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Spin-orbit coupling and proximity effects in metallic carbon nanotubes
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We study the spin-orbit coupling in metallic carbon nanotubes (CNTs) within the many-body Tomonaga-
Luttinger liquid framework. For a well-defined subclass of metallic CNTs, that contains both achiral zigzag as
well as a subset of chiral tubes, an effective low-energy field theory description is derived. We aim to describe
systems at finite dopings, but close to the charge neutrality point (commensurability). A new regime is identified
where the spin-orbit coupling leads to an inverted hierarchy of minigaps of bosonic modes. We then add a
proximity coupling to a superconducting (SC) substrate and show that the only order parameter that is supported
within the spin-orbit induced phase is a topologically trivial s-SC.
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I. INTRODUCTION

In the past few years, we have witnessed a renewed interest
in superconducting (SC) proximity effects in one-dimensional
(1D) systems. The reason why this topic is in the forefront
of condensed matter research was the discovery [1,2] that a
SC with a topologically nontrivial order parameter is able to
support the long sought Majorana surface states [3]. Moreover,
it was shown [4] that the nontrivial SC can be artificially
created by a proximity coupling of a trivial superconductor
with a 1D wire that has a substantial spin-orbit coupling. While
the first experimental signatures [5] that such a device can
indeed support Majoranas fueled the interest of the community,
at the same time questions about the role of disorder [6,7], low-
dimensionality breaking, and electron-electron interactions [8]
were raised. To avoid at least the first two issues, one may
consider a carbon nanotube (CNT), a self-organized, strictly
1D system that nowadays can be produced with ultraclean
quality. However, there is still an issue of interactions and
moreover one could wonder if the peculiar spin-orbit coupling,
that is present in CNT, can produce topologically nontrivial
proximity effect. The answer to these questions turns out to be
negative and this is one of the main results of this paper.

The price of moving from a simple wire, with e.g. cubic
structure, to a CNT is that, in the latter case, one deals with a
highly nontrivial mapping between real- and reciprocal-space
structures. The low-energy physics of a nanotube can be
derived from that of a hexagonal graphene lattice by imposing
a quantization condition along the CNT circumference. For
concreteness, we consider a CNT with a chiral vector (n,m)
such that (n − m)mod3 = 0. Then, within the subbands that
follow from circumferential momentum quantization, there
exists a subband which falls very close to the Dirac points
K,K ′ of a graphene reciprocal space. The nanotube is metallic
and the vicinities of the two distinct Dirac points are called
valleys. More refined analysis includes a curvature-induced
shift [9] away from Dirac points �curv as well as a spin-orbit
coupling [10] that, in the sublattice basis, have both diagonal
�′

SO and nondiagonal �SO components [11]. The spin-orbit
coupling is a subject of particular interest due to its peculiar
nature, with larger nondiagonal �SO component.

It is tempting to incorporate the spin-orbit couplings (and
�curv) on a single-particle level because then their only effect

is to change the band structure. So far, all attempts [12,13]
to address nontrivial proximity effects in CNT were based
on such single-particle framework. However, neglecting the
electron-electron interactions V (q) would have been justified
only if they were a tiny perturbation added on the top of �SO

and �curv. In reality, V (q ≈ 0) ∼ 0.3 eV and V (q ≈ 2|K|) ∼
10 meV [14,15] while �curv ≈ �SO � 1 meV [10,11,16,17]
so that one faces exactly the opposite hierarchy of energy
scales. Also, at a more fundamental level, a key property of 1D
systems is that even upon introducing an infinitesimally small
V (q), their low-energy description must be given in terms
of collective excitations [18]. A carbon nanotube (CNT) is no
exception from this general principle. A well-established fact is
that the velocity of charge fluctuations is strongly renormalized
[14,15]. This is one manifestation of strong correlations in the
physics of CNTs and it implies that a naive refermionization
back to the original electrons’ framework is not allowed.

It is then an important task to incorporate the effects of
spin-orbit coupling into a proper many-body description of
CNT. To this end, a few partial problems have already been
solved. In Ref. [19], under an assumption that there exists a
minigap in the single-particle spectrum, it has been shown
that the diagonal component �′

SO is able to shift velocities
and Tomonaga-Luttinger liquid (TLL) parameters of all TLL
modes. This shift can be understood [see discussion of Eq. (4)]
if one remembers that the onsite component is uniform in
space, thus it has a density-density form. Furthermore, a
detailed analysis of �curv term (and interaction-induced terms
of the same form) done for a zigzag tube, exactly at half-filling,
was done in Ref. [20]. A crucial assumption was that the system
is deep inside a Mott insulating phase. The aim of our work
is to go beyond this special case and study a new physics
generated by the �SO away from commensurability.

A subset of chiral tubes is also covered. Apart from
extending the range of validity, this also erases any constraints
between �curv and �SO. For instance, �curv can be varied by
a tube’s twist [21] (not possible for achiral CNTs) or, due to
absence of a lattice inversion symmetry, an unprotected �SO

can be modified by higher-order scattering processes. This
versatility allows us to freely tune the parameters of our model.

The paper is organized as follows. In Sec. II we identify a
class of chiral tubes where our theory applies and then term
by term we introduce a description within the 1D framework.
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Section III aims to derive an effective low-energy description
in a renormalization group (RG) spirit. It is divided in two
parts, a high-energy part Sec. III A, which is dominated by
holon behavior, while in Sec. III B dedicated to the lower
energies we use adiabatic approximation and focus on gap
opening in the spin/valley modes. Then, in Sec. IV, we check
the influence of spectral gaps on superconducting proximity
effects. Finally, in Sec. V, we discuss an issue of experimental
detection of the gaps, an influence of the other symmetry-
breaking terms, such as, e.g., valley-mixing term, and other
SC orderings proposed for nanotubes. The paper is closed
with conclusions, Sec. VI, and two Appendixes that contain
estimates for a holon expectation value and for a proximity
hybridization with a substrate.

II. CNT AS A TWO-LEG LADDER

The Hamiltonian of a CNT can be written as

H = H0 + Hx + Hdi + HSO, (1)

where H0 is a TLL Hamiltonian [see Eq. (4)], Hx [Eq. (5)]
contains the many-body interactions with large momentum
exchange, Hdi [Eq. (6)] is a dimerization potential introduced
to capture �curv, in a way following Ref. [20], and the last,
new term HSO [Eq. (7)], contains the �SO.

The real-space Hamiltonian in fermionic language reads as

H0̄+di+SO =
∑

�r

∑
�d

(t σ̄�r, �da
†
�r,σ̄ b�r+�d,σ̄ + H.c), (2)

where we have taken a nearest-neighbor hopping on a bipartite
lattice. The a

†
�r operator creates an electron on the lattice site

A with coordinates �r . The summations go over all lattice site
positions �r and all nearest neighbors �d, thus �d is a linear
combination of hexagonal lattice vectors. Due to curvature
effects, the hopping parameter, a complex number t σ̄�r, �d , is
anisotropic in �r space and spin dependent. On the top of Eq. (2),
one adds an electron-electron interaction which has a Coulomb
character. In order to extract the low-energy physics, one
turns to the reciprocal-space description with a momenta kx,ky

directed along CNT’s axis and circumference, respectively. For
a chiral tube, both these axes make a finite angle with a helical
line along which the graphene lattice is folded. The resulting
band structure is illustrated in Fig. 1. The two cones, that are
characteristic of hexagonal lattice, are cut in slices that stem
from the circumferential quantization set on ky .

We put a chemical potential close enough to the Dirac
points such that in the following we can restrict ourselves
only to the lowest-lying subbands in each of the two valleys.
Creation operator c

†
k,σ̄α is assigned to these states, where σ̄

is a spin index, an index α = K,K ′, and k is a component
of an electron momentum along a CNT, thus 1D physics
is implicitly assumed. Then, two Fermi points are present
near each Dirac point and this leads to a system with overall
four Fermi points. It must be the two-leg ladder model that
describes the low-energy physics for this band structure. An
exact mapping between real space and c

†
k has been found for

achiral armchair [14] and zigzag tubes [20]. We take a closer
look at the later ones as these can accommodate finite �curv and
�SO, the subject of this study. The zigzag CNT is mapped onto

FIG. 1. (Color online) Low-energy band structure of a CNT that
falls within the zigzag(like) class. As pointed out in Ref. [14], due
to anisotropy of t σ̄

�r, �d the cones are slightly shifted away from K,K ′

points of a reciprocal unit cell. The plane cross sections are due to
circumferential quantization condition, only those values of quantized
ky that are closest to Dirac points are shown. On each cone there are
two dispersions E(kx). The mean shift away from Dirac point opens a
gap �curv, while a split between the two dispersions is proportional to
�SO. Small tilt of the planes is proportional to �′

SO, and in Ref. [11]
details concerning these spin-orbit effects are given.

a ladder with an interchain t⊥ = 0 and this allows us to identify
chains (of an abstract ladder) with valleys (of graphene).

The validity of this simple mapping can be extended also
onto a subclass of chiral tubes. In a recent work [22], we
have showed that it is possible to distinguish a class of tubes
defined by a condition (n − m)/gdc(m,n)mod3 �= 0, that have
two pairs of Fermi points located around K⊥ �= 0, K‖ ≈ 0, that
is similar to the zigzag CNT. In Ref. [22], we considered an
infinitely sharp, local chemical potential, an extra term in the
Hamiltonian ∼μ0δx − x0ρ(x) with μ0 → ∞ and ρ(x) is an
electronic density, a Fourier transform of

∑
k c

†
kck+q . For the

zigzaglike tubes, a response to such potential is a reflection
matrix that is strictly diagonal in the valley space. From this
it follows that an operation c†(x = x0)|�k〉 (where |�k〉 is an
eigenstate) is diagonal in the valley space. We apply creation
operation infinitely many times along a CNT to find that∫

dx c†(x)|�k〉 is also diagonal in valley space which implies
that a valley ≡chain description, with t⊥ = 0, should be valid
for these chiral tubes, at least in the regime close to the Dirac
points (k‖ ≈ 0) which is of interest in this study. To quantify
the criterion, by analogy with commensurate-incommensurate
transition [23], we notice a competition between the interchain
interaction terms ∼gic cos φρ− [see following for definition of
bosonic fields and Eq. (5)] and the interchain hopping (present
for k‖ �= 0) that upon bozonization gives a term ∼t⊥ cos θρ−.
These bosonic expressions, that contain two canonically
conjugated fields, suggest that the following criterion for k‖
can be given t sin(k‖a) < g1. Substituting numerical values,
this implies that our reasoning can be safely applied when the
doping δ < 0.03. The fact that a CNT can be described as
valley ≡chain ladder is enough to apply to the results of this
work.

We go directly to the bosonization description of the lowest
subband fermions. We follow a standard procedure. First,
one extracts the long-wavelength behavior around the Fermi
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points:

ψ̄σ̄α(x) = exp(ikF x)ψRσ̄α(x) + exp(−ikF x)ψLσ̄α(x),

where we have written the formula in terms of a real-space
field ψ̄σ̄α(x) which is an eigenvalue of the second quantization
operators cσ̄α(x) (Fourier transform of c

†
k,σ̄α) in the Fock

space of the coherent states. Then, one focuses on the slow
components of the fluctuations around Fermi points and
introduces the collective bosonic fields:

ψR,Lσ̄α(x) = κR,Lσ̄α

1

2πa
exp{i[φσ̄α(x) ± θσ̄α(x)]}, (3)

where κR,Lσ̄α , the Klein factors, ensure proper anticommu-
tation relations. The collective fields can be also expressed
directly through the real-space density operator defined be-
fore (for the valley-diagonalization argument), for instance,
φσ̄α(x) = −π∇ρσ̄α(x). Finally, one turns to a total/transverse
basis by a transformation

φρ± = 1
2 (φ1↑ + φ1↓ − φ2↑ − φ2↓); φσ±

= 1
2 (φ1↑ + φ1↓ − φ2↑ − φ2↓).

Four collective modes φν (and canonically conjugate θν)
are present: total/transverse charge/spin modes (ν = ρ±,σ±).
The total charge mode ρ+ is sometimes called a holon as it
contains an electric charge of a hole, while the other three
modes are neutral and contain the spin/valley component. With
these bosonic modes defined, we can now write each part of
Eq. (1). The H0 reads as

H0[φν] =
∑

ν

∫
dx

2π

[
(vνKν)(∂xθν)2 +

(
vν

Kν

)
(∂xφν)2

]
. (4)

The main advantage of working in the bosonization frame-
work is that an entire V (q ≈ 0) part of interactions is already
included in Eq. (4). Since in CNTs the interactions have a
long-range Coulomb character, the small momentum exchange
interactions are much larger than those with large momentum
exchange. The Coulomb interactions bosonize as

HCou = 2e2

π

∫
dx

∫
dx ′V (r − r ′)∂xφρ+(x)∂x ′φρ+(x ′).

Clearly, only the total charge mode (holon) is affected. Because
of this, the holons’ velocity vρ+ can be up to five times larger
than VF , while Kρ+ can be as small as 0.25. Velocities of all
the other so-called neutral modes remain ≈VF .

The large momentum exchange part of electron-electron
interactions, where V (q ≈ |K|), or in other words the
part that cannot be written in a density-density form
that is �= ∫

dx
∫

dx ′ρ(x)ρ(x ′), adds several nonlinear
terms:

Hx = 1

2(πa)2

∫
dr g3 cos(2φρ+ − 2δx)[cos(2φρ−)

+ cos(2φσ+) + cos(2φσ−) + cos(2θσ−)]

− g1c cos(2φρ−) cos(2φσ+) − g2c cos(2φρ−)

× cos(2φσ−) + g1a cos(2φσ+) cos(2θσ−) + g‖c
× cos(2φρ−) cos(2θσ−) + g1 cos(2φσ+) cos(2φσ−), (5)

where the backscattering terms, with spin and/or valley index
change in the process, are indicated as g1,2i . We use notation

from Ref. [24] and convention for the Klein factors as in
Refs. [15,24]. The only difference is that Ref. [24] is dedicated
to two-leg ladders with large t⊥ (more customary case) while
here t⊥ = 0 but a finite interchain interaction V⊥ is present.
To transfer between the two models it is enough to make
an interchange cos 2φρ− ⇔ cos 2θρ− in Eq. (5). Terms ∼g3

in Eq. (5) are umklapp scattering terms which transfer two
left movers into right movers (or vice versa). This requires
commensurability with the lattice, obeyed at half-filling, while
at finite doping δ these are gradually suppressed.

Additional terms, dimerization and spin-orbit coupling, are
present because the C3 symmetry of the underlying graphene
lattice is broken upon wrapping. A σ ∗-π∗ hybridization,
induced by wrapping, changes the hopping amplitude along
the tube circumference and this shifts the position of the
Dirac points [14]. The lowest-energy subbands are defined
independently by the quantization condition along the tube
circumference, so they are now shifted with respect to the
new Dirac cones. This effectively results in an opening of
a so-called minigap in the spectrum, the �curv. As it was
proven in Ref. [20] this effect can be grasped by introducing
a dimerization potential into the effective 1D Hamiltonian
of CNT [Eq. (1)]. Such a term, the Peierls term, is well
known in 1D systems, it is exactly solvable via Bogoliubov
transformation in the particle-hole channel, and leads to a
gap opening in the single-particle spectrum. In bosonization
language, it reads as [20]

Hdi = 1

2πa

∫
dx gd [−cos(φρ+ − δx) cos φρ−

× cos φσ+ cos φσ− − sin(φρ+ − δx) sin φρ−
× sin φσ+ sin φσ−], (6)

where gd = Vdi/VF generates minigaps �curv at K,K ′ points.
From the Bogoliubov transformation, done for an alternating
potential in a single-particle limit, we know that in the
lowest order the relation is simple Vdi = �curv. However, Vdi

incorporates also further terms, the staggered potential terms
that are produced in the course of the RG flow [20]. The sole
term Vdi [Eq. (6)], written in bosonization language, contains
a sort of “frustration”: there is a competition between terms
perfectly compensating each other. Sines and cosines wish to
lock φν fields at different minima. When Vdi dominates the
physics, then the bosonic framework is inappropriate, instead
one should turn back to the original fermions (to obtain the
Peierls transition). But, this simple prescription does not work
if there are other terms, such as electron-electron interactions,
present as well. Then, it is necessary to write Hdi (and HSO)
in the bosonization language in order to take advantage of
the adiabatic approximation [20,25,26] and separate out the
influence of the fast φρ+ field. In Ref. [20] the “frustration”
problem was solved by considering a regime dominated by the
umklapp scattering (deep inside the Mott phase) which favors
cos φρ+ and then also other cosines automatically follow.
Following, we show a different mechanism that is able to lift
the frustration.

The spin-orbit coupling shifts band dispersions away from
the Dirac points by an amount that depends on the spin/valley
degree of freedom of a fermion, in an opposite direction
for electrons with opposite helicities [16]. Alternatively, this
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phenomenon can be seen as a spin-dependent variation of
a minigap in the spectrum around the point where bonding
and antibonding bands used to cross in the tight-binding
model. As a result, in the single-particle picture, �SO adds
a spin-/valley-dependent component to the minigaps (see
Fig. 1). By reasoning along the same lines as for the curvature
term, this can be interpreted as an extra spin-valley-dependent
single-particle backscattering. The �SO term is then expected
to have a form similar to Eq. (6), with the only difference that
the left/right mixing term now involves the z-Pauli matrices in
spin and valley spaces [12]:

ÔSO ∼ c
†
LK↑cRK↑ − c

†
LK ′↑cRK ′↑ − c

†
LK↓cRK↓ + c

†
LK ′↓cRK ′↓.

The spin-orbit coupling is expressed in the spin-valley basis
because of the intricate topological origin of the effect
[10,11,16,17]: electrons of opposite valleys are precessing
along the helical lines of opposite twist. However, we have es-
tablished that, within our effective two-leg ladder description,
the valley degree of freedom can be associated with the chain
index. Then, in Eq. (3), α = K,K ′ and thanks to that ÔSO has a
simple bosonized expression. Finally, the spin-orbit term that
is off diagonal in the sublattice space asks to choose a bond (not
an onsite) operator to be Hermitian. These few constraints are
enough to deduce the following form of spin-orbit term �SO

in the bosonic language:

Hso = 1

2πa

∫
dx gSO[−cos(φρ+ − δx) cos φρ− cos φσ+

× cos φσ− + sin(φρ+ − δx) sin φρ− sin φσ+ sin φσ−].

(7)

One immediately notices that thanks to an opposite sign of
the two terms in Eq. (7), the gSO is able to lift the frustration
present in the sole Hdi .

III. RG TREATMENT OF COSINE TERMS

As usual in the RG procedure, we inspect how the
parameters of the Hamiltonian are effectively changing upon
integrating out high-energy degrees of freedom. The RG flow
is divided in two stages: the first when the doping is negligible
and the system flows like if it was at commensurate filling, the
second when doping is significant and only the backscattering
terms in Eq. (5) should be kept.

A. High-energy RG flow

The first stage of RG flow stops at energy scale �′ that is
defined by the condition δ[�′] = 1. Above this energy RG is
dominated by the umklapp and dimerization/spin-orbit terms
whose perturbative, single-loop, RG equations read as

ġ3 = 3g3(1 − Kρ+), (8)

ġd,SO = gd,SO[2 − (Kρ+ + Kρ− + Kσ+ + Kσ−)/4], (9)

where, in the first equation, we used the fact that Kρ− ≈
Kσ+ ≈ Kσ− ≈ 1, otherwise three different equations for three
different umklapp channels would need to be given. The reason
why Eq. (8) dominates is because in CNT, in the UV limit, a
relevant parameter range is 0.2 < Kρ+ � 1, thus, one can

safely assume |Kρ+ − 1| � |Kν �=ρ+ − 1| and then all terms
that contain the φρ+ mode are much more relevant than others.
The umklapp has a scaling dimension d3 = 1 − Kρ+ while the
gd and gSO are even more relevant with dd = 1.25 − Kρ+/4.

The RG flow of other nonlinear terms is determined by the
following equations:

ġ1c = g1c[2 − (Kρ− + Kσ+)], (10)

ġ2c = g2c[2 − (Kρ− + Kσ−)], (11)

ġ1a = g1a[2 − (K−1
σ− + Kσ+)], (12)

ġ‖c = g‖c[2 − (K−1
σ− + Kρ−)], (13)

ġ1 = g1[2 − (Kσ− + Kσ+)]. (14)

While this flow is much slower in the first stage of RG, in the
second stage of RG, Eq. (10) becomes the driving force.

The TLL parameters are also renormalized:

K̇ρ+ = − 1
2K2

ρ+
(
4g2

3 + g2
d + g2

SO

)
J0(δ), (15)

K̇ρ− = − 1
2K2

ρ−
[
J0(δ)

(
g2

3 + g2
d + g2

SO

) + g2
1c + g2

2c + g2
‖c

]
,

(16)

K̇σ+ = − 1
2K2

σ+
[
J0(δ)

(
g2

3 + g2
d + g2

SO

) + g2
1c + g2

1a + g2
1

]
,

(17)

K̇σ− = − 1
2K2

σ−
[
J0(δ)

(
g2

d + g2
SO

) + g2
1 + g2

2c

] + g2
1a + g2

‖c,
(18)

where J0(δ) is a Bessel function of the first kind (we take UV
cutoff equal to one).

The bare (initial) amplitudes of the exchange terms in
Eq. (10) are small but finite and were thoroughly calculated in
Ref. [15]. In that language, g1c = g1 = f , g2c = b − f , and
g1a = g‖c = b, where b,f are amplitudes of large momentum
scattering processes computed on a microscopic CNT lattice
for armchair tube. The estimate b,f ≈ (0.05,0.1)V (q = 0) ≈
(0.005,0.01)VF was given and in our chiral case we are likely
to be close to the upper limit since in a less symmetric lattice
certain cancellation between real-space Coulomb interactions
are not exact. On the top of it, in our nonarmchair case, there is
a contribution from a coupling between orbital momenta of two
electrons. It enhances g1c,g1,g‖c (a ferro-orbital configuration
of initial orbital momenta μo implies that the two carriers
will repel each other) and reduces g2c,g1a (an antiferro-orbital
configuration of initial orbital momenta μo). In CNTs, μo can
be an order of magnitude larger [27] than μB which makes this
unusual contribution to electron-electron interactions worth
considering. To estimate it we can compare it with �SO ≈
|μo||μB | � 1 meV. �SO originates from similar mechanism,
an interaction between μo and μB as a carrier moves along a
helical line of a CNT. The umklapp terms correspond to terms
with even larger momentum exchange, thus their initial (UV)
amplitudes are smaller for the Coulomb-type interactions.
Moreover, their amplitude is further suppressed by a finite
doping and this suppression is two times faster than for the Vdi

amplitude.
Our study is dedicated to the case of a finite doping. Since

in the later part of the paper the SC proximity effects are
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FIG. 2. (Color online) The RG flow of couplings that are vio-
lently relevant in the first stage of RG: the umklap (dashed lines) and
dimerization (solid lines) terms. Different doping levels are shown by
different color code (from top to bottom): from δ = 0.002 to 0.012
with intervals 0.002. One notices that in a point when flow stops, thus
for l = �′ the dimerization term is always stronger at finite dopings
even though we started with gd = gSO = 0.0001 and g3 = 0.0007
(and Kρ+ = 0.25).

considered, we must take a model with a nonzero conductance
on an interface with a substrate, thus a model with a constant
chemical potential. Then, the doping is not a constant but a
renormalizable quantity that competes with interactions. This
effect we incorporate in the following RG equation:

δ̇ = δ − (
3g2

3 + g2
d + g2

SO

)
J1(δ), (19)

where J1(δ) is a Bessel function of the first kind. The RG flow
of δ (in the first stage of RG) can produce two outcomes: (i)
δ[l] rapidly grows and when δ[l] ∼ 1 then this first stage of RG
must be stopped and g3 terms in Eq. (5) and gd (and gSO) terms
Eqs. (6) and (7) effectively drop out of the problem because
the integrands in Eqs. (5)–(7) contain rapidly oscillating terms;
(ii) δ[l] rapidly drops to zero then the system flows to a Mott or
Peierls physics, where a competition between g3 and gdi (and
gSO) determines the low-energy properties. Case (ii) can be
realized only when δ[�] < g2

i which for CNTs translates into
extremely small doping levels. Nevertheless, for a finite δ[l]
during RG, this competition persists and since the dimerization
is less affected by doping, then this phase should expand.
Crucially, as we show later in Sec. III B 1, the nature of the
“dimerized” phase changes when the energy scale �′ is of the
same order or smaller than �SO.

Close to commensurate filling, for a parameter range that
is relevant for a CNT, we identify quite a broad regime where
gd (and gSO) dominate over g3 terms. We analyze several
RG flows for initial parameters: gd = gSO = 0.0001, g3 ∈
(0.0001,0.001), Kρ+ ∈ (0.25,0.35) (these values are relevant
for CNTs), and δ[l = 0] ∈ (0.001,0.012). Some examples of
RG flows for different δ are given in Fig. 2. We observe
that both terms grow and, in a chosen range of parameters,
the dimerization term is always the dominant one, even if
one starts with (an overestimated) ratio g3[�]/gd [�] � 10.
The flow stops for l1 ∈ (5.5,7) which taking initial UV cutoff
� = 1.5 eV translates into an energy scale �′ ∼ 10−3 eV that
is comparable with the bare �SO. The values reached by g3

and gd (and gSO) at �′ are substantial g3 < gd ∼ 10−1 (see
Fig. 2) but still below ∼100, thus gaps are not open yet. While
these terms drop out of RG but in the following should be
considered as a substantial perturbation.

B. Physics at energies below �′ ∼ 1 meV

1. Antiadiabatic approximation

We restrict ourselves to H = H0 + Hdi + HSO. At �′ we
reanalyze the theory using the adiabatic approximation [25]. To
be precise, we use an antiadiabatic version of it to focus on the
physics of three neutral modes. Following Ref. [26], we sep-
arate out the fast φρ+ field using an auxiliary variable η(x) =
arctan[(sin φρ− sin φσ+ sin φσ−)/(cos φρ− cos φσ+ cos φσ−)].
After shifting the field φ̃ρ+(x) → [φρ+(x) + δx] + η(x),
the action is separable. Then, for the fast field we obtain a
sine-Gordon model

Hφρ+ = H0[φρ+] −
∫

dr M[φi �=ρ+] cos[φ̃ρ+(x)], (20)

where the mass term

M[φi �=ρ+] = [VSO(l) + Vdi(l)]|�′

√
1 +

∑
ν �=ι

cos 2φν cos 2φι

can be obtained using identities arctan[sin(α/β)]=α/

(α2+β2)−1 and (sin φρ− sin φσ+ sin φσ−)2 + (cos φρ− cos φσ+
cos φσ−)2 = 1 + ∑

j �=i cos 2φj cos 2φi . While writing
Eq. (20) we neglect terms ∼η(x) (and higher powers) and
derivatives ∼∂tη(x), which is justified in the adiabatic limit
[slow η(x)] and in the presence of substantial VSO [then
η(x) → 0 is justified]. The VSO, as written in Eq. (7), favors
cosines’ over sines’ minima and thus provided VSO ∼ �′ we
tend to a well-defined limit η → 0, variations of η field are
gradually suppressed.

2. Effective Hamiltonian for the slow fields

For the slower fields we proceed by integrating out the
φ̃ρ+. At energies ∼�′, Eq. (20) is a sine-Gordon model,
thus 〈cos[φ̃ρ+(x)]〉|ω=�′ �= 0 (see Appendix for details). Then,
upon expanding M[φi �=ρ+] we arrive at an emergent nonlinear
term

Hd̃i[φi �=ρ+] = −g′
d{cos(2φρ−) cos(2φσ+)

+ cos(2φσ−)[cos(2φσ+) + cos(2φρ−)]}, (21)

where g̃d ∼ gd〈cos[φ̃ρ+(x)]〉 and in the lowest approximation
the expectation value is proportional to the symmetry-breaking
term 〈cos[φ̃ρ+(x)]〉 ∼ VSO. In the sign convention we use both
Hamiltonians (6) and (21) are minimized by the same combi-
nation of locked neutral fields, thus validating our mapping.
Equation (21) should be combined with the backscattering
part of Hx [Eq. (5)]. The following perturbation to H0[φν �=ρ+]
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emerges:

Hx̃ = − g̃1c cos(2φρ−) cos(2φσ+)

+ cos(2φσ−)[−g̃2c cos(2φρ−) + g̃1 cos(2φσ+)]

+ cos(2θσ−)[g̃1a cos(2φσ+) + g̃‖c cos(2φρ−)]. (22)

The initial parameters for second stage of RG flow (we
take a new UV cutoff �′) are determined by the values
obtained in the end of the first stage. The RG flow of Hx

is a BKT flow with the parameters that fall close to the
negative separatrix [15] [the SU(2) invariant line on the g-K
plane, with the RG flowing straight away from the critical
point]. Then, in the first RG stage, g[l]/VF = g[�]/VF /(1 −
g[�]l) and one finds that g1c[�′],g2c[�′],g1[�′] ∼ 10−2.
However, some of the g′

i[�
′] terms are larger because

they contain also gd [�′] contribution (which is sig-
nificant even when multiplied by 〈cos φ̃ρ+〉|ω=�′). To
be precise: g̃1c[�′] = g1c[�′] + g̃d [�′], g̃2c[�′] = g2c[�′] +
g̃d [�′], g̃1[�′] = g1[�′] − g̃d [�′], while all other terms are
not affected. As for the TLL parameters, in the first part of
the RG flow the umklapp, dimerization, and spin-orbit terms
all involve ∼ cos(φρ−). As a result, the RG flow changes the
TLL parameter Kρ− downwards (already initially, at l = �0,
this term is shifted slightly below Kρ− = 1 by interactions
[15] as well as �′

SO [19]), same holds for Kσ+. Thus, we
conclude that for g1c cos(φσ+) cos(φρ−) term we make a shift
upwards along the negative separatrix, that is, both g1c and
1 − Kρ− change upwards. Since close to the separatrix the
gap � = � exp(−VF /g̃1c), the dependence is exponential.
Taking quite a conservative estimate that both g1c[�′] and
g̃d [�′] are of the same order, we find that the exponent is
reduced by a factor of 2 in comparison with Ref. [15]. This
leads to much enhanced gaps �ρ−,σ+ ∼ 0.1 meV. Numerical
(RG) calculations confirm this finding: g′

1c[l′] = 1 already for
l′ ≈ 2. A gap opens in the spectrum of the two bosonic modes
φσ+,φρ−. The fields are locked at an energy minima φσ+ =
0, φρ− = 0. The gap value is equal to the mass of a soliton of
the sine-Gordon model Mρ−,σ+ = 2

√
2g̃1cuρ−/πKρ−, from

this Mρ−,σ+ ≈ 0.1 meV. The two estimates coincide.
The RG flow of σ− mode is more difficult to follow.

In Hx [Eq. (5)] we find competing cos(φσ−) and cos(θσ−)
terms which exactly compensate each other, also in the
lowest-energy sector when some modes acquire gaps. More-
over, this implies that dKσ−/dl ≈ 0, while to begin with
Kσ− = 1 and even accounting for the diagonal spin-orbit
coupling [19], the �′

SO does not move Kσ− from the marginal
value Kσ− = 1. Thus, we conclude that this mode is in
a self-dual point, at least within the manifold of interac-
tion terms we decided to take into account. Usually, such
a situation is treated by employing refermionization [28],
then separating real/imaginary parts as Majorana fermions,
e.g., ξ0,i = Re[exp φσ−(xi)], and finally using fusion rules
to map the Hamiltonian onto a doublet of quantum Ising
chains H0[σ−] + Hx̃[σ−] = ∑

l=0,1

∑
i σ

z
l,iσ

z
l,i + hσx

l,i with
order/disorder operators σ0,1,μ0,1 defined as ξ0,i = σ0,iμ0,i . In
Refs. [15,25] the procedure was used in the context of CNTs.
The self-dual point is equivalent, in the Ising model language,
to σ1 chain passing through criticality. The other Ising chain
is always gapped and, by accounting for a negative sign of the
mass term, we deduce that the order Ising operators σ0 have

a finite amplitude, which means that sin φ = 0 and sin θ = 0,
while both respective cosines are nonzero. This does not allow
us to identify the unique ground state, but only to narrow
down the possibilities. Since Kρ+ < 1 it shall be density wave
(DW) ordering, either intravalley charge density wave (CDW)
or intravalley spin density wave (SDW), with either bond or
onsite character. One must remember that there are other
ordering possibilities, e.g., squared order parameters, with
higher periodicities, which may be dominant when Kρ+ <

0.25. Furthermore, since self-duality is not protected by any
symmetry, one cannot exclude that due to some extremely tiny
perturbation, not accounted in our generic model, a gap in φσ−
actually opens. However, this depends on the finer details of
a CNT under consideration and describes physics that takes
place at energies ∼10−9 eV or below [15], so we refrain from
its further analysis here.

Even though the exact ground state remains elusive, the
larger gaps Mρ−,Mσ+ that certainly open provide sufficient
conditions to determine the allowed proximity effect.

IV. PROXIMITY EFFECTS

The inverted hierarchy of gaps plays an important role in
the proximity effect. This is because usually the coupling with
the substrate and the superconducting gap (on the surface)
are smaller than Mρ−,σ+. In the Appendix, we give a brief
description of the hybridization, in the fermionic language. To
understand how these microscopic considerations are linked
with many-body TLL theory, one must sum over all sites of
the CNT within a unit cell, turn to collective fields, and then
express the result in the two-leg ladder basis. This is a well-
established procedure; we follow Ref. [25] to find that the
singlet SC order operators in a zigzag(like) CNT are

ÔSC
s ∼ exp(ıθρ+)[cos φρ− cos φσ+ cos θσ− + ı(sin ↔ cos)],

(23)

ÔSC
m ∼ exp(ıθρ+)[cos φρ− sin φσ+ sin θσ− + ı(sin ↔ cos)].

(24)

The first one, ÔSC
s , corresponds to a purely local tunneling

process (a pair is created on one site) and thus it is more likely to
occur in type-II superconductor (short coherence length), than
ÔSC

m when a pair is created nonlocally (with different phase on
adjacent sites). Both ÔSC

s,m have a scaling dimension d� = 2 −
(3 + K−1

ρ+)/4, thus they are relevant for Kρ+ > 0.2. This holds
when we assume Kν = 1 for ν �= ρ+, accounting for the fact
that actually (in the low-energy limit) Kρ− < 1 changes the
condition to Kρ+ > 0.25. It is likely that the condition Kρ+ >

0.25 is fulfilled when a CNT lies on a conducting substrate
which provides the screening for Coulomb interactions and
thus reduce their range. The relevance of ÔSC

s,m does not matter
if one is deep inside the Mott phase and a large gap in the φρ+
field causes strong fluctuations of θρ+, thus suppressing any SC
proximity effect. This would be the case in a system described
in Ref. [20] where the dimerization term Hdi was governed by
the Mott gap. In this work, we have found another mechanism
where the field η(x) is locked by the symmetry breaking HSO,
and thanks to that the field θρ+ is not randomly fluctuating
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at the lowest energies. Considering the relevance of the SC
proximity now makes sense.

The presence of Mρ−,Mσ+, or to be more precise the field
configuration they impose, sets a constraint on the allowed
proximity effect. If we disregard the σ− mode for a moment,
then we find that there exists one SC order parameter which is
compatible with the locked fields 〈φρ−〉 = 0 and 〈φσ+〉 = 0.
It is the s-SC that is also the most likely candidate from
the microscopic viewpoint. This order has a topologically
trivial character. The other Om order parameter is suppressed
because it requires to lock the φσ+ field at the other minimum:
φσ+ = π/2. The triplet order parameters are exponentially
suppressed because they involve the θσ+ field which is
canonically conjugate to the locked φσ+.

As for the σ− mode, there are two options:
(i) The mode stays on a self-duality point: then cos θσ− has

a finite expectation value and s-SC is allowed.
(ii) Ultimately the gap opens, at much reduced energies:

this will be most likely a gap in the φσ− field mσ−. It could
suppress the s-SC proximity effect at the lowest energies. One
way to overcome it is to take a sufficiently large amplitude
of the proximity-induced gap �SC

s > mσ−. Thanks to a
huge difference of energy scales between the different masses,
the 1D character of the system will be still protected by Mρ−.
The induced transition to the s-SC state shall have the Ising
character [29] (one of Ising disordered operators μ1 acquires
a finite value at the cost of the Ising ordered operator σ1).

In either case, only the topologically trivial s-SC is allowed.
The Majorana surface states are never allowed to occur.

V. DISCUSSION

A. Size of the spectral gap and the means of its detection

The estimate for spectral gaps that we have given in
Sec. III B is rather conservative, valid for a CNT embedded in a
good dielectric, for instance, a CNT suspended in vacuum. By
introducing an extra screening, for example, by placing a tube
on a superconducting substrate or within a multiwall CNT, one
makes electron-electron interactions more local. In reciprocal
space, this increases the large momentum exchange component
of electron-electron interactions V (q ≈ 2K). Then, the bare
amplitudes of the backscattering terms gi in Eq. (5) can
grow substantially. Moreover, as we indicate in the context
of the proximity effect, placing the tube on an appropriately
chosen substrate may introduce additional periodic potentials
that cause backscattering and adds up with gd and gSO.
The magnitude of gaps depends on particular experimental
realizations and in some circumstances it can be detectable
already at energies ∼1 meV.

One possibility to detect the Mρ−,Mσ+ is to study the
Knight shift and relaxation rate of NMR signal. The tem-
perature dependence shall be a power law but at the energy
scale corresponding to the gap one should observe a change
of an exponent, such an effect was indeed experimentally
[30,31] observed but its origin was unclear. In our mechanism,
for instance for the Knight shift we predict a change from
(Kσ+ + Kσ−)/2 to Kσ−/2. Moreover, a known feature of
the spin-valley-dependent split VSO is that it can be varied
by applying an external magnetic field [16,27]. Since both

Mρ− and Mσ+ ∼ g̃d ∼ VSO, and the spin-/valley-dependent
part of the split in a single-particle dispersion can be varied
by a magnetic field directed along a tube, then an anisotropic
magnetic field dependence of spectral gaps can be taken as a
hallmark of their many-body origin.

B. Relation to SC order parameters proposed for CNTs

The ÔSC
s in the same form as Eq. (23) was also proposed

by Egger [15]. The fermionic expression, in the reciprocal
space, for superconducting order parameter that we invoked
ÔSC

s reads as

ÔSC
s = (c†kK↑c

†
−kK ′↓ + H.c.) − (↑↔↓)

and it is equivalent to an interchain ordering as derived in a
seminal paper [32]. In the last paper it is called d-SC, but this
should not lead to any misunderstanding since we define order
parameters for real-space hexagonal lattice, what is Ôd for a
square ladder is not necessarily d wave for other underlying
crystal lattice. A detail description of the symmetry properties
for a bi-layer graphene interface is given in Ref. [33] where
a table of characters for the local ÔSC

s [Eq. (23)] as well as
the nonlocal ÔSC

m [Eq. (24)] were found. In particular, it was
explicitly shown that only the ÔSC

m may contain topologically
nontrivial SC order.

Furthermore, one notices that ÔSC
s is different from the

superconducting order parameters proposed previously for the
armchair CNTs [34]. This is because the band structure is
different: the interband order parameter, that was previously
prohibited due to the conservation of k‖, now is allowed
because in zigzag(like) tubes the chains of ladder are asso-
ciated with valleys and Dirac cones are located at K‖ = 0.
Moreover, if the circumferential momentum is conserved, then
by requiring �k1 = −�k2 within the BCS pair, we find that indeed
the interchain (intervalley) OSC

s is favored (see Appendix for
details). Moreover, from a basic symmetry argument, we know
that the intervalley Andreev reflection is protected (versus
for instance disorder) by time-reversal symmetry. On the
other hand, the intravalley pairing would be protected by the
so-called symplectic symmetry, but this one is already broken
from the very beginning by introducing the �SO.

So far, we have discussed the relation between ÔSC
s,m and and

other uniform SC orders proposed before. A novel aspect of
proximity effect, that is inevitably present in chiral tubes, is its
nonuniformity. For a chiral tube that is rolled along the helical
line one may consider the skew turn to be a built-in rotation
angle versus substrate lattice. Since strength of bonding is
related to interatomic distance, the de Moire pattern of the
substrate-tube hybridization appears and the proximity effect
is no longer uniform but instead it becomes periodic [35]
(see Appendix for details). Such periodic proximity effect
is favorable for more exotic SC orders proposed [36] for
the two-leg ladder models and known as pair density waves.
One defines a composite order parameter [36], that is a
product of the ÔSC

s,m and some density wave. The density wave
shall be defined in the intravalley channel to avoid a direct
competition with superconductivity. One advantage is that one
can construct an operator OSC

PDW which, albeit less relevant,
depends only on φσ+ in the spin sector. This allows to avoid
a potential problem if a field φσ− is after all locked. The SC
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order most likely retains a topologically trivial character, in the
sense that standard procedure of Ref. [36] again favors ÔSC

s .
There are many other fascinating aspects of nonuniformity
that should stimulate research in this direction. One is that
the SC proximity effect shall be particularly strong for a
chemical potential for which kdM = kF . This opens an exciting
perspective of gate tuning of SC order in CNTs.

C. Other symmetry-breaking terms; valley mixing

For completeness, we comment on other backscattering
operators, analogous to Hdi and HSO, that can be introduced
into the Hamiltonian of a CNT. One frequently proposed
perturbation is an intervalley backscattering, the so-called
�KK ′ . No matter what the content in the spin space we choose,
this operator written in bosonic language contains θρ− field,
a field canonically conjugate to all cosine terms present in
Eqs. (5)–(7). This means that �KK ′ is quickly suppressed
by all other terms as one is moving along the RG trajectory
(towards L → ∞ in quantum dot language). Moreover, even
in the case when an extremely strong �KK ′ is able to dominate
the physics, since the pairing operators in Eqs. (23) and (24)
contain cos φρ− then none of these (including the potentially
topologically nontrivial, nonlocal ÔSC

m ) shall be favored. It
seems that the �KK ′ reduces the propensity of the system to
any standard proximity effect.

One can also ask an opposite question: What symmetry-
breaking term could potentially support the Ôm order? A brief
inspection of all order parameters reveals that this is a rather
exotic spiral electric field acting opposite on two valleys (but
valley diagonal), however, this would need to be taken together
with attractive V (q ≈ 2|K|) interactions.

VI. CONCLUSIONS

We have shown that, for a chosen subset of CNTs, the
presence of spin-orbit coupling �SO leads to a gap opening
in the spectrum of two bosonic modes φρ− and φσ+. This
drastically reduces the subset of proximity effects allowed
at the lowest energies: we find that only a phase with a
trivial topology is allowed. This statement is quite general
as it should remain valid also upon increasing the interaction
strength, doping, hybridization with the substrate, and upon
adding another symmetry-breaking term �KK ′ . An extra mo-
tivation, and a broader perspective, for this work comes from
the recently synthesized 2D analogs of graphene: silicene,
germacene, and stanene. This gives a hope for a new class of
nanotubes that shall be built out of atoms heavier than carbon.
Since �SO ∼ λSO (where λSO is an atomic spin-orbit coupling
constant [11]), then the fine effects predicted here can become
orders of magnitude larger.

APPENDIX A: ESTIMATE FOR 〈cos φ̃ρ+〉|ω=�′

The dynamics of the fast field φρ+(x) for energies ∼�′ is
rather complicated. Usually δ ∼ 1 implies that the gd and gSO

terms rapidly drop out of the problem [and g3 as well, but
by writing Eq. (20) we had already neglected g3]. However,
already in the simplest single-mode sine-Gordon model, the
issue of how precisely the expectation values disappear when

δ becomes substantial has proven to be quite nontrivial and
depends on how precisely RG procedure is set up [37]. Our
model is much more complicated as the dynamic coupling with
three other modes is present. For instance, in the argument
of the cosine one can clearly see the competition between
η(x) and δx. Moreover, the amplitude of the cosine, that is
M[φi �=ρ+], shall have an extra increase when the two neutral
fields order.

To tackle the problem, let us assume that, to begin with
when η(x) ≈ 1, η(x) dominates. At �′ energy scale the neutral
fields still fluctuate, with a velocity that is irrational with
the holon velocity, thus, M[φi �=ρ+] and the η(x) field can
be considered as amplitude and phase of a complex random
variable. Then, Eq. (20) can be interpreted as a model of a
random backscattering in a TLL. The suppression of gd is
delayed by the fact that for the disorder problem, the scaling
dimension is even larger ddis = 3 − 2Kρ+. One can say that
a strong enough disorder freezes the correlation function for
l ≈ �′. Such a phenomenon occurs also for incommensurate
(not necessarily random) potentials when modes of different
velocities couple. It is then known as Aubry-André transition
[38]. The crossover is quite complex, but most likely as the
energy scale l decreases during the RG, then η → 0 (the
fluctuations cease below the energy ∼Mρ−), the randomness
disappears and g3,d,SO[l] resume their flow to zero, driven
by a finite doping. However, for energies around �′, the
sine-Gordon model (20), with a finite, energy-independent
amplitude of the cosine term, gives a correct description. Then,
one can attempt to compute 〈cos φ̃ρ+〉|ω=�′ , in a limit when the
shift goes to zero, by using results known from the Ising model
in the renormalized classical regime. One may either use the
zero-temperature result ∼K0(g̃1cτ

′), where K0 is the modified
Bessel function of the second kind and a characteristic time
scale is set as τ ′ ∼ 1/�′, or a finite-temperature result [39]
where 〈cos φρ+〉|ω=�′ is proportional to erfc(

√
T̃ /2g̃1c) with

a characteristic temperature taken to be kBT̃ = �′ (and erfc
is a complementary error function). In both estimates, we get
〈cos φρ+〉|ω=�′ ∼ 10−1. We consider it as an upper limit for
〈cos φ̃ρ+〉|ω=�′ and in all further calculations we take a more
conservative value 〈cos φ̃ρ+〉|ω=�′ = 10−2.

APPENDIX B: DETAILS OF AN OVERLAP
WITH A SUBSTRATE

In Ref. [40], it is shown that every site which is
in touch with a superconductor, upon integrating out
the BCS condensate, acquires an emergent pairing poten-
tial:

∫
dx dy �SC(x,y)[c†σ̄ (x,y)c†−σ̄ (x,y) + H.c.] where (x,y)

are the site coordinates (interface has 2D character) and
�SC(x,y) ∼ t ′′(x,y)2/VF is a pairing strength, with t ′′(x) a
hybridization between CNT and a substrate. Let us consider a
process of creation of a Cooper pair inside a CNT: c

†
�k1
c
†
�k2

. For

a moment we need to take a 2D �k1 because we keep interfaces’
2D character. When the pair is created in two different valleys
(an intervalley term), it is compatible with the standard s-wave
BCS pairs in the substrate where k1 = −k2. Contrarily, the
intravalley term does not conserve momenta since then k1⊥ =
k2⊥ ± 2K⊥. Thus, this second process will be suppressed
when ki⊥ is a conserved quantity during the tunneling process.
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We can try to quantify the condition for conservation of the
circumferential momenta. We take the hybridization t ′′(x,y) to
be a Gaussian with a width proportional to the nanotube radius:
δy = αbR, where αb is some proportionality constant and y is a
direction along the tube’s circumference. This relation simply
encodes the fact that for broader tubes, there are more carbon
atoms that can build a covalent bond with a substrate. Finite
δy produces a momentum resolution δkperp ≈ 1/δy. The two
valleys can be distinguished provided the real-space Gaussian
is broad enough, that is, δkperp < |K| ⇔ R > a/|K|. When
this condition is fulfilled, one can consider valley index and
thus k⊥ to be a conserved quantity in a substrate-CNT tunneling
process.

The microscopic model also allows us to take a closer
look at the nonuniformity of the t ′′(x). For a chiral tube,
the hexagonal lattice makes consecutive skew turns around
the central axis of the tube. Then, looking from the top it

is very much like a sequence of tilted hexagons (δy >
√

3a,
with a graphene lattice constant, is assumed). If one puts two
hexagonal lattices one on top of another and rotate (or rescale)
one of them, then one obtains the periodic de Moire pattern.
Rescaling is necessary only when the substrate is a crystal
different from graphene. We conclude that a chiral CNT placed
on the top of a 2D surface gives an effective hybridization
t ′′(x) = 1

δy

∫
dy t ′′(x,y) that is not constant along the tube but

varies, and these variations are the strongest for smaller tubes
where the effect is not averaged out by integration over large
δy. For scaling factor between two lattices equal to one (e.g.,
both based on graphene), one finds [35] that the angle between
the �kdM and the CNT basis is π/2 and indeed the hybridization
t ′′(x) along the 1D profile is periodic. The patterns’ periodicity
depends on the chiral angle, for small chiral angles very small
|�kdM | can be reached.
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