2π

(
dAv

dt

dAv

dt

)
. (E18)

In the frequency space, the action of Eq. (E17) takes the
following form:

S = SCS + Scoupling + Sgaugefixing (E19)

= k

2

∑
ω

(Av(ω) Ae(ω))

(
αω2/k Mξ

(Mξ )T −iωK

)(
Av(−ω)
Ae(−ω)

)

+
∑

ω

(a∗
v∗ (ω) a∗

e∗ (ω))

(
0 D∗

(ξ ∗)T iω

)(
Av(−ω)
Ae(−ω)

)
.

(E20)

Here, we write the Lagrangian as block matrices. Bold letters
in this equation are vectors. For example, a∗

e∗ represents an
Ne∗ -dimensional vector, whose components are a∗

e∗ on each
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edge. The same is true for a∗
v∗ , Ae, or Av. The first matrix

in the equation above contains SCS and Sgaugefixing, while the
second matrix is for Scoupling.

By integrating out the A field, we obtain a dual gauge theory
for a∗ on the dual graph. For a quadratic theory as shown
above, this can be done exactly

S = − 1

2k

∑
ω

(a∗
v∗ (ω) a∗

e∗ (ω))

(
0 D∗

(ξ ∗)T iω

)(
αω2/k Mξ

(Mξ )T −iωK

)−1(
0 ξ ∗

(D∗)T −iω

)(
a∗

v∗ (−ω)

a∗
e∗ (−ω)

)
. (E21)

The inverse matrix in the equation above can be computed using the technique of blockwise inversion(
A B

C D

)−1

=
(

(A − BD−1C)−1 −(A − BD−1C)−1BD−1

−D−1C(A − BD−1C)−1 D−1 + D−1C(A − BD−1C)−1BD−1

)
, (E22)

where A, B, C, and D are matrix subblocks. For our matrix inverse, the block A is an identity matrix (multiply by a real number
αω2/k), and we have B = CT = Mξ and the block D is −iωK . Using the commutation relation (7.10) and the fact that this
commutator is zero for two contractible loops, it is easy to show that

ξ (K)−1(ξ )T = 0, (E23)

i.e., BD−1C = 0. Therefore, we find that(
αω2/k Mξ

(Mξ )T −iωK

)−1

=
(

k
αω2 − ik

αω3 MξK−1

− ik
αω3 K

−1ξT MT − 1
iω

K−1 − k
αω4 K

−1ξT MT MξK−1

)
. (E24)

Now, we will use Eq. (6.20), which tells that

MξK−1 = −D = ξ ∗, (E25)

K−1ξT MT = DT = −(ξ ∗)T . (E26)

Here, we also used the fact that K is an antisymmetric matrix and Eq. (6.2) (D = −ξ ∗). Using these two relations, we
find that (

αω2/k Mξ

(Mξ )T −iωK

)−1

=
(

k
αω2 − ik

αω3 ξ
∗

ik
αω3 (ξ ∗)T − 1

iω
K−1 + k

αω4 (ξ ∗)T ξ ∗

)
. (E27)

Therefore,

S = − 1

2k

∑
ω

(a∗
v∗ (ω) a∗

e∗ (ω))

(
0 D∗

(ξ ∗)T iω

)(
k

αω2 − ik
αω3 ξ

∗

ik
αω3 (ξ ∗)T − 1

iω
K−1 + k

αω4 (ξ ∗)T ξ ∗

)(
0 ξ ∗

(D∗)T −iω

)(
a∗

v∗ (−ω)

a∗
e∗ (−ω)

)

= − 1

2k

∑
ω

(a∗
v∗ (ω) a∗

e∗ (ω))

(
0 − 1

iω
D∗K−1

0 −K−1

)(
0 ξ ∗

(D∗)T −iω

)(
a∗

v∗ (−ω)

a∗
e∗ (−ω)

)

= − 1

2k

∑
ω

(a∗
v∗ (ω) a∗

e∗ (ω))

(
0 D∗K−1

−K−1(D∗)T iωK−1

)(
a∗

v∗ (−ω)

a∗
e∗ (−ω)

)
. (E28)

Here, we used the fact that D∗(ξ ∗)T = 0 [Eq. (C11)] and D∗K−1(D∗)T = ξK−1ξT = 0 [Eqs. (6.1) and (E23)].
Because K−1 = −K∗ and D∗K∗ = −M∗ξ ∗, we get

S = − 1

2k

∑
ω

(a∗
v∗ (ω) a∗

e∗ (ω))

(
0 −D∗K∗

−(D∗K∗)T −iωK∗

)(
a∗

v∗ (−ω)

a∗
e∗ (−ω)

)

= − 1

2k

∑
ω

(a∗
v∗ (ω) a∗

e∗ (ω))

(
0 M∗ξ ∗

(M∗ξ ∗)T −iωK∗

)(
a∗

v∗ (−ω)

a∗
e∗ (−ω)

)
. (E29)

By transferring from the frequency space ω back to time t , we find

S = −1/k

2π

∫
dt

(
a∗

v∗M
∗
v∗,f ∗	

∗
f ∗ − 1

2
a∗

e∗K
∗
e∗,e′∗ ȧ

∗
e′∗

)
. (E30)

This is exactly our discrete Chern-Simons gauge theory defined on the dual graph [Eq. (6.3)] with topological index k∗ = −1/k.
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APPENDIX F: EDGE SPACE, CIRCUIT
SUBSPACE, AND THE CUT SUBSPACE

In this section, we prove that the edge space is the direct
sum of the circuit subspace and the cut subspace. Although
this conclusion applies generically to planar and nonplanar
graphs, we will only discuss planar graphs here for simplicity
since the paper only considers planar ones.

We first prove that the circuit subspace and the cut subspace
are orthogonal to each other. This can be verified easily by
noticing that vectors from these two spaces (ξC and ξH ) are
orthogonal to each other (i.e., their dot product is zero):

ξC,e,ξH,e = 0. (F1)

In addition, we can prove that the dimension of the circuit
subspace plus the dimension of the cut subspace coincides
with the dimension of the edge space. Combined with the
orthogonality proved above, this conclusion implies that
the direct sum of the circuit subspace and the cut subspace
is the edge space.

As mentioned in the main text, the basis of the circuit
subspace can be formed by all independent (contractible and
noncontractible) cycles of a graph. For a planar graph with
Nf faces defined on a manifold with genus g, there are
Nf − 1 independent contractible cycles and 2g independent
noncontractible cycles, i.e., Nf − 1 + 2g independent loops in
total. Therefore, the dimensionality of the of circuit subspace
is Nf − 1 + 2g.

For a planar graph G, cut sets correspond to contractible
cycles in the dual graph G∗. Because the dual graph has
Nv faces, same as the number of vertices in the original
graph, the number of independent cut sets (i.e., the number of
independent contractible cycles in the dual graph) is Nv − 1.

If we add the dimensions of the cut subspace and the circuit
subspace together, we get Nf + Nv − 2 + 2g, which coincides
with the number of edges Ne, i.e., the dimension of the edge
space. Here, we utilized the fact that a closed orientable surface
with genus g, the Euler characteristic is 2 − 2g:

Nv − Ne + Nf = 2 − 2g. (F2)

Because the circuit subspace and the cut subspace are
two orthogonal subspaces of the edge space, and the total
dimensions of these two subspaces match the dimensions of
the edge space, we proved that the direct sum of these two
subspaces is the edge space.

APPENDIX G: DETERMINANT OF A BLOCK MATRIX

Here, we consider a (N + M) × (N + M) matrix

M =
(

0 C

D B

)
, (G1)

where each letter in the matrix represents a block matrix and
the 0 (B) matrix has dimensions N × N (M × M). We will
prove below that the determinant of this matrix is zero when
the size of the 0 block is larger than the B block (i.e., N > M).

First, we define a set of N + M vectors ei =
(0,0, . . . ,1, . . . ,0), such that only the ith component of the
vector ei is nonzero, while i = 1,2, . . . ,N + M . Here, these
vectors span a N + M-dimensional linear space. This linear

space is the direct sum of two subspaces V1 ⊕ V2, where V1

is spanned by the vectors ei with 1 � i � N and V2 by those
with N + 1 � i � N + M , and it is easy to check that V1 and
V2 are orthogonal to each other.

Because the upper-left block of the matrix only contains
zeros, eiMej = 0 for i � N and j � N . It implies that for
any vector ej with j � N , the vector Mej is orthogonal to any
vectors in the subspace V1. In other words, Mej is a vector
in the subspace V2. For j = 1,2, . . . ,N , Mej generates N

vectors in the space of V2. If N > M , some of these N vectors
must be linearly dependent because the space V2 can only have
M independent vectors. Therefore, we can construct (at least)
one zero vector using these N vectors Mej :

N∑
j=1

ajMej = 0, (G2)

where aj are N numbers. This implies immediately that the
M matrix has (at least) one null vector v = ∑N

j=1 aj ej :

Mv =
N∑

j=1

Maj ej = 0. (G3)

Having a zero eigenvalue implies that the determinant of M
must be zero.

APPENDIX H: ISOSTATIC CONDITION, ELASTICITY,
AND LOCAL VERTEX-FACE CORRESPONDENCE

In this appendix, we reveal the connection between the
isostatic condition and the criterion for the existence of a local
vertex-face correspondence. The idea of isostaticity plays an
important role in the study of mechanics stability. It comes
from the counting argument developed by Maxwell [61]. If
we construct an elastic system by connecting beads with rigid
rods (and allow the rods to rotate freely around each joint),
the rigidity of the system can be determined by comparing the
total number of constraints and the total number of degrees of
freedom. In 2D, the total number of degrees here is two times
the number of beads because each bead has two degrees of
freedom in 2D, while the number of constraints is the number
of rods since each rod enforces one constraint by fixing the
distance between two beads. If we consider such a system
as a graph (i.e., beads as vertices and rods as edges), the
number of degrees of freedom is 2Nv , while the number of
constraints is Ne. The isostatic condition requires these two
numbers to coincide. If all the constraints are independent
(i.e., no redundancy), this condition represents the verge of
a mechanical stability (i.e., a phase transition point). If we
add/remove one edge (rod) to the system, the system becomes
stable/floppy. The rigorous formula for the isostatic condition
in 2D is

2Nv = Ne + 3. (H1)

Here, an extra number 3 is introduced to the right-hand side to
represent the trivial global degrees of freedom (two translations
and one rotation), which will always arise. Using the Euler
characteristic (Nv − Ne + Nf = 2 − 2g), we can rewrite the
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isostatic condition as

Nv = Nf + 1 + 2g, (H2)

where g is the genus of the underlying manifold. In the thermal
dynamic limit (Nv → ∞ and Nf → ∞), we can ignore the
finite part 1 + 2g and, therefore, the condition coincides with
our requirement of Nv = Nf .

In addition, for an isostatic system, to ensure that there are
no redundant constraints, one shall require that for any subsys-
tem (subgraph), the total number of degrees of freedom always
exceeds (or is equal to) the number of constraints (plus three):

2N ′
v � N ′

e + 3, (H3)

where N ′
v and N ′

e are number of vertices and edges in a
subgraph, while 3 on the right-hand side comes from global
translations and rotations. If a subgraph has the topology of a
disk (i.e., the Euler characteristic is Nv − Ne + Nf = 1), we
can rewrite the condition as

N ′
v � N ′

f + 2, (H4)

which is very similar to but slightly stronger than our criterion
of local vertex-face correspondence (N ′

v � N ′
f ).

Because our criterion is slightly weaker, some of the lat-
tices/graphs that are not isostatic can still be used to construct
a discretized Chern-Simons gauge theory, e.g., Fig. 2(d).
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