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In the face of mounting numerical evidence, Metlitski and Grover (arXiv:1112.5166) have given compelling
analytical arguments that systems with spontaneous broken continuous symmetry contain a subleading
contribution to the entanglement entropy that diverges logarithmically with system size. They predict that
the coefficient of this log is a universal quantity that depends on the number of Goldstone modes. In this paper,
we confirm the presence of this log term through quantum Monte Carlo calculations of the second Rényi entropy
on the spin-1/2 XY model. Devising an algorithm to facilitate convergence of entropy data at extremely low
temperatures, we demonstrate that the single Goldstone mode in the ground state can be identified through the
coefficient of the log term. Furthermore, our simulation accuracy allows us to obtain an additional geometric
constant additive to the Rényi entropy, that matches a predicted fully universal form obtained from a free bosonic
field theory with no adjustable parameters.
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I. INTRODUCTION

In condensed matter, the entanglement entropy of a bi-
partition contains an incredible amount of information about
the correlations in a system. In spatial dimensions d � 2,
quantum spins or bosons display an entanglement entropy
that, to leading order, scales as the boundary of the bipartition
[1–3]. Subleading to this “area law” are various constants
and—particularly in gapless phases—functions that depend
nontrivially on length and energy scales. Some of these
subleading terms are known to act as informatic “order
parameters” which can detect nontrivial correlations, such as
the topological entanglement entropy in a gapped spin-liquid
phase [4–7]. At a quantum critical point, subleading terms
contain novel quantities that identify the universality class, and
potentially can provide constraints on renormalization-group
flows to other nearby fixed points [8–15].

In systems with a continuous broken symmetry, evidence
is mounting that the entanglement entropy between two
subsystems with a smooth spatial bipartition contains a term,
subleading to the area law, that diverges logarithmically with
the subsystem size. First observed in spin-wave [16] and
finite-size lattice numerics [17,18], the apparently anomalous
logarithm had no rigorous explanation until 2011, when Metlit-
ski and Grover developed a comprehensive theory [19]. They
argued that, for a finite-size subsystem with length scale L,
the term is a manifestation of the two long-wavelength energy
scales corresponding to the spin-wave gap, and the “tower of
states” arising from the restoration of symmetry in a finite
volume [20–23]. Remarkably, their theory not only explains
the subleading logarithm, but predicts that the coefficient is
directly proportional to the number of Goldstone modes in
the ground state. Furthermore, describing a Goldstone mode
with a free scalar field theory allows them to predict the value
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for an additional additive geometric constant, which is fully
universal and should therefore be the same across a wide range
of continuum theories and lattice models.

In this paper, we confirm these predictions through large-
scale quantum Monte Carlo (QMC) simulations on a spin-1/2
XY model on the square lattice. By employing an extended-
ensemble generalization of a ratio method [24–26], we are
able to carefully converge the mutual information of the
second Rényi entropy to its low-temperature value. There,
finite-size scaling reveals the coefficient of the subleading
logarithmic term to precisely match the prediction of Metlitski
and Grover, identifying the lone Goldstone mode in the theory.
Remarkably, our simulations are accurate enough to also
measure the universal additive geometric constant, which is
consistent with the predicted relationship to the constant which
appears in a lattice-regularized free scalar field theory [19].

II. ENTANGLEMENT ENTROPY IN THE TOWER
OF STATES

To obtain a qualitative understanding of the origin of
the logarithmic correction in Metlitski and Grover’s theory,
it is simplest to first envision decoupling the two spatial
subsystems, A and B, that define the entangled bipartition.
The low-energy degrees of freedom in each subsystem can
be described by an O(N ) rotor (N = 2 for the XY model),
representing the direction of the order parameter. Here we
are only allowing global fluctuations of the order parameter
within each subsystem, such that we may approximate the state
of A and B each as a single independent quantum rotor. The
effective Hamiltonian of each subsystem is

H = L2/2I,

where L2 is the total angular momentum operator with
eigenvalues �(� + 1) and I is the effective moment of inertia

1098-0121/2015/92(11)/115146(11) 115146-1 ©2015 American Physical Society

http://arxiv.org/abs/arXiv:1112.5166
http://dx.doi.org/10.1103/PhysRevB.92.115146


KULCHYTSKYY, HERDMAN, INGLIS, AND MELKO PHYSICAL REVIEW B 92, 115146 (2015)

which is extensive, proportional to the magnetic susceptibility
χ : I ∼ χLd in d spatial dimensions [27]. Thus the energy
scale of the tower �tow = 1/χLd vanishes with the system
volume, faster than any other energy scale. The eigenstates of
L2 result in the famous “tower of states” observed routinely in
computational studies of systems with continuous symmetry
breaking in a finite volume [21–23].

The interaction between A and B which aligns the subsys-
tem order parameters may be introduced via a Goldstone mode
Hamiltonian HG which couples the two rotors. The energy
scale of the HG is the Goldstone mode gap �G which is the
scale of the lowest energy spin waves. Since �G ∼ c/L where
c is the spin-wave velocity, �G � �tow in the thermodynamic
limit for d > 1. In the limit �G → ∞, there are no relative
fluctuations in the order parameter between subsystems, and
A and B act as a single rigid rotor. For finite �G, there will be
relative fluctuations between the subsystems order parameters
due to the zero-point fluctuations of HG.

To estimate the entanglement entropy contribution from the
tower of states, we can count the number of “accessible” states
of subsystem A,�A, when the total system is in the ground
state, and use

Stow ∼ ln�A. (1)

In the limit �G → ∞ with the rotors rigidly coupled, the
ground state is the ground state of the total system tower of
states with zero total angular momentum: �AB = 0. In this case
all states in the A subsystem tower are accessible to the ground
state, as each state in A can be paired with an appropriate state
in B to form a state with nonzero overlap with the �AB = 0
state. However, as discussed above, by including a finite �G

and thus allowing relative fluctuations of the subsystem order
parameter between A and B, the fluctuations in the subsystem
angular momentum are finite and determined by the ratio of
the energy scales [19]:

〈
L2

A

〉 ∼ �G/�tow.

In fact, the reduced matrix of the subsystem takes the form
of a thermal density matrix with an effective “entanglement
Hamiltonian” given by Htow and the “entanglement tempera-
ture” given by �G [19]; the resulting tower of states structure in
the entanglement spectrum has been seen in numerics [28,29].
Thus the inclusion of Goldstone modes cuts off the accessible
states of the subsystem to those with an energy below the
spin-wave gap, as illustrated in Fig. 1.

As an example of this mechanism, consider the case of
N = 2 (valid for our XY model simulations below). Here the
rotors have a single component of angular momentum �z and
the orientation of the rotors is described by a single angle
θ . For �G → ∞ the ground state has �z

AB = 0, which has
nonzero overlap with states of equal and opposite �z in each
subsystem: |�z

A = �,�z
B = −�〉; consequently all |�z

A〉 state are
accessible in this limit. We may include the effect of the lowest
Goldstone mode by treating the dynamics of the relative angle
between subsystems θδ as a single harmonic oscillator with
frequency �G and moment inertia Iδ ∼ �−1

tow, with an effective

FIG. 1. Schematic energy-level structure of the low-energy tower
of states for finite-size systems with spontaneous breaking of a
continuous symmetry. The correction to the entanglement entropy
may be approximated by the log of the number of quantum rotor
states below the Goldstone gap �A, which is represented by the
states within the dotted box.

Hamiltonian

HG = 1

2Iδ

L2
δ + 1

2
Iδ�

2
Gθ2

δ . (2)

Here, the fluctuations in the relative angular momentum Lδ are
given by the ground state fluctuations of a harmonic oscillator:

〈
L2

δ

〉 ∼ Iδ�G/2 ∼ �G/�tow.

The key point here is that because the order parameter is canon-
ically conjugate to the rotor angular momentum, increasing
the relative fluctuations in the order parameter reduces the
fluctuations in L2. Thus, allowing relative fluctuations of the
order parameter between subsystems effectively cuts off sub-
system rotor states that are accessed in the ground state at order
� ∼ (�G/�tow)1/2—a relationship that holds for all N [19].

We may therefore estimate �A by counting the number of
states (in A’s tower of states) that lie below �G. For systems
with O(N ) symmetry, the tower of states is described by a rotor
living on an NG = N − 1 dimensional sphere, where NG is the
number of Goldstone modes. The degeneracy of each energy
level is of order �NG−1. We then may estimate the total number
of states below �G by integrating the degeneracy up to the
cutoff �co = (�G/�tow)1/2:

�A ∼
∫ �co

0
d��NG−1 ∼

(
�G

�tow

)NG/2

. (3)

Using the relation χ = ρs/c
2 from hydrodynamic spin-wave

theory where ρs is the stiffness [30], the entanglement entropy
correction due to the tower of states becomes

Stow ∼ NG

2
ln

(
ρs

c
Ld−1

)
. (4)

We see that the logarithmic correction to the area law arises
due to the quasidegeneracy of accessible bulk subsystem
states, that scales as a power law in L for systems with
spontaneously broken continuous symmetries. This contrasts
with the leading-order area law, arising from the exponential
scaling of the number of local boundary states with the
boundary area. Clearly, the prefactor of the logarithmic
correction is a universal number that simply counts the number
of Goldstone modes.
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III. QUANTUM MONTE CARLO PROCEDURE

In order to examine the effects of broken continuous
symmetry on entanglement, we implement a highly efficient
stochastic series expansion (SSE) QMC algorithm [31–33] for
the two-dimensional (2D) spin-1/2 XY model,

H = J
∑
〈ij〉

(
Sx

i Sx
i + S

y

i S
y

i

)
.

This model is known to realize a ground state where the U(1)
symmetry is spontaneously broken, resulting in one Goldstone
mode. The finite-temperature SSE algorithm uses a version of
the directed-loop update specialized to the XY model [34].
To measure the entanglement entropy, we employ a replicated
simulation cell Z[A,2,T ], which gives access to a second
Rényi entropy,

Sn = 1

1 − n
ln

[
Trρn

A

]
, (5)

with n = 2. This is done through the ratio

Trρ2
A = Z[A,2,T ]

Z[A = 0,2,T ]
, (6)

where Z[A = 0,2,T ] = Z[T ]2, the square of the unmodified
partition function [35]. One therefore needs to evaluate
a difference in free energies or, alternatively, a ratio of
partition functions, between the replicated and unmodified
simulation cells with QMC. Several options are available,
such as thermodynamic integration [35] and Wang-Landau
sampling [36]. Alternatively, methods such as the ratio method
[24–26] allow one to compute the partition function ratio
directly. As described in the next section, for this model,
careful convergence to low temperature is required. Hence,
in Appendix A, we develop a highly efficient variant of the
ratio method, dubbed the extended ensemble ratio method,
applicable to a wide range of spin systems, and implemented
specifically for the spin-1/2 XY model.

IV. RESULTS

We perform large-scale calculations to obtain the second
Rényi entropy of the XY model on L × L square lattices
with periodic boundary conditions. The resulting torus is
partitioned into two cylindrical regions of linear dimension
L × LA

x and L × (L − LA
x ). For system sizes L = 8,12,16,

separate finite-temperature tests are performed to explore the
convergence of S2. In agreement with the expected scaling
of the tower-of-states gap, those results confirm that the
convergence temperature scales approximately as 1/L2. We
use this to estimate the convergence temperatures for L =
20,24,28,32.

Since SSE QMC simulations necessarily run at finite
temperature, very small thermal contributions to S2 are
expected, which we observe to significantly affect our
finite-size scaling analysis below. Fortunately, this thermal
contribution can be essentially eliminated by employing the
mutual information [35],

I2(A : B) = S2(A) + S2(B) − S2(AB).

FIG. 2. (Color online) The mutual information of the S = 1/2
XY model as a function of β ≡ J/T . Solid lines are obtained
through thermodynamic integration from β = 0, with statistical errors
estimated by the shading. Square points with error bars are data
obtained at a fixed β using the extended ensemble ratio method,
described in Appendix A.

Assuming that bulk (volume-law) contributions from the two
subsystems A and B approximately cancel the bulk term
S2(AB) in I2, the scaling form described by Metlitski and
Grover becomes

I2 = aL + NGln

(
ρs

c
L

)
+ 2γord. (7)

Here, a is a nonuniversal constant, ρs and c are the spin-
wave stiffness and velocity, and γord is the geometric constant
that depends on the aspect ratios of the cylinders A and B

[19]. Note, since nonuniversal (cutoff) dependencies are all
contained within ρs and c, this geometric constant remains
fully universal. For the spin-1/2 XY model on the square
lattice, ρs = 0.269 74(5)J and c = 1.1347(2)J were obtained
from Ref. [37].

Figure 2 illustrates a representative convergence test
for different system sizes. The mutual information peaks
at temperatures above the Kosterlitz-Thouless transition of
(T/J )KT = 0.343 (which can be detected by the crossing of
the finite-size curves; see Ref. [38]). For T/J < (T/J )KT,
the mutual information reaches a minimum (at J/T ≡ β ≈ 4
in Fig. 2) before undergoing a slow rise. This rise continues
until the approximate ground state is reached, for temperature
below the finite-size scaling gap, which for system sizes
larger than L = 8 occurs for β > 100. Thus, although the
method of thermodynamic integration is useful to produce
the general shape of the I2 curve for a wide range of
temperatures, it is difficult to control the systematic error
introduced by numerical integration at low temperatures for
L > 12. Therefore, data used in the below fits were converged
at very low temperatures using the extended ensemble ratio
method, described in Appendix A.

Figure 3 illustrates the resulting temperature-converged
mutual information for a variety of system sizes, as a function
of the “width” of the cylindrical region, LA

x . Since, for a
subsystem A and its complement B, SA = SB only at T = 0,
the symmetry of the entanglement entropy about LA

x /L =
1/2 provides a sensitive test of temperature convergence.
Employment of the “bare” Rényi entropy results in a very
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FIG. 3. (Color online) The mutual information as a function of
torus aspect ratio, for the lowest temperatures examined for each
system size. The corresponding β are 184, 368, 736, 1150, 1650,
2300, 3200, ordered from the smallest to the largest system size.
Vertical dashed lines are the aspect ratio values employed in the
fitting in Fig. 4.

slight asymmetry in the curve; use of I2 restores these
symmetry producing high-quality data that can be fitted using
Eq. (7).

The results of this analysis are illustrated in Fig. 4. Here,
I2 is calculated at various aspect ratios [the vertical cuts in
Fig. 3 and fit to the functional form Eq. (7)]. Specifically, to
extract the coefficient of the subleading logarithm, the mutual

FIG. 4. (Color online) The top figure displays a three-parameter
fit to the functional form aL + b ln(Lρs/c) + d for different torus
aspect ratios, where b gives a value for NG. Another three-parameter
fit to aL + ln(Lρs/c) + 2γord + d/L (not shown) is employed to
extract the geometrical constant γord. The resulting NG and γord are
shown alongside the theoretically predicted values at bottom.

information was fit to

I2 = aL + bln

(
ρs

c
L

)
+ d,

where a, b, and d are adjustable fit parameters. As illustrated
in Fig. 4(a), there is definitive evidence for the existence of
a logarithm; furthermore, independent fits for the four aspect
ratios studied each give NG = 1 to within error bars. We note
that additional 1/L corrections have no significant effect on
the extracted value of NG, but inclusion of a 1/L term requires
fixing d to the theoretical value, since accurate four-parameter
fits are not possible with this data set (see Appendix B).

Even more striking, we are able to extract the universal
shape dependence of the geometric constant γord. Since 1/L

corrections pollute the constant term, to extract γord we assume
the theoretical value of NG = 1 and perform fits to the
functional form

I2 = aL + ln

(
ρs

c
L

)
+ 2γord + d

L
.

Thus calculated, γord for N = 2 in two dimensions can be
compared via a zero-parameter fit to the subleading constant
term γfree calculated in a free scalar field theory [19] through
the relation

γord = γfree + 1
2 ln(2π ),

valid for the second Rényi entropy. The free field result γfree,
which depends on the aspect ratio LA

x /L, can be calculated
numerically for free bosons on the lattice using the correlation
matrix technique (as in Ref. [39]). As illustrated in Fig. 4(b),
the resulting theoretical curve is in excellent agreement with
our QMC results for γord.

V. DISCUSSION

In this paper, we have employed large-scale quantum Monte
Carlo (QMC) simulations on the spin-1/2 XY model to
demonstrate the presence of a logarithmic correction to the
Rényi entropy due to spontaneous breaking of continuous
symmetry. This term arises from the presence of two infrared
energy scales in the problem: the spin-wave gap, and the “tower
of states.” The coefficient of this logarithm is predicted in
Ref. [19] to be NG(d − 1)/2, where NG is the number of
Goldstone modes and d the spatial dimension. We confirm
this prediction through finite-size scaling studies on the square
lattice XY model, recovering to high precision the expected
NG = 1. In order to do so, a QMC algorithm was developed to
sample the second Rényi entropy at a fixed temperature with
high efficiency (described in Appendix A).

In addition to confirming NG = 1, our technique is able
to converge the value of an additive geometric constant γord,
which is fully universal and has a functional dependence on
the geometric aspect ratio of the entangled bipartition. This
function matches, to within error bars, that calculated using a
free scalar field theory regularized on a toroidal square lattice,
with no adjustable parameters [19].
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Finally, armed with the a posteriori knowledge of Eq. (4),
one can revisit the analysis of QMC data for the Heisenberg
model [17,18]. Based on a similar analysis as that presented
here, we conclude that the Heisenberg model data of Ref. [17]
contains a much weaker “signal-to-noise” ratio than the XY

model. Indeed, for the Heisenberg model, the coefficient of the
area law, as well as the coefficient of the 1/L correction, are
more than an order of magnitude larger than the corresponding
coefficients for the XY model. At the same time, the signal
from the logarithmic and constant terms are comparable (or
smaller) to those in the XY model. Hence, although the
Heisenberg data of Ref. [17] are consistent with the prediction
of Ref. [19], it is difficult to obtain conclusive agreement with
unconstrained fits on small system sizes.

In conclusion, our work on the XY model is a rare example
of quantitative agreement between a universal quantity calcu-
lated in continuum field theory and finite-size lattice simula-
tions. The ability of the Rényi entanglement entropy to mediate
between continuum theory and lattice simulation illustrates
the utility of such geometric quantities as a complementary
approach to study correlations in condensed-matter systems. In
this case, with the full understanding of the universal structure
of the entanglement entropy in the presence of a spontaneously
broken continuous symmetry, the door is now open to the
examination of Goldstone modes in a large variety of systems,
through the calculation of Rényi entropies.

ACKNOWLEDGMENTS

We are thankful for enlightening discussions with A.
Läuchli, D. Poilblanc, K. Resch, and particularly, M. Metlitski
and T. Grover, without whom this work would not have
been possible. Support was provided by Natural Sciences
and Engineering Research Council of Canada, the Canada
Research Chair program, and the Perimeter Institute (PI)
for Theoretical Physics. Research at PI was supported by
the Government of Canada through Industry Canada and by
the Province of Ontario through the Ministry of Research &
Innovation. S.I. acknowledges support from FP7/ERC Starting
Grant No. 306897. The simulations were performed on the
computing facilities of SHARCNET.

APPENDIX A: EXTENDED-ENSEMBLE RATIO METHOD

1. Preliminaries

In this section, we describe a quantum Monte Carlo (QMC)
algorithm for estimating the Rényi entropy [defined in Eq. (5)],
using an extended-ensemble version of the so-called “ratio
method” that was applied in this context by Humeniuk and
Roscilde [25]. In the present work, the algorithm will be
specialized to the case of the second Rényi entropy (n = 2),
although extensions to other n are relatively straightforward.
Similarly, although we concentrate on applications to the
spin-1/2 XY model, generalizations to Hamiltonians with
other symmetries are possible (see subsection A 4 below).

QMC estimators for the second Rényi entropy S2 rely on
the fact that the trace over powers of the reduced density matrix
can be related to a ratio of partition functions as given in Eq. (6)
where the numerator is the partition function of a multisheeted
Riemann surface [35,40] (a “replicated” QMC simulation cell),

and the denominator is the square of the regular partition
function. In the replicated case, the geometry of the entangled
region A dictates the “boundaries” of the d + 1-dimensional
QMC simulation cell; world lines in region A are periodic in
imaginary time with period 2β (or nβ), while in region B, two
(or n) independent replicas exist with periodicity β.

Since the logarithm in Eq. (5) reduces the calculation of S2

to the difference in free energies between systems described
by the two partition functions, thermodynamic integration
or Wang-Landau techniques can be used to devise QMC
estimators. In contrast, ratio methods (not to be confused
with the related “ratio trick” coined in Ref. [41]) give an
estimator for the ratio of partition functions, and act as valuable
alternatives to explicit calculation of free energies. The most
distinct advantage of ratio methods is their ability to calculate
Sn directly at a given fixed temperature. They can however
be inefficient for large entropies (large subregions A), and
may require several separate simulations of different subregion
geometries (that can be combined with the ratio trick) to
combat this.

2. Algorithm for the XY model

We begin by generalizing Eq. (6) to the problem of calcula-
tion the ratio of replicated partition functions defined with two
arbitrary regions A and A′; namely Z[A′,2,T ]/Z[A,2,T ]. As
with all ratio methods, the QMC estimator in this case is based
on a simple identity [24]:

ZA′

ZA

=
〈
WA′(c)

WA(c)

〉
A

, (A1)

where we have simplified our previous notation ZA =
Z[A,2,T ]. The expectation value is taken in the ZA ensemble
and WA′(c) and WA(c) are the weights of a configuration c in
the ZA′ and ZA ensembles, respectively.

The difficulty of applying this identity in a straightforward
manner is that it is valid only when the configuration space
of ZA′ ,�A′ , is contained within the configuration space of
ZA,�A—that is W (c) �= 0 for any c. Unfortunately, this
condition is not automatically satisfied when the standard
labelling variables are used in conventional QMC techniques.
However, for the XY model, by introducing a new label, it is
possible to recast the configuration spaces of both ensembles
such that �A = �A′ . In other words, a common label c can be
found that enumerates all possible configurations within both
ensembles. This label can be formally linked to an updating
procedure in the well-known loop algorithm [42]. Within
this framework, nonlocal changes of configuration space are
achieved through so-called loop variables, defined on top of
the original configuration space. In this context, our algorithm
can be viewed as an “improved estimator.”

Here we will consider a stochastic series expansion (SSE)
representation of the partition function [31–33]. A term in the
SSE expansion of Z can be represented by a spin state and an
operator list, where the operators are terms in the Hamiltonian.
Alternatively, we can represent the same configuration by a
linked list of vertices [34]; an example of a set of vertices is
displayed in Fig. 5. We can therefore label the configuration
by the list of links l and the set of vertex types vA(l) for a given
boundary condition defined by A as shown in Fig. 6. Here we
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FIG. 5. (Color online) The six types of vertices present in a SSE
simulation of the XY model [34]. The colored circles represent two
possible states of a spin 1/2. The horizontal solid bar depicts a two-
site operator. The lines with arrow tips show all possible nonbounce
moves for a given vertex when the entrance leg is the left-most bottom
one. There are two of those moves for each vertex.

FIG. 6. (Color online) A three-step conversion process of a ver-
tex configuration vA(l) into vA′

(l) that preserves its segment partition.
The details of this process are illustrated in the text. At each step, a
simulation cell composed of two replicas (top and bottom) is shown.
The dashed vertical lines between adjacent legs that are located on
different vertices form a linked list. The label l identifies different
sets of those lines. The two types of small arrows placed next to
the replicas’ boundary slices mark the boundary conditions along the
dimension of the expansion: within a column, spins decorated with
the same kind of arrows are connected. In this way, the first simulation
cell’s region A is empty while the other two simulation cells’ region A′

contains all three spins. Open colored solid lines trace out a segment
partition of the first and third simulation cells (seven segments total).
Note that within the same cells, there is also a single closed segment,
an inner loop, composed of four legs. In the second simulation cell,
the open segments are merged by boundary connections to form a
single cross-replica loop identified by the same color. Mismatching
boundary spins along this loop are flipped according to the algorithm
presented in the text, resulting in a vertex configuration compatible
with the new boundary conditions as displayed in the third simulation
cell.

have defined l to include all “internal” links between vertices
and we link the “exterior” vertices to the boundaries of the
operator string; we specifically do not close the links at the
boundaries, as one would do in a regular d + 1-dimensional
QMC simulation cell [34].

These two labels are sufficient to identify the configuration
space of many models. Thus, a partition function can be
expressed as the following double sum:

ZA =
∑

l

∑
vA(l)

W [vA(l)], (A2)

where W [vA(l)] is the weight of a configuration labeled by l

and vA(l).
This general expression can be simplified for the XY model.

The model’s SSE vertices are displayed in Fig. 5. With an
appropriate choice of adjustable SSE constants, the weight of
each vertex becomes equal to 1/2J [34]. Hence, the weight
of a vertex configuration does not depend on a particular
combination of vertices in the list and, therefore, is completely
defined by the length of the corresponding operator list alone.
We get that WXY [vA(l)] = WXY (l) and Eq. (A2) is simplified to

ZXY
A =

∑
l

WXY (l)
∑
vA(l)

1. (A3)

The second sum counts the degeneracy of vertex config-
urations compatible with the boundary conditions between
replicas. Motivated by the search for a variable independent of
those boundary conditions, we introduce a new label, s[vA(l)],
that enumerates all possible partitions of a vertex configuration
labeled by [l,vA(l)] into a set of nonoverlapping segments. The
following algorithm is used to construct a single instance of
those segments:

(1) Pick an unmarked leg located on a boundary slice. Mark
it as visited.

(2) By following the linked list, switch to a leg connected
to it.

(3) The new leg belongs to a vertex.
(i) If this vertex is unmarked, pick with an equal probability

one of two possible nonbounce moves for this vertex and
switch to the corresponding leg. Mark this vertex as visited
and store the move type.

(ii) If the vertex is marked, switch to the next leg by
performing a move of the same type that was done before.

(4) Repeat steps 2–4 until a leg on a boundary slice is
reached.

By repeating this algorithm for all legs located on the
boundary slices, all open segments are traced out. However,
it is possible that some of the legs located on the inner
slices have been left unmarked after this procedure. In order
to partition those remaining legs too, the closed segments
(loops) need to be traced. This is achieved by adjusting two
steps of the algorithm. Now in the first step, the choice of
legs to be picked is extended to all interior legs. Once the
initial leg is picked, the algorithm proceeds in the same way
until it reaches the same leg again. Hence, the condition to
terminate the execution of the fourth step has to be modified
appropriately. By construction, any two segments built in such
a manner can never pass through the same leg and, therefore,
are nonintersecting.
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The loop tracing continues until all legs are marked. By
the end of this procedure every leg belongs to one single
segment (closed or open). This constitutes a single instance
of the partitioning of a vertex configuration into a set of
nonoverlapping segments. An example of such a partition is
shown in the first cell of Fig. 6. Note that at each vertex,
there are two choices for how to proceed with the construction
of a segment. Each of them leads to a different partition.1

Therefore, a simulation cell that contains Nv vertices can be
partitioned in 2Nv distinct ways. This is the range of the newly
introduced label s. Since Nv just counts the number of vertices
without discerning their types, the number of partitions for a
particular vA(l) is determined by the l label only. This fact
allows us to rewrite Eq. (A3) in a new form:

ZXY
A =

∑
l

WXY (l)

2Nv (l)

∑
vA(l)

∑
s[vA(l)]

1. (A4)

This expression is obtained from Eq. (A3) by introducing a
third sum via the substitution 1 = 1

2Nv (l)

∑
s[vA(l)] 1 where the

new sum is performed over all different partitions of vA(l).
It can be also shown that for any vertex configuration

in A,vA(l), partitioned as s[vA(l)], there exists a vertex
configuration in A′,v′A′

(l), with exactly the same partitioning,
that is s[v′A′

(l)] = s[vA(l)]. The proof is by construction. If
vA(l) and v′A′

(l) were the same, the task is trivial. Otherwise,
vA(l) has to be modified in order to satisfy the boundary
conditions of A′. An example of such a process is displayed
in Fig. 6. Here, the first and third simulation cells represent
vA(l) and v′A′

(l) correspondingly. The second cell depicts an
intermediate step of the correctional procedure. Here, the open
segments are connected into a loop along which the boundary
spin mismatches are fixed one by one. Further details of the
algorithm are given below.

Proceeding column by column, consider each pair of
boundary legs, (s0

1 ,s
0
2 ), to be matched with respect to the new

boundary conditions A′. If the legs align, s0
1 = s0

2 , proceed to
the next pair. Otherwise, randomly choose one of the two legs
in the pair. Say it is s0

1 . Since this leg is located on a boundary
slice, it belongs to an open segment. Flip all legs belonging to
this segment. Now, the original pair of legs is properly aligned,
however there might be another mismatch at the other end of
the segment. Call the new pair (s1

1 ,s
1
2 ) where s1

2 is the leg that
has just been flipped as part of the open segment. By the same
logic as before, s1

1 must belong to an open segment whose other
end is identified as another boundary leg s2

2 . If s1
1 �= s1

2 , flip this
segment in order to align the (s1

1 ,s
1
2 ) pair and move on to the

next pair (s2
2 ,s

2
1 ). Otherwise, proceed to the same pair without

flipping the segment. In this way, one by one pairs of boundary
legs are aligned with respect to A′ boundary condition along a
loop of open segments. An important subtlety occurs at the last
step of this algorithm when the last pair (sn

2 ,s0
2 ) is considered.

Unlike previously, s1
2 cannot be flipped if those legs do not

1Two partitions are considered equal when all their segments are
the same. In its turn, for two segments to be considered the same, the
order of legs in the construction of one segment must match exactly
with the order of legs in the construction of another segment.

align. An attempt to do so would entail another iteration of
corrections with the same result, thus, initiating the algorithm
in an infinite loop.

However, this does not occur in the XY model due to the
special properties of its vertices. Notice that the only vertex
move that connects two antialigned legs is the “switch-and-
reverse” move (Fig. 5); this is the only move that reverses the
vertical directionality of propagation of the segment’s head.
Consequently, once a segment tracing is initiated with the
choice of a leg and its state, the spin state of the leg at the
segment’s head is determined by the vertical direction that
the segment passes through the leg. On the last boundary
connection, the direction of motion along the segment must
be the same as the initial direction, and therefore the initial
spin state at the head of the segment under construction is
always the same as its final state. We see then that for any
segment partition of vA(l), it is always possible to construct a
v′A′

(l) with the same segment partition.
Now that we have shown the equivalence between any

two configuration spaces constraint by boundary conditions
A and A′ in terms of the segment partitions, we have achieved
our initial goal to find a label s that can be used to apply
Eq. (A1). However, we still need to compute the weights of
WA(s) and WA′

(s). Upon a close inspection of the inner double
sum in Eq. (A4), we realize that the same segment partitions
can be generated from different vertex configurations. This
degeneracy can be exploited in order to replace the double
sum with a single sum:

ZXY
A =

∑
l

WXY (l)

2Nv (l)

∑
s(l)

degA[s(l)], (A5)

where the inner sum iterates over all unique segment partitions
for a given linked list and degA[s(l)] is the degeneracy of
the segment partition labeled as s(l). As will be shown,
the degeneracy depends on the boundary conditions between
replicas and, thus, the superscript must be included.

In order to calculate the degeneracy of a segment partition
s(l), connect open segments using boundary conditions A to
form NA

b [s(l)] loops that cross boundary slices. In addition
to those loops, there are also Ni[s(l)] inner loops (closed
segments). Since all those loops do not intersect with each
other by construction, the spins within them can be flipped
independently. Each combination of the loops’ flips leads to
another vertex configuration. Equivalently, all of those vertex
configurations generate the same segment partition s(l). There
are in total NA

b [s(l)] + N [s(l)] loops with each one being in
one of two states: flipped or not flipped. Each combination
of those states corresponds to a different vertex configuration.
In total, there are 2NA

b [s(l)]+Ni [s(l)] of such combinations which
constitutes the degeneracy degA[s(l)].

With the last piece of the puzzle in our hands, we infer the
segment partition weight from Eq. (A5):

WA
XY [s(l)] = WXY (l)

2Nv (l)
2NA

b [s(l)]+Ni [s(l)]. (A6)

Since the inner loops are unaffected by the boundary con-
ditions, upon the substitution of this weight in Eq. (A1)
their number drops out and an elegant expression is
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obtained:

ZXY
A′

ZXY
A

= 〈2NA′
b [s(l)]−NA

b [s(l)]〉A. (A7)

In practice, this estimator can be implemented in fewer steps
that were required to prove its validity. It requires two routines.
One routine traces out a random single segment partition s(l)
for a vertex configuration vA(l) as was outlined before. In
order to speed up the execution, it is not necessary to identify
the closed segments. The end product of this routine is to
associate the pairs of boundary spins that are connected via
open segments. Once this step is done, the second routine
takes the set of those pairs together with replicas’ boundary
conditions as its inputs. Its task is to count NA

b . This routine is
executed for both A and A′ with the same open segments. In
the end, NA′

b [s(l)] and NA
b [s(l)] are known and the estimator

can be evaluated according to Eq. (A7).

3. Benchmarks

To illustrate the efficiency of the new estimator, its raw
measurements are compared to the original ratio method [25]
in Fig. 7 of the 2D XY model of interest in the main text.
The deterioration of the two estimators can be seen as the
difference in region sizes, �A = A′ − A, becomes large. As
the reference values, we employ the results obtained from the
ratio trick [41], which constitute a compilation of the extended
ensemble (EE) ratio method results from many different Monte
Carlo simulations, each executed with �A = 1. Note that the
original ratio method results are based on five times more
Monte Carlo sweeps than were involved to produce the EE
ratio method results. Even with such advantage, the ratio
method statistics become increasingly poor towards �A = 22.
After this threshold, the estimator seems no longer capable
to capture any meaningful statistics within the running time
of its simulations. The performance of the EE is strikingly
better. Even when �A = 64, the largest possible increment

FIG. 7. (Color online) The comparison of ratio methods efficien-
cies in an 8 × 8 system with periodic boundary conditions at β = 8.
The ratio of partition functions measurement is plotted against
the size difference between their corresponding regions A, �A.
The ratio method completely fails for �A > 22, and thus the data
are not shown on the plot. The values obtained from the ratio trick
serve as a reference. The statistical error in those values is contained
within the width of the curve.

in the system, it produces an accurate result with a precision
comparable to the ratio method precision at �A = 10.

4. Extensions to other models

Although the previous discussion has focused specifically
on the XY model, the framework of the extended ensemble
ratio trick can be applied in a more general context. In order to
understand the more general procedure, let us trace through the
steps in the derivation of Eq. (A7) where the unique properties
of the XY model are used. The first such step is done in the very
beginning: in going from Eq. (A2) to Eq. (A3), it is assumed
that all SSE vertices have equal weights. For other models with
different symmetries, we can identify two classes: those with
equal weights, and those without.

For other models with equal-weight vertices, the extension
of the algorithm is straightforward. Essentially, the relevant
model weights simply replace the specific XY weights, WXY .
For models with imaginary-time loop updates, like the spin-
1/2 Heisenberg model, Eq. (A7) remains fully valid with the
same procedure of counting the number of boundary loops,
NA

b . One expects that all SU(N )-invariant models (with general
N ) will have this same form of highly efficient estimator, which
should facilitate the accurate estimation of Rényi entropies
in these cases. More generally, in equal-weight models with
other imaginary-time structures, such as branching clusters in
the case of the transverse-field Ising model [43,44], these loop
counters will simply be replaced by the numbers of analogous
branching clusters. Thus, we expect the extended ensemble
ratio trick to straightforwardly produce an efficiency gain in a
wide variety of important models.

The second class of models is the case of reduced symmetry,
where the assumption of equal vertex weights is no longer
valid. To incorporate this generalization in the derivation, we
avoid the specialization to the XY model by skipping Eq. (A3).
The derivation from this point on continues without change
until Eq. (A4) which is modified to

ZA =
∑

l

1

2Nv (l)

∑
vA(l)

W [vA(l)]
∑

s[vA(l)]

1, (A8)

where we simply moved the vertex weight inside the second
sum.

The discussion following this equation is concerned with
showing the independence of the partition label s[vA(l)] on
boundary conditions A. Let us stress that as long as this
property holds for a model in question, the framework of the
extended ensemble ratio trick applies. In general, the proof of
this property is achieved through the demonstration that for
any segment partition of a vertex configuration vA(l), there
exists a configuration v′A′

(l) with exactly the same partition.
For the XY model, the key point in the proof revolves around
the properties of the vertex set displayed in Fig. 5. Namely, it
is the property that the only move that switches the leg color is
the one that changes the vertical directionality of propagation
as well. Let us note that due to this feature, the whole
argument is oblivious to the type of lattice the Hamiltonian is
defined on, thus, making the estimator Eq. (A7) applicable to
models on lattices beyond the bipartite one considered in the
study. Furthermore, the above-mentioned set of vertices is not
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limited to the XY model. Indeed, it is common to all XXZ

models (including the Heisenberg model) in a magnetic field
or without it. Alternatively, for a different class of models
defined on a different set of vertices, it is possible to construct
an argument not relying on the aforementioned feature of the
XXZ vertices. However, it is most likely to depend on the
underlying lattice. For instance, on a bipartite lattice the fact
that an even number of lateral moves is required to get back
to the same spin can be used for vertex sets in which the only
moves that change the leg color are the ones that move onto
the neighboring spins (“switch” moves).

Assuming that the existence of a common label s[vA(l)]
independent of the boundary conditions can be proven, it is
always possible to switch the order of the two inner sums in
Eq. (A8) such that the two outer sums iterate over the same
configuration space of segment partitions:

ZA =
∑

l

1

2Nv (l)

∑
s(l)

∑
vA[s(l)]

W {vA[s(l)]}. (A9)

As before, Eq. (A9) is used to extract the weight of a
segment configuration. This time however, the vertices in the
most inner sum have unequal contributions to the weight of a
given partition. Since it is the only difference, the argument
following Eq. (A5) can be reused, thus leading to a new
expression for the weight of a segment partition:

WA[s(l)] = 1

2Nv (l)

∑
vA[s(l)]

W {vA[s(l)]}. (A10)

This sum iterates over 2NA
b [s(l)]+Ni [s(l)] different vertex con-

figurations compatible with boundary conditions defined by
region A.

Last, we substitute this weight into Eq. (A1) to obtain a
generalized version of the estimator Eq. (A7):

ZA′

ZA

=
〈∑

vA′ [s(l)] W
A′ {vA′

[s(l)]}∑
vA[s(l)] W

A{vA[s(l)]}
〉
A

. (A11)

Note that Eq. (A7) can be recovered from this expression for
any model with the vertex weights independent on a particular
vertex configuration, that is W {vA[s(l)]} = W (l). For instance,
this is the case for the Heisenberg model.

In practice, the cost of a straightforward evaluation of
this estimator is likely to overcome the gains associated with
dramatically improved statistics observed for the XY model
(Fig. 7). This consideration is based on two complications that
were not present in the simplified version, Eq. (A7). First of all,
instead of just counting the number of closed loops compatible
with the given boundary conditions, it is now necessary to

iterate through all vertex configurations generated by flipping
all combinations of those loops in order to calculate the sum
in Eq. (A11). Second, unlike in the case for models with equal
vertex weights for which only open segments are required
to be traced out, in a more general case the inner segments
need to be identified as well. Furthermore, those segments can
also be used to generate vertex configurations as mentioned in
the previous point. Since the number of vertex configurations
is exponential in the number of the inner segments, it is
expected that the performance of the generalized estimator
is prohibitively dependent on the simulation temperature.
Further studies are required to determine the stringency of
those complications and whether they can be overcome in a
general case.

APPENDIX B: DATA AND FITS

In order to extract the coefficients of interest, we subject
our mutual information measurements to a thorough fitting
analysis (see Tables I and II). We start by establishing the
consistency of the data with the scaling behavior of Eq. (4)
from the main text. This is achieved via fits 1 and 3 where the
logarithmic coefficient as well as the geometric constant are
set to the predicted values. By comparing the χ2

k of those fits,
we note the importance of the finite-size correction a4/L. We
then proceed with a four-parameter fit (fit 6) in an attempt to
simultaneously extract both coefficients of interest. However,
a dramatic increase in the error bars of the extracted values
signals an overfitting, caused by a limited range of available
system sizes. Instead, three-parameter fits (4 and 5) with the
a4/L term included are performed by setting either a2 or a3

to their respective putative values; these fits provide values
in an excellent agreement with the theory [19]. We also note
from three-parameter fit 2 that disregarding the a4/L term
has a much larger negative effect on the extracted values of
a3 than on the values of a2. Such effect is consistent with
a stronger relative contribution from the logarithmic term
to the total value of the mutual information, as compared
to that from the constant term. Thus we conclude that with
this data set, we can extract the log coefficient without any
assumptions about the theoretical values of the coefficients,
since fit 2 (with no theoretical assumptions or 1/L correction)
results in a2 values that are consistent with those extracted
from fit 5 (which includes a 1/L correction at the cost of
assuming the theoretical value of a3). However, to accurately
extract the geometric constant from these data, we must
include a 1/L correction term and thus fix a2 to its theoretical
value.

TABLE I. Mutual information values I2 used in Fig. 4 from the main text.

L

LA
x /L 8 10 12 16 20 24 28 32

1/8 3.227(3) 5.183(7) 6.83(1) 8.39(1)
2/8 3.538(5) 4.583(7) 5.52(1) 6.379(9) 7.18(2) 7.99(2) 8.73(2)
3/8 3.679(6) 5.66(1) 7.34(2) 8.89(2)
4/8 3.720(6) 4.27(1) 4.75(1) 5.69(1) 6.56(1) 7.38(2) 8.17(3) 8.92(2)
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TABLE II. Fitting coefficients, labeled as ai , extracted from Table I with the help of various functional forms. The last column shows the
χ 2 per degree of freedom that can be used as a measure of the goodness of fit. γord refers to the theoretical value of the geometric constant
which is aspect ratio dependent. The expected theoretical value [19] for a2 is 1, while for a3 they are 0.672, 0.851, 0.921, 0.941 as arranged
in the order from the smallest to the largest aspect ratio correspondingly.

Fit no. Fitting function LA
x /L a1 a2 a3 a4 χ 2

k

1 a1L + ln(Lρs/csw) + 2γord 1/8 0.1561(4) 3.7
2/8 0.155(1) 23.0
3/8 0.155(2) 26.0
4/8 0.155(1) 11.0

2 a1L + a2ln(Lρs/csw) + 2a3 1/8 0.157(2) 1.01(3) 0.663(4) 0.85
2/8 0.155(2) 1.06(3) 0.806(4) 0.67
3/8 0.156(2) 1.05(3) 0.876(3) 0.27
4/8 0.158(3) 1.02(4) 0.899(6) 0.73

3 a1L + ln(Lρs/csw) + 2γord + a4/L 1/8 0.1567(2) − 0.10(2) 0.42
2/8 0.1569(2) − 0.51(4) 0.64
3/8 0.1572(2) − 0.51(3) 0.2
4/8 0.1570(4) − 0.52(6) 0.89

4 a1L + ln(Lρs/csw) + 2a3 + a4/L 1/8 0.157(1) 0.67(2) − 0.1(2) 0.82
2/8 0.157(1) 0.84(2) − 0.4(2) 0.76
3/8 0.158(1) 0.91(2) − 0.4(3) 0.32
4/8 0.159(2) 0.91(2) − 0.1(3) 0.75

5 a1L + a2ln(Lρs/csw) + 2γord + a4/L 1/8 0.157(2) 1.00(3) − 0.10(4) 0.81
2/8 0.158(2) 0.99(3) − 0.50(5) 0.78
3/8 0.158(2) 0.99(3) − 0.49(4) 0.33
4/8 0.161(3) 0.95(4) − 0.47(7) 0.82

6 a1L + a2ln(Lρs/csw) + 2a3 + a4/L 2/8 0.145(8) 1.4(3) 0.6(2) 3.0(2) 0.57
4/8 0.140(9) 1.6(3) 0.5(2) 4.0(2) 0.44
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