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We study a system of interacting spinless fermions in one dimension that, in the absence of interactions,
reduces to the Kitaev chain [Kitaev, Phys. Usp. 44, 131 (2001)]. In the noninteracting case, a signal of
topological order appears as zero-energy modes localized near the edges. We show that the exact ground
states can be obtained analytically even in the presence of nearest-neighbor repulsive interactions when
the on-site (chemical) potential is tuned to a particular function of the other parameters. As with the
noninteracting case, the obtained ground states are twofold degenerate and differ in fermionic parity. We
prove the uniqueness of the obtained ground states and show that they can be continuously deformed to
the ground states of the noninteracting Kitaev chain without gap closing. We also demonstrate explicitly
that there exists a set of operators each of which maps one of the ground states to the other with opposite
fermionic parity. These operators can be thought of as an interacting generalization of Majorana edge zero
modes.
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I. INTRODUCTION

In recent years, Majorana zero modes have been in the focus
of research in condensed matter physics [1–4]. Experimental
signatures of Majorana zero modes have been observed
in the tunneling conductance in hybrid superconductor-
semiconductor nanowire systems [5–8]. However, an unam-
biguous identification of Majorana particles remains open
[9,10]. Very recently, an important step [11] toward such an
identification was taken by scanning tunneling microscopy
experiments on ferromagnetic atomic chains on a supercon-
ductor, which allowed us to obtain spatially resolved signatures
showing localization of the zero modes at the edges, as
predicted by theory.

The prototypical toy model possessing Majorana zero
modes is the Kitaev chain with open boundaries [12], a
one-dimensional tight-binding model for spinless fermions in
the presence of p-wave superconducting pairing. This model
possesses a topological phase with twofold-degenerate ground
states that cannot be distinguished by any local order param-
eter. There exist zero-energy modes that commute with the
Hamiltonian and anticommute with the fermionic parity; these
are the Majorana zero modes. They are exponentially localized
near the boundaries. As is well known (see, e.g., Ref. [13]),
the Kitaev chain can be mapped to the one-dimensional
transverse-field Ising chain via a nonlocal Jordan-Wigner
transformation. In the resulting spin variables, the topological
phase reduces to the ordered phase showing spontaneous mag-
netization while the fermionic parity maps to a string of spin
operators.

The recent surge of interest in condensed-matter re-
alizations of Majorana fermions includes the investiga-
tion of the effects of disorder [14–18] or dimerization
[19] on the topological phase, the study of nanostructures
possessing Majorana zero modes [20–24], and strongly
correlated systems showing Kondo physics [25–30]. Further-
more, generalizations to higher symmetries including super-

symmetry [31–35] and parafermion modes were analyzed
[13,36–40].

Here we focus on interaction effects. Motivated by the
proposal [41,42] to realize systems hosting Majorana zero
modes in semiconducting nanowires and the subsequent
experimental works [5–9], most previous studies of interaction
effects have focused on nanowire setups. This included the
original spinful nanowire system with spin-orbit coupling,
a Zeeman field and proximity to a superconductor [43–45],
similar multiband nanowires [46], and effectively spinless
systems [15,18] including helical wires [47] and two-chain
ladders [48]. Furthermore, interactions directly in the Kitaev
chain were studied [34,35,43,49–52], which were also shown
to be implementable in an array of Josephson junctions [49],
a realization allowing to reach strong interaction strengths
as well as good control of the parameters. From all these
works, a physical picture emerged revealing two main effects
of interactions: On the one hand, interactions suppress the bulk
gap and thus decrease the stability of the topological phase,
while on the other hand, repulsive interactions broaden the
chemical-potential window over which Majorana zero modes
exist. Which of these two effects dominates or is more relevant
depends on the specific realization at hand. General aspects of
interaction effects on topological phases were also analyzed in
Refs. [53–59].

In this article, we further investigate the Kitaev chain in
the presence of repulsive interactions between the spinless
fermions. Employing the Jordan-Wigner transformation, this
model can be mapped to an XYZ Heisenberg chain, allowing
us to obtain a wealth of results on the phase diagram [47,49].
Here, however, we are not interested in the phase diagram
but directly in the twofold-degenerate ground states in the
topological phase. Using classic results in the spin chain
literature [60–62], we find that the exact ground states of the
model can be obtained when the chemical potential is tuned
to a particular function of the other parameters: the hopping
amplitude, the p-wave pairing gap, and the strength of the
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repulsive interaction. In this special case, the ground states
can be written in a simple product form. The ground-state
degeneracy is a necessary but not sufficient condition for
topological order and the existence of Majorana zero modes.
To prove the existence of topological order, we show that
there exists a smooth path that interpolates between the
solvable Hamiltonian and the noninteracting Kitaev chain in
the topological phase, along which the ground states remain
unchanged. We also prove rigorously that the spectral gap
above the ground states does not vanish along the entire path.
Then, thanks to the results of Fidkowski and Kitaev [54], it
follows that the topological order of the noninteracting Kitaev
chain persists along the path. To provide further evidence
for the topological order, we prove the existence of a set
of operators each of which maps one of the ground states
to the other with the opposite fermionic parity. The operators
obtained (i) are Hermitian, (ii) anticommute with the fermionic
parity, and (iii) are localized near the edges. Therefore, they can
be regarded as an interacting generalization of the Majorana
zero modes. In fact, in the absence of the interactions,
they exactly commute with the Hamiltonian and reduce to
the standard Majorana zero modes in the original Kitaev
chain.

The paper is organized as follows. In Sec. II, we give a
precise definition of the model and list the symmetries of
its Hamiltonian. In Sec. III, we first introduce the notion of
frustration-free Hamiltonians. Then we show how one can
find the ground states of a chain of arbitrary length from
the exact results of the two-site problem. The expressions
for the ground states are also given explicitly. In Sec. IV,
we discuss the topological order of the present system. We
present a theorem about the continuous deformation between
the interacting and noninteracting Kitaev chains that share
the same ground states. We show how the theorem follows
from a lemma about the auxiliary free-fermion problem.
We also present the proof of the lemma and derive explicit
expressions for the Majorana zero modes in the auxiliary
free-fermion problem. Concluding remarks are presented in
Sec. V. In Appendix A, we summarize the relation between
Majorana and complex fermions. The explicit expression for
the Hamiltonian in terms of Majorana fermions is also given.
In Appendix B, we show the mapping between the fermionic
Hamiltonian and the XYZ chain in a magnetic field. We also
show how the frustration-free condition and the ground states
obtained translate into the spin language. In Appendix C,
we present a derivation of the inequality used in Sec. III.
A few examples of correlation functions in the ground states
are also provided. In Appendix D, we extend the theorem to
the case in which the couplings are spatially inhomogeneous.
In Appendix E, we present a detailed exposition of the
eigenvalue problem related to the auxiliary free-fermion
problem.

II. MODEL

We consider a system of spinless fermions on a chain of
length L with open boundaries. For each site j = 1,2, . . . ,L,
we denote by c

†
j and cj the creation and the annihilation

operators, respectively. As usual, the number operators are
defined by nj := c

†
j cj .

A. Hamiltonian

We consider the Hamiltonian of interacting spinless
fermions described by

H =
L−1∑
j=1

[−t(c†j cj+1 + c
†
j+1cj ) + �(cj cj+1 + c

†
j+1c

†
j )]

− 1

2

L∑
j=1

μj (2nj − 1) + U

L−1∑
j=1

(2nj − 1)(2nj+1 − 1),

(1)

where t is the hopping amplitude and � is the p-wave paring
gap, which is assumed to be real. Without loss of generality,
we can assume that t � 0 because the case with t�0 can be
achieved by local unitary transformations: cj → −i(−1)j cj .
We can further assume that � � 0 because the case with
��0 can be achieved by cj → icj for all j . Here, μj is the
on-site (chemical) potential and U � 0 is the strength of the
nearest-neighbor repulsive interaction. It is convenient, for
later purposes, to keep a site-dependent on-site potential μj .
In the absence of the interaction (U = 0), the model reduces
to the Kitaev chain [12], in which Majorana edge zero modes
occur provided that it is in the topological phase. Thus one can
think of the interacting system as Majorana fermions with a
quartic interaction. An explicit expression for the Hamiltonian
in terms of Majorana fermions is given in Appendix A. One can
also express the Hamiltonian in terms of spin-1/2 operators
via a Jordan-Wigner transformation. The corresponding model
turns out to be the XYZ spin chain in a magnetic field (see
Appendix B for more details).

B. Symmetries

Let us first consider the symmetries of the Hamiltonian H .
Because of the presence of the pairing term, H does not con-
serve the total fermion number F :=∑L

j=1 nj , i.e., [H,F ] �=0.
However, the fermion number modulo 2 is conserved,
[H,(−1)F ] = 0. The Hamiltonian respects time-reversal sym-
metry, i.e., it is invariant under complex conjugation.

In addition, when μj = 0 for all j , the Hamiltonian
is invariant under the charge conjugation operation cj →
(−1)j c†j . More precisely, H commutes with the following
unitary operator:

P =
L∏

j=1

[cj + (−1)j c†j ]. (2)

We also note that this particular case is integrable, because
it can be mapped to the XYZ spin chain (without magnetic
fields), which was solved by Baxter [63]. For the case with
nonvanishing μj ’s, the Hamiltonian H is not invariant under
the above charge conjugation. However, we can at least say
that H with {μj }Lj=1 and that with {−μj }Lj=1 have the same
spectrum. In the following, for simplicity, we assume that
μj � 0 for all j .

III. EXACT GROUND STATES

In this section, we show that the Hamiltonian H is
frustration-free when the μj ’s are tuned to a particular function
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of the other parameters (t,�,U ), in which case the exact
ground states are easy to obtain analytically.

Consider the case in which μ1 = μL = μ/2 and μj = μ

(j = 2,3, . . . ,L − 1), i.e., the on-site potentials at the bound-
ary sites are half the bulk ones. In this case, the Hamiltonian
takes the form

H =
L−1∑
j=1

hj , (3)

where

hj = −t(c†j cj+1 + c
†
j+1cj ) + �(cj cj+1 + c

†
j+1c

†
j )

− μ

2
(nj + nj+1 − 1) + U (2nj − 1)(2nj+1 − 1). (4)

Since [hj ,hk] �= 0 if |j − k| = 1, the local Hamiltonians
cannot be diagonalized simultaneously. However, there may
exist some special values of μ at which the projection onto
the ground-state subspace P0 satisfies hjP0 = ε0P0 for all j ,
where ε0 is the smallest eigenvalue of hj . In other words,
the ground states of H minimize each hj independently. In
such cases, the Hamiltonian H is said to be frustration-free.
Many known exactly solvable models fall into this category.
Examples include the Affleck-Kennedy-Lieb-Tasaki model
[64], the Rokhsar-Kivelson model [65], and the Kitaev toric
code model [66].

To search for the condition under which the Hamiltonian (3)
is frustration-free, we shall first consider the two-site problem,
i.e., deriving the spectrum and the eigenstates of hj . Let us
ignore, for the moment, the region outside the bond (j,j + 1).
Then the Hilbert space for the problem is spanned by the four
states: | ◦ ◦ 〉 := |vac〉, | • ◦ 〉 := c

†
j |vac〉, | ◦ • 〉 := c

†
j+1|vac〉,

and | • • 〉 := c
†
j c

†
j+1|vac〉, where |vac〉 is the vacuum state

such that ck|vac〉 = 0 for any k. Since the local Hamiltonian hj

commutes with the fermionic parity (−1)F , we can deal with
even and odd sectors separately. In the even sector spanned by
| ◦ ◦ 〉 and | • • 〉, hj is expressed as

| ◦ ◦ 〉 | • • 〉

h
(even)
j =

(
U + μ/2 −�

−� U − μ/2

)
.

(5)

An unnormalized ground state of h
(even)
j and the corresponding

eigenvalue are

∣∣ψ (even)
0

〉 = | ◦ ◦ 〉 + cot
θ

2
| • • 〉, (6)

ε
(even)
0 = U −

√
�2 + (μ/2)2, (7)

respectively, where θ = arctan(2�/μ), which is assumed to
be in [0,π ]. Note that |ψ (even)

0 〉 is nondegenerate as long as
either � or μ is nonvanishing. Similarly, in the odd sector
spanned by | • ◦ 〉 and | ◦ • 〉, hj is expressed as

| • ◦ 〉 | ◦ • 〉

h
(odd)
j =

(−U −t

−t −U

)
.

(8)

An unnormalized ground state of h
(odd)
j and the corresponding

eigenvalue are ∣∣ψ (odd)
0

〉 = | • ◦ 〉 + | ◦ • 〉, (9)

ε
(odd)
0 = −(U + t), (10)

which is nondegenerate except when t = 0.
The absolute ground state of hj can be obtained by

comparing ε
(even)
0 and ε

(odd)
0 , which become degenerate if

μ = μ∗ := 4

√
U 2 + tU + t2 − �2

4
. (11)

Note that though μ = −μ∗ is also allowed, we have chosen
the positive μ for simplicity (see the discussion in Sec. II B).
At μ = μ∗, any linear combination of |ψ (even)

0 〉 and |ψ (odd)
0 〉 is

also a ground state of hj . If we take the following particular
combinations, we see that they are disentangled:

|ψ (±)
0 〉 = |ψ (even)〉 ±

√
cot

θ∗

2
|ψ (odd)〉

= (1 ± αc
†
j )(1 ± αc

†
j+1)|vac〉

= exp(±αc
†
j ) exp(±αc

†
j+1)|vac〉, (12)

where θ∗ = arctan(2�/μ∗) and α = √
cot(θ∗/2). We recall

that θ ∈ [0,π ] has been assumed. In the entire Hilbert space,
the ground states of hj at μ = μ∗ are highly degenerate,
because any state of the form

f (c†1, . . . ,c
†
j−1) e±αc

†
j e±αc

†
j+1 g(c†j+2, . . . ,c

†
L)|vac〉 (13)

is a ground state of hj , where f and g are arbitrary polynomials
in c

†
1, . . . ,c

†
j−1 and c

†
j+2, . . . ,c

†
L, respectively.

In this way, we find that the ground states of hj at
μ = μ∗ can be factorized into the product of two states. This
observation hints at the possibility that we may obtain exact
ground states of H with μ = μ∗ for any L. In fact, H is
frustration-free at μ = μ∗. To see this, consider the states of
the form

|�(±)
0 〉 = 1

(1 + α2)L/2
e±αc

†
1e±αc

†
2 · · · e±αc

†
L |vac〉. (14)

Here the coefficient has been introduced so that
〈�(±)

0 |�(±)
0 〉=1. Since exp(±αc

†
k) commutes with hj unless

k �= j,j + 1, one can easily verify that |�(±)
0 〉 minimizes each

hj independently at μ = μ∗. Therefore, H is frustration-free
at μ = μ∗, and |�(±)

0 〉 are its exact ground states with energy
[67],

E0 = −(L − 1)(U + t). (15)

A similar factorization of the ground states has been found
in spin-1/2 chains in a magnetic field [60–62]. In fact, the
condition under which the Hamiltonian is frustration-free is
the same as the exactly solvable condition of the XYZ spin
chain in a magnetic field (see Appendix B for more details).

It should be noted that |�(±)
0 〉 are not orthogonal and are

not eigenstates of the fermionic parity (−1)F , because each
|�(±)

0 〉 contains both even and odd numbers of fermions. The
ground states that are eigenstates of (−1)F can be obtained
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by taking appropriate linear combinations of |�(±)
0 〉. Let

us decompose the entire Hilbert space H as H = H(even) ⊕
H(odd), where H(even/odd) consists of the states with even/odd
numbers of fermions. Then, noting that [F,c

†
j ] = c

†
j and hence

(−1)F exp(±αc
†
j ) = exp(∓αc

†
j )(−1)F , we find that the states∣∣�(even)

0

〉 = |�(+)
0 〉 + |�(−)

0 〉 ∈ H(even), (16)∣∣�(odd)
0

〉 = |�(+)
0 〉 − |�(−)

0 〉 ∈ H(odd), (17)

are orthogonal to each other. As we will prove in the next
section, there is no other ground state of H with μ = μ∗ except
for these two states. Furthermore, for large L, they cannot be
distinguished by any local measurement. To illustrate this,
let us consider the expectation values of local operators in
|�(even/odd)

0 〉. For notational convenience, we write

〈· · · 〉par :=
〈
�

(par)
0

∣∣ · · · ∣∣�(par)
0

〉〈
�

(par)
0

∣∣�(par)
0

〉 , (18)

where par is either even or odd. Let Oe/Oo be a local operator
consisting of an even/odd number of creation and annihilation
operators. We assume that Oe/Oo is supported on a set of
lattice sites j1 < j2 < · · · < jk with jk − j1 = 	 − 1. Noting
that {Oo,(−1)F } = 0 and using the relations (−1)F |�(even)

0 〉 =
|�(even)

0 〉 and (−1)F |�(odd)
0 〉 = −|�(odd)

0 〉, one finds

〈Oo〉even = 〈Oo〉odd = 0 (19)

for any Oo. On the other hand, for Oe, one finds that the
difference between 〈Oe〉even and 〈Oe〉odd is bounded from
above as follows:

|〈Oe〉even − 〈Oe〉odd| � C ‖Oe‖ e−L/ξ , (20)

where ‖Oe‖ denotes the operator norm of Oe,

ξ = 1

ln |η| with η = 1 + cot(θ∗/2)

1 − cot(θ∗/2)
, (21)

and the coefficient C is given by

C = 2
1 + |η|	
1 − 1/η2

. (22)

Clearly, the result shows that the states |�(even)
0 〉 and |�(odd)

0 〉
cannot be distinguished by any local measurement for large
L. A detailed proof of the inequality Eq. (20) as well as some
explicit examples are given in Appendix C.

Let us finally comment on the location of the solvable case
Eq. (11) in the phase diagram. The phase diagram of the model
described by the Hamiltonian Eq. (1) with � = t and μj =
μ (j = 1,2, . . . ,L) has been worked out previously [47,49];
Fig. 1 shows the phase diagram for this particular case. Since
the spectrum of the Hamiltonian is invariant under sending
μ → −μ, we only show the region where μ/t � 0. The origin
(U/t,μ/t) = (0,0) corresponds to the original noninteracting
Kitaev chain, which is in a topological phase. When � = t ,
the frustration-free condition reads

μ = 4
√

U 2 + tU, (23)

which is shown by the red (dashed) line in Fig. 1. Clearly,
this line is in the topological phase. We note that both the

-1 0 1 2
U/t

0

2

4

µ/
t (trivial phase)

topological

IC
DW

insulator

band insulator

phase
Mott

µ=4 U2+tU

FIG. 1. (Color online) Phase diagram of the interacting Kitaev
chain Eq. (1) with � = t and μj = μ. The region μ/t < 0 is not
shown since the phase diagram is invariant under sending μ → −μ.
The red (dashed) line indicates the frustration-free line Eq. (23), along
which the exact ground states can be obtained in closed form. ICDW
stands for the phase in which an incommensurate charge-density wave
state is a ground state.

frustration-free line and the phase boundary between the trivial
and topological phases approach μ = 4U in the infinite-U
limit. In this limit, the model can be mapped to a model of
hard-core spinless fermions, which is solvable using the free-
fermion method [68].

IV. TOPOLOGICAL ORDER

In this section, we discuss the topological order of the
ground states obtained in the previous section. We explicitly
construct a one-parameter family of Hamiltonians that inter-
polates between interacting and noninteracting Kitaev chains,
the latter of which exhibits topological order. The spectral
gap above the ground state and the existence of Majorana
zero modes that are localized around the edges are proven
rigorously.

A. Smooth path connecting interacting and
noninteracting Hamiltonians

Let us introduce the Hamiltonian that interpolates contin-
uously between the interacting and noninteracting model. As
discussed in the preceding section, the ground states |�(±)

0 〉
depend only on θ∗ = arctan(2�/μ∗) at μ = μ∗ (frustration-
free case). Therefore, they are also ground states of the
following one-parameter family of the Hamiltonians:

H (s) =
L−1∑
j=1

hj (s) with s � 0, (24)

where the local Hamiltonians are given by

hj (s) = −(c†j cj+1 + H.c.) + (1 + s) sin θ∗(cj cj+1 + H.c.)

− (1 + s) cos θ∗(nj + nj+1 − 1)

+ s

2
(2nj − 1)(2nj+1 − 1) +

(
1 + s

2

)
. (25)

Here we have set t = 1. The last constant was added so
that the ground-state energy is equal to zero. Since we have
assumed non-negative � and μ∗, θ is in [0,π/2]. When
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μ = μ∗, the original Hamiltonian H in Eq. (3) is the same
as H (2U ) up to a trivial constant, which can be verified by
direct calculation. On the other hand, since the penultimate
term in Eq. (25) vanishes when s = 0, H (0) reduces to the
noninteracting Kitaev Hamiltonian with pairing �/(1 + 2U )
and on-site potential μ∗/(1 + 2U ), which we denote by H0 in
the following. Thus we see that the Hamiltonians H and H0

are smoothly connected to each other. Along the entire path
0 � s � 2U , the ground states remain unchanged [69]. This
suggests that the two Hamiltonians H and H0 are in the same
topological phase as long as the energy gap does not close
along the path.

Now we show the existence of an energy gap of H (s).
Toward that end, we prove the following:

Theorem. For all s � 0 and θ∗ �= 0, (i) the ground state of
the Hamiltonian H (s) is unique up to double degeneracy, and
(ii) H (s) has a uniform (independent of the length of the chain)
spectral gap above the ground state.

The proof of the theorem relies on the following:
Lemma. For θ∗ �= 0, (i) the ground state of the noninter-

acting Hamiltonian H (0) is unique up to double degeneracy,
and (ii) H (0) has a uniform (independent of the length of the
chain) spectral gap above the ground state.

This Lemma can be proven by directly computing the
spectrum of H (0), which will be given in the next subsection.
We shall now show how the theorem follows from the Lemma.

Proof of Theorem. It is convenient to introduce the following
operator:

Qj = 1

2
cos

θ∗

2
(cj + cj+1)(c†j − c

†
j+1)(c†j + c

†
j+1)

+ 1

2
sin

θ∗

2
(c†j − c

†
j+1)(cj + cj+1)(cj − cj+1), (26)

which is a sum of triple products of fermion operators [70]. In
terms of Qj , hj (s) in Eq. (25) is rewritten as

hj (s) = QjQ
†
j + (1 + s)Q†

jQj , (27)

which can be verified by a tedious but straightforward
calculation. The above form of hj (s) is manifestly positive-
semidefinite for all s � −1. It is then clear that hj (s) � hj (0)
for s � 0. Here, we write A � B to denote that A − B is
positive-semidefinite [71]. Since the inequalities for the local
Hamiltonians hold for all j = 1,2, . . . ,L − 1, we arrive at the
inequality

H (s) � H (0) for s � 0. (28)

The states |�(±)
0 〉 are annihilated by both Qj and Q

†
j for all j ,

and hence they are ground states of H (s).
We shall next compare the energy eigenvalues of H (s)

and H (0). Let En(s) be the nth eigenvalue of H (s). Here
the energy eigenvalues are arranged in nondecreasing order:
0 = E1(s) = E2(s) � E3(s) � · · · � En(s) � · · · . Note that
H (s) has at least two zero-energy ground states. It follows
from the min-max principle [72] that the inequality Eq. (28)
implies En(s) � En(0) for all n. Therefore, the spectral gap
is a nondecreasing function of s, and the eigenstates of H (s)
continuously connected to those of H (0) with positive energy
never join the zero-energy manifold with increasing s. This,
together with the Lemma, proves the theorem. �

Several comments are in order. Our theorem implies that
the interacting Hamiltonian H (2U ) and the noninteracting one
H (0) are adiabatically connected to each other without gap
closing. Thanks to the work of Fidkowski and Kitaev [54],
this suffices to show that H (2U ) is topologically nontrivial,
because the noninteracting H (0) is in a topological phase.
However, some care is needed here. As shown in Refs. [53,54],
the classification of free-fermion topological phases breaks
down in one dimension in the presence of interactions.
The noninteracting Kitaev chain with time-reversal symmetry
belongs to the BDI symmetry class, different phases of which
are characterized by Z integers. This Z classification is broken
down to Z8 in the presence of interactions. One might think
that there is a possibility that a topologically nontrivial phase is
adiabatically connected to the trivial phase with no Majorana
edge zero modes via interactions. This is, however, not the case
here, because the topological index is basically the number
of Majorana edge modes localized at one end of the chain.
For H (0), the number of Majorana edge zero modes at each
edge is 1, which is apparently different from 0 modulo 8.
Therefore, the one-parameter family of H (s) with s � 0 is
in a topologically nontrivial phase, which is adiabatically
connected to the one in the noninteracting classification.

We also comment on the stability of the spectral gap
against small perturbations. Let us first consider the effect
of the inhomogeneity arising from the on-site potential term.
As noted in Sec. III, the on-site potentials at the boundary
sites are half the bulk one in the Hamiltonian Eq. (3). To
see whether the spectral gap is robust against the perturbation
that restores the homogeneity to some extent, consider the
perturbed Hamiltonian H ′ = H + V with μ = μ∗ and

V = −δμ

2
(n1 + nL), (29)

where δμ is assumed to be positive. Let En(2U,δμ) be
the nth eigenvalue of H ′. The condition for the existence
of the spectral gap reads E3(2U,δμ) > E2(2U,δμ). From
Weyl’s theorem (see Theorem 4.3.1 in Ref. [72]), one finds
En(2U ) − δμ � En(2U,δμ) � En(2U ) for all n. This implies
that H ′ has a spectral gap if δμ < E3(2U ). Since our Theorem
ensures that E3(2U ) is strictly positive, we conclude that the
spectral gap is robust against V for small enough δμ. A more
quantitative estimate is possible, because the lower bound for
E3(2U ) is obtained as E3(2U ) � E3(0) = 2(1 − cos θ∗) in the
next subsection. Using this value, we find that the spectral gap
of H ′ is nonzero provided

δμ < 2

(
1 −

√
(1 + 2U )2 − �2

1 + 2U

)
. (30)

A more interesting question is whether the spectral gap of H (s)
is robust against small but global perturbations. For quantum
spin systems, rigorous perturbation theories for the stability of
gapped ground states have been developed [73,74]. Though
the existing methods usually assume translation invariant
Hamiltonians and do not immediately apply to the present
system, we expect that some modification of them is likely
to apply particularly to the region around the point (�,U ) =
(0,0) corresponding to the classical Ising chain. A thorough
analysis is, however, beyond the scope of the present study and
is left for future work.
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Finally, we comment on the generalization of our model
to the case in which the couplings are allowed to vary
spatially. One can, in fact, construct such a model without
changing the ground states of the Hamiltonian H (s). The
key to the construction of such a model is to note that a
sum of operators each of which is a polynomial in Qj and
Q

†
j (j = 1,2, . . . ,N − 1) annihilates the states |�(±)

0 〉. If this
sum is positive-semidefinite, then these states are the lowest
eigenstates of the sum with zero eigenvalue. One such example
is the following Hamiltonian:

H inh =
L−1∑
j=1

(αjQjQ
†
j + βjQ

†
jQj ), (31)

where αj and βj are arbitrary positive numbers. Each local
interaction can be either repulsive or attractive, depending on
βj/αj . More precisely, it is repulsive (attractive) if βj/αj > 1
(0 < βj/αj < 1). For the above Hamiltonian, we can prove a
result similar to the theorem above, and hence the presence
of topological order. A precise statement and its proof are
provided in Appendix D. We emphasize that the above example
demonstrates that the couplings in the Hamiltonian need not
necessarily be uniform to obtain topological order.

B. Proof of Lemma

Let us prove the Lemma by explicitly computing the
spectrum of H (0). Though H (0) is quadratic in c and c†,
it is not quite straightforward to diagonalize it because of
the boundaries. Remarkably, however, we find that the entire
spectrum of H (0) can be obtained analytically. To show
this, we first rewrite H (0) in terms of Majorana operators
aj = cj + c

†
j and bj = (cj − c

†
j )/i, the properties of which

are summarized in Appendix A. The Hamiltonian reads

H (0) = i

2

L∑
j,k=1

Bj,kajbk + (L − 1), (32)

where the real matrix B is given by

B = −

⎛⎜⎜⎜⎜⎝
c 1 − s

1 + s 2c 1 − s

. . .
. . .

. . .
1 + s 2c 1 − s

1 + s c

⎞⎟⎟⎟⎟⎠ (33)

with s = sin θ∗ and c = cos θ∗. Here, matrix elements that are
zero are left empty. Since the matrix B is non-Hermitian,
it may not be diagonalizable, but it can be written in the
singular-value decomposition (SVD) form B = U�V T with
� = diag(ε1,ε2, . . . ,εL), where orthogonal matrices U and V

diagonalize BBT and BTB, respectively. The singular values
εn (n = 1,2, . . . ,L) can be obtained as non-negative square
roots of the eigenvalues of BBT.

To see the relation between these singular values and single-
particle energies of H (0), we introduce the following set of
Majorana operators:

a′
n =

L∑
j=1

Uj,naj , b′
n =

L∑
j=1

Vj,nbj , (34)

which satisfy (a′)†j = a′
j , (b′)†j = b′

j , {a′
j ,a

′
k} = {b′

j ,b
′
k} =

2δj,k , and {a′
j ,b

′
k} = 0 for all j,k = 1,2, . . . ,L. It then follows

from the SVD of B that H (0) is rewritten as

H (0) =
L∑

n=1

εna
′
nb

′
n + (L − 1) (35)

=
L∑

n=1

εn

(
f †

n fn − 1

2

)
+ (L − 1), (36)

where fn := (a′
n + ib′

n)/2 are complex fermions satisfying
{fm,f

†
n } = δm,n. Therefore, the set of singular values of B

is exactly the same as the single-particle spectrum of H (0).
To get εn, we need to diagonalize BBT. Since this matrix is
pentadiagonal, a direct diagonalization by analytical means is
not feasible. In the present case, however, something special
happens. In fact, we have

BBT = C2, (37)

where C is a real symmetric and tridiagonal matrix given by

C =

⎛⎜⎜⎜⎜⎝
1 − s c

c 2 c

. . .
. . .

. . .
c 2 c

c 1 + s

⎞⎟⎟⎟⎟⎠. (38)

A similar factorization was found by Truong and Peschel in the
study of the Hamiltonian limit of the corner transfer matrix of
the same model [75]. Because of the presence of the boundary
terms, the diagonalization of C is still nontrivial, but it can be
done analytically. The details are given in Appendix E. The
exact eigenvalues of C are as follows:

εn =
{

2 + 2c cos
(

nπ
L

)
, n = 1,2, . . . ,L − 1,

0, n = L.
(39)

The presence of the zero-energy mode clearly signals the
topological order in H (0). The system indeed possesses
Majorana edge zero modes, as we will see in the next
subsection.

Let us now prove the uniqueness of the ground state and
the existence of the spectral gap, which does not vanish
as L → ∞. From the fact that tr C = 2(L − 1), one finds
that

∑L
n=1 εn = 2(L − 1), which together with εL = 0 yields

H (0) = ∑L−1
n=1 εnf

†
n fn. Since H (0) is positive-semidefinite,

a state annihilated by fn for all n = 1,2, . . . ,L − 1 is a
many-body ground state with zero energy. The states |�(even)

0 〉
and |�(odd

0 〉 in Eqs. (16) and (17) are such states, because we
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have already shown that they are zero-energy states of H (0).
Then by acting with f

†
n (n = 1,2, . . . ,L − 1) on these two

states, one can construct many-body eigenstates of H (0) as
follows:

(f †
1 )m1 (f †

2 )m2 · · · (f †
L−1)mL−1

∣∣�(even)
0

〉
, (40)

(f †
1 )m1 (f †

2 )m2 · · · (f †
L−1)mL−1

∣∣�(odd)
0

〉
, (41)

where mj = 0 or 1 for all j = 1,2, . . . ,L − 1. Note that the
energy of the above two states is E = ∑L−1

j=1 mjεj , which
implies that every energy level is at least twofold-degenerate.
In this way, we have obtained 2L energy eigenstates forming
a complete set of orthogonal states, which can be verified
by noting 〈�(even)

0 |�(odd)
0 〉 = 0. Because of the positivity of

εn for n = 1,2, . . . ,L − 1, we find that |�(even)
0 〉 and |�(odd

0 〉
are the only zero-energy ground states of H (0). This proves
the uniqueness part of the Lemma. We now turn to prove the
existence of the spectral gap. The lowest-energy excited states
are obtained by filling the lowest positive εn. More explicitly,
they are given by f

†
L−1|�(even)

0 〉 and f
†
L−1|�(odd)

0 〉. We thus
obtain the spectral gap as

E3(0) = εL−1 = 2

[
1 − c cos

(
π

L

)]
, (42)

which is a decreasing function in L when L � 0. In the
infinite-L limit, we have E3(0) → 2(1 − cos θ∗), which is
strictly positive unless θ∗ = 0. This completes the proof of
the Lemma. �

There is an alternative proof of the uniqueness of the
twofold-degenerate ground states using the spin-chain Hamil-
tonian [see Eq. (B4) in Appendix B]. From Eq. (B5), one
finds that all the off-diagonal elements of the Hamiltonian in
the standard Ising basis are nonpositive when � � 0. Then,
noting that the space of eigenstates is separated into two
disconnected sectors with opposite parities (

∏L
j=1 σ z

j ), we find
that in each sector the Hamiltonian satisfies the connectivity
condition when � > 0, i.e., θ∗ �= 0,π . It then follows from
the Perron-Frobenius theorem [72] that the ground state of
each sector is unique. Therefore, the absolute ground state is
at most twofold-degenerate. But since we have already found
two ground states, this proves that the ground-state degeneracy
is exactly 2.

C. Majorana edge zero modes

The presence of a zero-energy single-particle state is usually
a signal of topological order, but it does not necessarily mean
the existence of Majorana zero modes that are localized at
the boundaries. Here we show that, for H (0), the explicit
expressions for the Majorana operators can be obtained
analytically. Let us first define Majorana edge zero modes
[13]. A Majorana edge zero mode � is an operator such that:

(i) �† = �,
(ii) [H (0),�] = 0,
(iii) {(−1)F ,�} = 0, and
(iv) localized near the edge and normalizable as �2 = 1

even in the infinite-L limit.
We next show that one can construct such edge modes from

the left and right null vectors of B in Eq. (33). To see this, let

u = (u1,u2, . . . ,uL) be a left null vector of B. An elementary
calculation shows that

u = (1,r,r2, . . . ,rL−1) with r = − c

1 + s
(43)

satisfies uB = (0,0, . . . ,0). Then from the anticommutation
relations of a and b operators, one finds that the following
operator commutes with H (0):

�L = N
L∑

j=1

rj−1aj , (44)

where the normalization factor N has been introduced so that
(�L)2 = 1. Similarly, from the right null vector of B, one finds
that

�R = N
L∑

j=1

rL−j bj (45)

commutes with H (0). Since both �L and �R are linear in a and
b operators, they are manifestly Hermitian and anticommute
with the fermionic parity (−1)F . They are localized near
the edges and normalizable, because their amplitudes decay
exponentially with distance from the boundary unless θ∗ = 0.
Therefore, the operators �L and �R satisfy all the criteria,
and hence they are Majorana edge zero modes. A linear
combination of �L and �R gives a nonlocal complex fermion
that is merely fL = (�L + i�R)/2, corresponding to the zero-
energy state of the single-particle Hamiltonian. Then from the
properties of Majorana edge zero modes, together with the
uniqueness of the ground states of H (0), it follows that either
�L or �R maps one ground state to the other with different
fermionic parity.

A special feature of H (0) that is noninteracting and
frustration-free is that the obtained Majorana edge zero modes
exactly commute with H (0) even in finite-size systems.
This nice property no longer holds for H (s) with s > 0.
Nevertheless, they still map one of the ground states of H (s)
to the other since the ground states remain unchanged with the
introduction of s. Thus, they can be regarded as an interacting
generalization of Majorana edge zero modes. This is one of
the main results of our paper. We note that one can in principle
construct an operator that exactly commutes with H (s) from
the adiabatic continuation of �L or �R [76,77]. Though this
requires a full diagonalization of H (s) and is not feasible, we
expect that the resulting operator, which is no longer linear in
a and b, has a significant overlap with �L or �R. We leave a
quantitative analysis for future work.

V. CONCLUDING REMARKS

In this paper, we have studied the one-dimensional Kitaev
chain with nearest-neighbor repulsive interactions. We have
shown that the Hamiltonian of the model is frustration-free
when the on-site (chemical) potential is tuned to a particular
function of the other parameters. Under this condition, the
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exact ground states can be obtained in closed form. We have
also introduced a smooth path between the interacting and
noninteracting Kitaev chains, along which the ground states
remain unchanged. We proved the following theorem about
this one-parameter family of Hamiltonians along this path:
(i) the ground state is unique up to double degeneracy, and
(ii) there exists a uniform (independent of the chain length)
spectral gap above the ground state. The theorem implies
that the interacting Kitaev chain in the frustration-free case is
topologically nontrivial, because it is adiabatically connected
to the noninteracting Kitaev chain in the topological phase.
The stability of the spectral gap against perturbations at the
boundary sites was also discussed. Furthermore, we have
demonstrated explicitly that there exists a set of Majorana
edge zero modes each of which maps one of the ground
states to the other with the opposite fermionic parity. It would
be interesting to explore the implications of this interacting
generalization of Majorana edge zero modes in transport
properties such as the tunneling conductance. Though the
dynamical Green functions cannot be obtained analytically
even for the frustration-free case, one might be able to develop
an efficient computational method using the information of
the exact ground states. It would also be interesting to see how
the results obtained translate into the language of continuum
field theories. As is well known, an appropriate scaling limit of
the XYZ spin chain is described by the sine-Gordon quantum
field theory [78]. We thus expect that the continuum limit of
the interacting Kitaev chain is also described by a sine-Gordon
type model with boundaries. We also expect that boundary
bound states [79] arising in integrable quantum field theories
are natural candidates for the interacting generalization of
Majorana edge zero modes in the continuum limit. The precise
correspondence is, however, beyond the scope of the present
study and is left for future work.
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APPENDIX A: MAJORANA HAMILTONIAN

For each site j , we define the Majorana fermions by

aj := cj + c
†
j , bj := (cj − c

†
j )/i. (A1)

One can easily see that they satisfy the defining relations:

a
†
j = aj , b

†
j = bj , {aj ,bk} = 0,

{aj ,ak} = {bj ,bk} = 2δj,k

for all j,k = 1,2, . . . ,L. When written in terms of aj and bj ,
the Hamiltonian H in Eq. (1) becomes

H = i

2

L−1∑
j=1

[(t + �)bjaj+1 − (t − �)ajbj+1]

− i

2

L∑
j=1

μjajbj − U

L−1∑
j=1

ajbjaj+1bj+1 + const. (A2)

Clearly, the last term represents a quartic interaction.

APPENDIX B: SPIN-CHAIN HAMILTONIAN
AND THE GROUND STATES

In this Appendix, we discuss the relation between the
Hamiltonian H in Eq. (1) and the spin-chain Hamiltonian.
From the standard Jordan-Wigner transformation [43],

c1 = σx
1 + iσ

y

1

2
, cj =

(
j−1∏
k=1

σ z
k

)
σx

j + iσ
y

j

2
for 2 � j � L,

we obtain explicit expressions of Majorana fermions in terms
of spin operators as

a1 = σx
1 , aj =

(
j−1∏
k=1

σ z
k

)
σx

j for 2 � j � L, (B1)

b1 = σ
y

1 , bj =
(

j−1∏
k=1

σ z
k

)
σ

y

j for 2 � j � L, (B2)

where (σx
j ,σ

y

j ,σ z
j ) are the Pauli matrices at site j . We note here

that the fermionic parity in spin variables is written as

(−1)F =
L∏

j=1

σ z
j . (B3)

Substituting Eqs. (B1) and (B2) into Eq. (A2), we have

H =
L−1∑
j=1

(−Jxσ
x
j σ x

j+1 − Jyσ
y

j σ
y

j+1 + Jzσ
z
j σ z

j+1

)

−
L∑

j=1

Bjσ
z
j + const, (B4)

where the parameters are given by

Jx = t + �

2
, Jy = t − �

2
, Jz = U, Bj = −μj

2
. (B5)

Recent theoretical proposals to realize a spin-1/2 XYZ chain
in a magnetic field using optical lattice systems can be found
in Refs. [81–83].

In the spin-chain language, the frustration-free condi-
tion Eq. (11) reads B1 = BL = B∗/2 and Bj = B∗ (j =
2,3, . . . ,L − 1), where

B∗ = −2
√

(Jz + Jx)(Jz + Jy). (B6)

This is exactly what has been found in Refs. [61,62]. When
written in terms of spin states, the ground states Eq. (14)
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become simple direct product states:

|�(±)
0 〉 =

L⊗
j=1

(|↑〉j ± α|↓〉j ), (B7)

which can be distinguished by the expectation value of the
local operator σx

j . We note, however, that σx
j for general j

is nonlocal in the fermions, because it involves a string of
fermion operators. The ground states with fixed (fermionic)
parities, i.e., Eqs. (16) and (17), are no longer direct products,
but they can still be written in the form of matrix product states.
Their explicit expressions can be found in Ref. [84].

APPENDIX C: EXPECTATION VALUES OF Oe

In this Appendix, we present a derivation of the inequality
Eq. (20). We also provide explicit expressions for several kinds
of correlation functions in the infinite-L limit.

1. Derivation of Eq. (20)

Let us first prove the inequality Eq. (20). Noting that
[Oe,(−1)F ] = 0 and using the relation (−1)F |�(±)

0 〉 = |�(∓)
0 〉,

we find

〈�(+)
0 |Oe|�(+)

0 〉 = 〈�(−)
0 |Oe|�(−)

0 〉, (C1)

〈�(+)
0 |Oe|�(−)

0 〉 = 〈�(−)
0 |Oe|�(+)

0 〉. (C2)

This yields

〈Oe〉even = 〈�(+)
0 |Oe|�(+)

0 〉 + 〈�(+)
0 |Oe|�(−)

0 〉
1 + 1/ηL

, (C3)

〈Oe〉odd = 〈�(+)
0 |Oe|�(+)

0 〉 − 〈�(+)
0 |Oe|�(−)

0 〉
1 − 1/ηL

, (C4)

where we have used the fact that 〈�(±)
0 |�(±)

0 〉 = 1 and
〈�(±)

0 |�(∓)
0 〉 = 1/ηL [see Eq. (21) for the definition of η].

Then we find

|〈Oe〉even − 〈Oe〉odd|

� 2
(1/|η|L) ‖Oe‖ + |〈�(+)

0 |Oe|�(−)
0 〉|

1 − 1/η2L
, (C5)

where the following inequality has been used:

|〈�(+)
0 |Oe|�(+)

0 〉| � ‖Oe‖. (C6)

In the following, we focus on 0 < θ∗ < π , which
implies |η| > 1. To evaluate |〈�(+)

0 |Oe|�(−)
0 〉|, we recall that

Oe is a local operator supported on a finite number of sites.
Since cj and c

†
j commute with Oe unless j = j1, . . . ,jk , one

finds

〈�(+)
0 |Oe|�(−)

0 〉 = 1

ηL−	
〈�̃(+)

0 |Oe|�̃(−)
0 〉, (C7)

where

|�̃(±)
0 〉 := 1

(1 + α2)	/2

⎛⎝ jk∏
j=j1

e±αc
†
j

⎞⎠|vac〉 (C8)

are the ground states restricted to the 	 consecutive lattice sites
j = j1,j1 + 1, . . . ,jk . Then using the Schwartz inequality, one
finds

|〈�̃(+)
0 |Oe|�̃(−)

0 〉|2 � 〈�̃(+)
0 |�̃(+)

0 〉 〈�̃(−)
0 |O†

eOe|�̃(−)
0 〉

� ‖Oe‖2. (C9)

Substituting this into Eq. (C5), one finds

|〈Oe〉even − 〈Oe〉odd| � 2
1/|η|L + 1/|η|L−	

1 − 1/η2L
‖Oe‖

� 2

|η|L × 1 + |η|	
1 − 1/η2

‖Oe‖, (C10)

where the second line follows from

1

1 − xL
� 1

1 − x
for 0 � x < 1. (C11)

Then it is obvious that the desired inequality Eq. (20) follows
from Eq. (C10).

2. Correlation functions

As we have shown above, any local Oe has the same
expectation value in |�(even)

0 〉 and |�(odd)
0 〉 in the infinite-L

limit; for completeness, we finally give explicit expressions
for some correlation functions. For density operators nj , we
have

lim
L→∞

〈nj 〉even/odd = 1

1 + tan(θ∗/2)
, (C12)

lim
L→∞

〈njnk〉even/odd =
[

1

1 + tan(θ∗/2)

]2

. (C13)

Similarly one can compute equal-time Green functions. For
j < k with |j − k| < ∞, we have

lim
L→∞

〈cj c
†
k〉even/odd

= − sin θ∗

2(1 + sin θ∗)

[
1 − cot(θ∗/2)

1 + cot(θ∗/2)

]k−j−1

, (C14)

which decays exponentially in the distance |j − k|.

APPENDIX D: INHOMOGENEOUS MODEL

In this Appendix, we show that the model described by
the Hamiltonian H inh [Eq. (31)] exhibits topological order.
Toward that end, we prove the following:

Proposition. For all αj > 0, βj > 0 (j = 1,2, . . . ,L − 1)
and θ∗ �= 0, (i) the ground state of the Hamiltonian H inh is
unique up to double degeneracy, and (ii) H inh has a uniform
(independent of the length of the chain) spectral gap above the
ground state.

This can be proven along the same lines as the Theorem in
the main text.

Proof of Proposition. We first introduce the minimum value
of the inhomogeneous parameters as

γ = min {αj }L−1
j=1 ∪ {βj }L−1

j=1 , (D1)
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which is, by definition, strictly positive (γ > 0). Then from
the fact that QjQ

†
j � 0 and Q

†
jQj � 0, we find

H inh � γ

L−1∑
j=1

(QjQ
†
j + Q

†
jQj ) = γH (0), (D2)

where H (0) is the Hamiltonian of the noninteracting Kitaev
chain. The Hamiltonians H (0) and H inh share the same ground
states |�(±)

0 〉, because they are annihilated by both Qj and Q
†
j

for all j .
Let us next compare the energy eigenvalues of H inh and

H (0). Let Einh
n be the nth eigenvalue of H inh. Here the energy

eigenvalues are arranged in nondecreasing order: 0 = Einh
1 =

Einh
2 � Einh

3 � · · · � Einh
n � · · · . It then follows from the min-

max principle [72] that the inequality Eq. (D2) implies Einh
n �

γEn(0) for all n. This immediately implies that Einh
3 > 0 since

we have already shown that E3(0) is strictly positive unless
θ∗ �= 0 [see Eq. (42)]. This completes the proof of property
(ii). Property (i) also follows from the min-max principle and
the Lemma in Sec. IV A. �

Let us next show the existence of topological order in the
system described by H inh. We can construct the Hamiltonian
that interpolates between H inh and H (0) as follows:

H inh(x) = xH inh + (1 − x)γH (0), (D3)

where 0 � x � 1. Using the inequality Eq. (D2), one can check
that H inh(x) � γH (0) for 0 � x � 1. Therefore, by repeating
the proof of proposition, one finds that the spectral gap of
H inh(x) does not close along the path connecting γH (0) and
H inh. This, together with the result of Fidkowski and Kitaev
[54], implies the existence of topological order in the system.

Let us remark that a local interaction between the neighbor-
ing sites can be either repulsive or attractive in H inh, depending
on βj/αj . To see this, we rewrite the Hamiltonian as

H inh =
L−1∑
j=1

αj hj

(
βj

αj

− 1

)
, (D4)

where hj (s) is given by Eq. (25). It is then clear that the local
interaction between nj and nj+1 is repulsive if βj/αj > 1,
while it is attractive if 0 < βj/αj < 1. The interactions can be
made purely attractive by taking a set of αj and βj that satisfy
0 < βj/αj < 1 for all j . For instance, if the parameters are
chosen as

αj = 1, βj = 1 + 2U (j = 1,2, . . . ,L − 1), (D5)

the Hamiltonian H inh reduces to H (2U ), which describes the
Kitaev chain with attractive interactions when U < 0. Note
that the condition U > −1/2 is required so that H (2U ) is
positive-semidefinite.

APPENDIX E: EIGENVALUES OF THE MATRIX C

In this Appendix, we present a detailed exposition of
the calculation of the eigenvalues of C in Eq. (38). We
first make an ansatz for the eigenvectors. Let v(q) =
(v1(q),v2(q), . . . ,vL(q)) be an eigenvector of C. For each
component, we choose the following ansatz:

vj (q) = αeiqj + βe−iqj , (E1)

where the coefficients α,β and the “wave number” q will be
determined from the matching conditions at the boundaries.
The eigenvalue equation Cv(q) = ε(q)v(q) can be written in
components as

(1 − s)v1(q) + cv2(q) = ε(q)v1(q), (E2)

cvj−1(q) + 2vj (q) + cvj+1(q) = vj (q), 1 < j < L, (E3)

cvL−1(q) + (1 + s)vL(q) = ε(q)vL. (E4)

Substituting Eq. (E1) into Eq. (E3), one finds that the
eigenvalue must be of the form

ε(q) = 2 + 2c cos q. (E5)

Then, from the matching conditions at the boundaries, i.e.,
Eqs. (E2) and (E4), the consistency condition for q is obtained
as( −c − (1 + s)eiq −c − (1 + s)e−iq

(s − 1 − ceiq)eiqL (s − 1 − ce−iq)e−iqL

)(
α

β

)
=

(
0
0

)
.

The above equation has a nontrivial solution if the determinant
of the matrix in the left-hand side vanishes. This condition
reads

−4ic(1 + c cos q) sin(qL) = 0. (E6)

The real wave numbers are then obtained as

q = nπ

L
, n = 1,2, . . . ,L − 1. (E7)

Note that q = 0 and π are not allowed because they result in
v(q) = 0. Equation (E6) also has a complex solution,

q = q0 = π + i ln

(
c

1 + s

)
, (E8)

which is a solution of cos q0 = −1/c. One might think that
the set of solutions obtained is overcomplete because q =
−q0 is a solution as well. However, this is not the case since
both q0 and −q0 yield the same v(q). We finally obtain the
desired eigenvalues Eq. (39) by substituting the obtained q

into Eq. (E5).
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[18] F. Crépin, G. Zaránd, and P. Simon, Phys. Rev. B 90, 121407

(2014).
[19] R. Wakatsuki, M. Ezawa, Y. Tanaka, and N. Nagaosa, Phys. Rev.

B 90, 014505 (2014).
[20] M. Leijnse and K. Flensberg, Phys. Rev. B 84, 140501 (2011).
[21] S. Walter, T. L. Schmidt, K. Børkje, and B. Trauzettel,

Phys. Rev. B 84, 224510 (2011).
[22] R. Hützen, A. Zazunov, B. Braunecker, A. L. Yeyati, and R.

Egger, Phys. Rev. Lett. 109, 166403 (2012).
[23] M. Leijnse, New J. Phys. 16, 015029 (2014).
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