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Although the supercell method has been widely used for surface calculations, it only works well with
short-ranged potentials, but meets difficulty when the potential decays very slowly into the vacuum. Unfortunately,
the exact exchange-correlation potential of the density functional theory is asymptotically long ranged, and
therefore is not easily handled by use of supercells. This paper illustrates that the authentic slab geometry,
another technique for surface calculations, is not affected by this issue: It works equally well with both short-
and long-ranged potentials, with the computational cost and the convergence speed being essentially the same.
Using the asymptotically long-ranged Becke-Roussel’89 exchange potential as an example, we have calculated
six surfaces of various types. We found that accurate potential values can be obtained even in extremely
low density regions of more than 100 Å away from the surface. This high performance allows us to explore
the asymptotic region, and prove with clean numerical evidence that the Becke-Roussel’89 potential satisfies
the correct asymptotic behavior for slab surfaces, as it does for finite systems. Our finding further implies that the
Slater component of the exact exchange optimized effective potential is responsible for the asymptotic behavior,
not only for jellium slabs, but for slabs of any type. The Becke-Roussel’89 potential may therefore be used to
build asymptotically correct model exchange potentials applicable to both finite systems and slab surfaces.
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I. INTRODUCTION

Most solid surface calculations by density functional
theory (DFT) make use of the supercell approach, within
which the surface is simulated by periodic slabs of finite
thickness separated by vacuum spaces. To avoid artificial
interslab interactions, the size of the vacuum shall be large
enough to ensure that the Kohn-Sham orbitals, the electron
density, and the Kohn-Sham effective potential all decay to
sufficiently low values in the middle of the vacuum. How
difficult this requirement can be to fulfill depends on the
exchange-correlation potential but not on the orbitals or the
density, since in any case the latter two quantities always decay
exponentially. So far, dominant surface calculations make
use of the local density approximation (LDA) or generalized
gradient approximations (GGA). Since these potentials also
decay exponentially, the vacuum thickness can be chosen as
small as about 20 Å.

Unfortunately, the exponential decay of the LDA/GGA
potentials is physically incorrect. For either semi-infinite
materials or slabs of finite thickness, vxc is expected to be
long ranged. For an example, Lang and Kohn suggests that the
exact vxc of semi-infinite metals asymptotically approaches
the classical image potential far away from the surface [1]:

vxc(z)
z→∞

−−−−−→ − 1

4z
. (1)

For semi-infinite semiconductors and insulators Almbladh and
von Barth suggest similar −1/z decay [2]. However, these
long-ranged behaviors of the exact vxc have been widely
ignored in existing surface calculations because the majority of
works use the erroneously short-ranged LDA/GGA. Missing
the long-range tail of vxc leads to too high orbital energies,
with the error being the most well known for surface states. In

particular, for image states explicit correction for the missing
tail of vxc must be taken into consideration [3].

The importance of ensuring the correct asymptotic be-
haviors of vxc is best illustrated by the deviation of the “IP
theorem,” which claims that the orbital energy of the highest
occupied state must be equal to the exact ionization potential
(IP) [2,4]. Practical calculations reveal that the IP’s evaluated
by the LDA/GGA eigenvalues are typically 0.1 eV to a few
eV too small, which partly depend on the size of the band
gap. For atoms and molecules, van Leeuwen and Baerends
[5] have shown that by pasting the missing tail of vxc to
the GGA the IP errors are drastically reduced. Since then,
many asymptotically long-ranged vxc’s have been extensively
studied for finite systems [5–23].

For solid surfaces, asymptotically long-ranged potentials
are rarely used since such potentials are not easily handled
by a supercell. This is because, (i) due to the slow decay of
the potential, the supercell has to include much larger vacuum
space; and (ii) for clean representation of the asymptotically
behavior, the requirement on the completeness of the basis
set is usually much more stringent. Both reasons lead to a
drastic increase in the size of the basis set. As an illustrative
example, the exact exchange [24,25] optimized effective
potential [26,27] (EXX-OEP, also denoted as exact exchange
in the following) of graphene has been calculated [28] by the
supercell approach, in which 16 000 plane waves are used
only to marginally reveal the asymptotic behavior of the vx .
Therefore, for other realistic surfaces the computational cost
may easily become unmanageable.

The above supercell problem affects a wide range
of applications, including asymptotically correct potentials
[5–15], long-range corrected hybrid functionals [16–23], and
GW approximation [29], and may become especially serious
for the latter two due to the nonlocal feature of the potential
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and the self-energy. Moreover, the problem is not unique to
the plane-wave method, but also exists in the full-potential
linearized augmented plane-wave (FLAPW) method which
also uses plane waves as vacuum basis functions. In fact,
the problem is even more agonizing in FLAPW because the
number of plane waves is limited (since otherwise basis set
superposition error would arise), which makes the requirement
of basis set completeness even harder to achieve.

To facilitate the use of asymptotically correct potentials
[5–23] for surface calculations, the efficiency of the vacuum
basis set needs to be substantially improved. In the FLAPW
method, it has been shown [30,31] that the linearization
technique traditionally used for the muffin tins can also be
extended to the vacuum region. This allows for the plane
waves to be replaced by exponentially decaying functions to
form a new, superefficient vacuum basis set. Following the
removal of the plane waves, the artificial supercell periodicity
perpendicular to the surfaces becomes obsolete, and is thus
abandoned so that all vacuum functions now decay naturally.
Now that there is only one “suspended slab” in space, the
interslab interactions are completely avoided.

This so-called “authentic slab geometry” [30,31] is a more
intuitive way for surface calculations. It is highly efficient, with
its accuracy being protected by the linearization technique.
So far, the authentic slab geometry has only been used with
LDA/GGA, while no attempt has been made for using asymp-
totically long-ranged potentials. The purpose of this work is to
illustrate that, within the authentic slab geometry, calculations
with asymptotically long-ranged potentials meet no technical
difficulty. The size of the FLAPW basis set remains the same,
and the computational cost and the convergence speed are also
similar no matter whether short- or long-ranged potentials are
used.

For illustration, we use the asymptotically long-ranged
Becke-Roussel’89 (BR89) exchange potential [32] to calculate
six surfaces of various types. We found that accurate poten-
tial values can be obtained even in extremely low density
regions of more than 100 Å away from the surfaces. The
asymptotic behavior of BR89 is known [32] to be correct
for finite systems but has not been discussed previously for
solid surfaces. The high performance of the authentic slab
geometry allows us to investigate the asymptotic region, which
provides clean numerical evidence that for slab surfaces the
asymptotic behavior of BR89 is also correct. Our finding
further implies that the Slater component of the EXX-OEP
is responsible for the asymptotic behavior, not only for
jellium slabs [33], but in fact for slabs of arbitrary types.

FIG. 1. (Color online) Schematic illustration of the authentic slab
geometry of the FLAPW method.

Judged by the above results, the authentic slab geometry
provides an excellent, unified method for surface calcula-
tions with both short-ranged and asymptotically long-ranged
potentials.

The rest of this paper is organized as follows: First we
review the fundamentals of the authentic slab geometry and
the BR89 exchange potential. Details of the implementation
of this potential to the NU-FLAPW code [34] can be found
elsewhere [35]. The numerical results are presented afterwards
together with discussions which also offer implications to the
supercell approach. At the end of this paper we summarize
our work. Unless explicitly specified, all quantities use atomic
units.

II. TECHNICAL DETAILS

A. The authentic slab geometry

The authentic slab geometry is schematically shown in
Fig. 1. The partition of the space into the muffin tins and
the interstitial region is the same as in the standard FLAPW
method, except that the vacuum spaces are separated from
the interstitial and are treated differently. The boundaries of
the interstitial locate at ±d, and the thickness of the top and
bottom vacuums is D − d, which can be tuned by varying D.
For more details about the authentic slab geometry refer to
Refs. [30,31].

The basis functions take the following hybrid form:

ϕg(r) =

⎧⎪⎨
⎪⎩

1√
�

eig·r (interstitial)∑
lm[al(g)ul(rα) + bl(g)u̇l(rα)]Ylm(r̂α)Y �

lm(ĝ) (muffin tins)

[Av(g‖)ug‖(z) + Bv(g‖)(z)u̇g‖(z)]eig‖·r‖ (vacuum).

The al,bl,Av,Bv coefficients ensure the basis functions to be smoothly continuous at all muffin-tin and interstitial boundaries. In
the above equations, g = k + G, and g‖ and r‖ are the in-plane components of g and r, respectively.

Within the muffin tins and the interstitial the basis functions are the same as in standard FLAPW. In the vacuums, the
exponentially decaying function ug‖ is generated by(

g2
‖

2
− 1

2

d2

dz2
+ v0(z) − Ev

)
ug‖(z) = 0 (2)
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with Ev being the prechosen vacuum energy parameter, and
v0(z) the z-dependent, xy-averaged total Kohn-Sham potential.
The other exponentially decaying function u̇g‖ serves as the
linearization correction to ug‖ and is generated by another
equation corresponding to the first energy derivative of Eq. (2).
The combined use of both ug‖ and u̇g‖ in the vacua is in analog
to that of ul and u̇l in the muffin tins.

All Kohn-Sham orbitals are expanded by

ψnk(r) =
G�Gmax∑

G

znk(G)ϕg(r). (3)

The plane-wave cutoff Gmax determines the size of the FLAPW
basis set. The choice of its value is usually guided by

GmaxRMT ∼ 8. (4)

In principle, the vacuum thickness D − d can be set to
any value. With LDA/GGA, D − d ∼ 10 Å is often large
enough to ensure the orbitals, the electron density, and the
potentials drop to zero at the vacuum edges. On the other hand,
for slowly decaying potentials like v(z) ∼ −1/z the vacuum
thickness has to be chosen much larger, as will become clear
in our following results. Note that the increase of the vacuum
thickness does not affect the value of Gmax. This is because the
plane waves are used only to represent the interstitial region,
and therefore the size of the basis set is determined by the fixed
interstitial thickness of 2d, but not affected by the thickness
of the vacua which use the exponentially decaying basis
functions. Therefore, calculations with short- and long-ranged
potentials take essentially the same amount of time, and the
convergence speed is also similar.

B. The Becke-Roussel’89 exchange potential

The Becke-Roussel’89 potential [32] only contains the
exchange part. The most notable feature of vBR

x is that it
simulates the exchange hole of the hydrogenic atom rather
than that of the uniform electron gas. For the σ spin:

vBR
x,σ (r) = − 1

bσ (r)

(
1 − e−xσ (r) − 1

2
xσ (r)e−xσ (r)

)
(5)

with bσ being

bσ (r) =
[
x3

σ (r)e−xσ (r)

8πρσ (r)

]1/3

. (6)

x is solved by the nonlinear equation of

xσ (r)e−(2/3)xσ (r)

xσ (r) − 2
= 2

3
π2/3 ρ

5/3
σ (r)

Qσ (r)
(7)

in which ρσ is the electron density, and

Qσ = 1

6
(∇2ρσ − 2γDσ ), (8)

Dσ = 2tσ − 1

4

(∇ρσ )2

ρσ

, (9)

tσ = 1

2

∑
iσ

|∇ψiσ |2. (10)

The dependence of vBR
x on the kinetic energy density tσ makes

it a meta-GGA potential. For finite systems γ = 1. For solids
γ = 0.8 to fit the uniform electron gas limit.

Although it may be envisioned that all local or semilocal
potentials including LDA/GGA/meta-GGA were short ranged,
the Becke-Roussel’89 potential provides a counterexample.
It is known that vBR

x closely resembles Slater’s averaged
exchange potential [36]. For finite systems, the differences
between the two potentials vanish at sufficiently large dis-
tance, which ensures that vBR

x satisfies the correct asymptotic
behavior of the exact exchange [2,27,37–39]:

vBR
x (r)

r→∞
−−−−−→ −1

r
. (11)

On the other hand, for solid surfaces the asymptotic behavior
of vBR

x is unknown and, like most other asymptotically long-
ranged potentials, it has never been used for solid surfaces. In
the following section, we show with accurate numerical results
that for slab surfaces vBR

x also satisfies the correct asymptotic
behavior.

C. Computational details

Using the authentic slab geometry we have calculated six
solid surfaces. In order to investigate the asymptotic behavior
of the BR89 potential, the surfaces are intentionally chosen
to be of different types including graphene (semimetal),
ZnO (101̄0) (large-gap insulator), ZnSe (101̄0) (small-gap
semiconductor), Si(111) (metal due to dangling bonds), Al
(111) (metal due to nearly free electrons), and the jellium slab
of rs = 3.0 (model metallic surface), respectively. Details of
the six surfaces can be found in Table I.

In all calculations the vacuum thickness is set to D − d =
220 a.u. (or 116 Å). Note that to make a comparison to
the supercell approach the top and bottom vacua need to
be summed up. This gives the total vacuum thickness of
232 Å which would be very difficult to treat by the supercell
approach.

All calculations proceed to self-consistency, with the final
distance of both the electron density and the Kohn-Sham
potential density being smaller than 0.01 a.u.. On the other
hand, structural relaxation effects are ignored since they are
irrelevant to the purpose of this work.

TABLE I. Details of the surfaces and values of the Becke-
Johnson’89 exchange potential at the distance of 220 a.u. from the
surface.

Surface Slab thickness vBR
x (a.u.)

Graphene One monolayer −0.00465

ZnO(101̄0) Four double layers −0.00456

ZnSe(101̄0) Four double layers −0.00456

Si(111) Five double layers −0.00462

Al(111) 11 atomic layers −0.00464

Jellium slab 10 a.u. −0.00468
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FIG. 2. (Color online) The Becke-Roussel’89 exchange potential
and the LDA/GGA exchange-correlation potentials of graphene from
one atomic site to the vacuum edge. The hatched region represents
the slab (i.e., the interstitial region), and the rest is the vacuum. The
edge of the slab is treated as the surface plane.

III. RESULTS AND DISCUSSIONS

A. The asymptotic behavior of the BR89 exchange potential

The Becke-Roussel’89 exchange potential of graphene is
plotted in Figs. 2 and 3, starting from one atomic site up to the
vacuum edge. The LDA/GGA potentials are also plotted for
comparison.

Details of the potentials close to the nucleus can be seen
from Fig. 2. At the nucleus the LDA potential is finite with a
small slope [40], the GGA potential diverges, and the BR89
potential approaches a constant. There are two “bumps,” or
quick changes of slope, in the potential curves: One is within
the 0.5–1.0 distance range and corresponds to the crossover

FIG. 3. (Color online) Same as Fig. 2 but distance in linear scale.
The LDA/GGA potentials nearly coincide in the present scales. Values
of vBR

x at 20 and 40 Å from the atomic site and at the vacuum edge
are highlighted. Inset: Rubber-sheet plot of vBR

x in the slab and the
near surface regions.

from the n = 1 to the n = 2 shells. For this reason it is called a
“shell structure.” The other is within the 4.0–7.0 distance range
which may relate to the “repulsive shoulder” in the EXX-OEP
of jellium slabs [47]. However, it is known [13] that BR89
does not well reproduce the shell structures of the EXX-OEP.
Therefore, in the rest of this paper we will bypass such details
of BR89, and only focus on the vacuum part of this potential
which is of interest in this work.

As can be seen from Fig. 3, away from the surface
all potentials decay asymptotically to zero. The LDA/GGA
decays are exponentially fast so that at the small distance
of 10 Å from the surface both potentials already drop to
practically zero. This explains why the supercell method works
well with LDA/GGA since the total vacuum thickness can be
safely set to only 20 Å.

On the other hand, at the same distance vBR
x has barely

entered the asymptotic region. The asymptotic decay of vBR
x is

very slow. Even at the doubled distance of 20 Å, the potential
still has a large value of −0.63 eV. In an earlier attempt [3] to
explore the image states of graphene, Silkin et al. used a huge
supercell 85 Å thick. Their setup corresponds to the 42.5 Å
distance in Fig. 3 at which vBR

x = −0.32 eV. In general, Figs. 2
and 3 clearly illustrate how hard it is for the supercell approach
to handle asymptotically long-ranged potentials.

At the vacuum boundary vBR
x reaches the value of −0.13 eV

(or −0.00465 a.u.). This potential value is still significantly
different form zero [41] despite that the density has dropped
to 10−248. Naturally, the extremely low electron density raises
the concern whether this potential value is already ruined by
numerical noises and therefore does not have real physical
meaning. This is shown to be not so in Fig. 3 because vBR

x

varies smoothly all the way up to the vacuum edge. The
absence of oscillatory noises in the potential curve indicates
that the potentials computed by the authentic slab geometry
are accurate and reliable.

Having finished analyzing graphene, let us now look at
the BR89 potentials of all six surfaces plotted in Fig. 4. Note
that Fig. 4 is made differently from Figs. 2 and 3 in two
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FIG. 4. (Color online) The Becke-Roussel’89 exchange poten-
tials of the six slabs from the surface plane to the vacuum edge.
Dashed lines show the analytical relations of v(z) = −1/z and
v(z) = −1/(z + 1.5).
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aspects: First, the potentials in Fig. 4 are now x,y averaged.
For graphene this means the “bumps” mentioned earlier are
smeared out. Second, to facilitate comparison to the asymptotic
behavior, z = 0 is now set to the surface plane rather than to
one atomic site. Since the exact location of the surface plane
is not well defined, for all six slabs it is chosen to be the
interstitial edge (see Fig. 1).

Figure 4 shows that in the near surface region the six
potentials differ appreciably. On the other hand, starting from
a distance of 40 a.u. away all potentials converge to the −1/z

asymptotic behavior. In Fig. 4, the distance at which the
asymptotic behavior is reached is system dependent, which
vaguely defines “the boundary of the asymptotic region.” For
graphene, the location of the boundary in Fig. 4 seems to be
much further than what is found by Engel [28], who claimed
that EXX-OEP already reaches −1/z before 10 a.u. Although
part of the difference is due to the fact that BR89 is only
an approximated exchange potential which is not expected
to match the EXX-OEP in the near surface region, the main
reason for the difference is due to different z = 0 settings in the
two works: In Fig. 4 z = 0 is set to the surface plane, while in
Engel’s work it is set to the center of the slab. Correspondingly,
the absolute value of z in Fig. 4 equals to z + d (d is half the
interstitial thickness; see Fig. 1) in Engel’s work.

In Fig. 4, the BR89 potential of graphene is compared to
both −1/z and −1/(z + d), with d = 1.5 being the value for
graphene. Naturally, BR89 fits to the latter function better in
close distance because −1/(z + d) does not diverge at z = 0
(as −1/z does). As to the boundary of the asymptotic region,
there is no strict definition of its exact location. Nevertheless,
the term “asymptotic region” itself implies that its boundary
shall be insensitive to the two different settings of z = 0. In
Fig. 4, −1/z and −1/(z + d) start to merge also at about
40 a.u., while at 8.5 a.u. (corresponding to 10 a.u. in Engel’s
work) they still differ appreciably, implying that the boundary
of the asymptotic region is not as close as it is claimed before.

The values of vBR
x at the vacuum edge of the six surfaces

are listed in Table I. Surprisingly, in all cases vBR
x ≈ −0.0046

despite that the surfaces belong to very different types. The
question is then why.

The answer can be found by recalling the asymptotic behav-
iors of the exact DFT exchange-correlation potential, a topic
having been disputed for many years and is still far from being
settled [37,42,43,47]. In particular, there has been lack of rigor-
ous mathematical proofs to the asymptotic behaviors of semi-
infinite surfaces suggested by Lang and Kohn [1] and by Alm-
bladh and von Barth [2]. On the other hand, for slab surfaces
the issue for exchange is resolved. Horowitz et al. [33] pointed
out that for jellium slabs the exchange potential decays as

vx(z)
z→∞

−−−−−→ −1

z
. (12)

This relation was later derived analytically by Engel [28,44],
who found that it is actually universal for slabs of arbitrary
types irregardless of their chemical composition or physical
properties (e.g., whether they are metals or semiconductors).
Setting z = 220 in Eq. (12) gives vx = −0.00455, which
immediately explains our results in Table I. The remaining,
small differences are because Eq. (12) is strict only when the
vacuum edge is infinitely far away from the surfaces.

FIG. 5. (Color online) The Becke-Roussel’89 exchange potential
of the Si(111) surface in the asymptotic region (solid line) compared
to the asymptotic behavior of the exact exchange, v(z) = −1/z

(dashed line). Inset: Rubber-sheet plot of vBR
x in the slab and the

near surface regions.

To get a closer look at the asymptotic behavior of the BR89
potential, in Fig. 5 we compare the BR89 potential of the
Si(111) surface to the analytic relation of Eq. (12) in the
asymptotic region. Although in the near surface region BR89
differs appreciably from Eq. (12) (see Fig. 4), starting from
z = 40 up to the vacuum edge the two curves match each other
very well at the present scales. Therefore, all our results clearly
show that the BR89 potential satisfies the correct asymptotic
behavior, Eq. (12), for slab surfaces.

B. Implications to the supercell approach

The above results help to understand the use of
long-ranged potentials within the supercell approach. Let
ψ

(i)
nk(z),ρ(i)(z),v(i)(z) be the Kohn-Sham orbital, the density,

and the potential of the ith supercell solved by the authentic
slab geometry (to facilitate discussion the x,y coordinates have
been suppressed), and assume the size of the supercell has been
chosen large enough to enclose all orbitals in concern. Then
the density and the Coulomb potential are essentially restricted
within the same supercell. The exchange-correlation potential,
on the other hand, can still penetrate from neighboring
supercells so that the interslab interactions can be roughly
expressed as 〈

ψ
(i)
nk(z)

∣∣v(i+1)
xc (z)

∣∣ψ (i)
nk(z)

〉
. (13)

The reason why the BR89 potential is long ranged is because
it is the Coulomb potential of the exchange hole: Even if the
hole density is restricted within one supercell, its Coulomb
potential still extends to infinity.

To avoid the interslab interactions, one either uses huge
supercell or truncates the vxc as

v(i)
x (z) −→

{
v(i)

x (z) (within the supercell)

0 (out of the supercell).
(14)

This truncation scheme is similar to existing
ones [45,46,48,49], and with it the minimum size of
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the supercell is then determined by the extension of all orbitals
in concern: For ground state properties, only the occupied
orbitals matter; for excited state properties such as response
functions, the unoccupied orbitals are more delocalized
and therefore the size of the supercell must be increased
accordingly. As to image states, since they are bound by the
long-ranged tail of the potential, they are very sensitive to
truncation at any finite distance. To describe image states
correctly an extremely large supercell is needed.

IV. SUMMARY

In this work, we have addressed the problem of sur-
face calculations using asymptotically long-ranged potentials.
While the supercell approach is intrinsically inferior for such
jobs, we have shown that the authentic slab geometry of
FLAPW, which is based on the linearization technique for
vacuum, provides an excellent solution. Within this approach,
calculations with asymptotically long-ranged potentials are
as easy as with short-ranged LDA/GGA, and the size of the
basis set, the computational cost, and the convergence speed
are all essentially the same. Therefore, the authentic slab
geometry is a very useful tool for surface calculations with
both short- and long-ranged potentials, including especially
the asymptotically correct exchange-correlation potentials
[5–15], the long-range corrected potentials of hybrid func-
tionals [16–23], GW approximation [29], etc.

We have used the Becke-Roussel’89 potential to calculate
six solid surfaces of different types. We have shown that

accurate potential values can be obtained by the authentic
slab geometry more than 100 Å away from the surfaces,
even though the electron density has become extremely low.
Previously, the Becke-Roussel’89 potential is known to satisfy
the correct asymptotic behavior for finite systems. This work
further established that it also satisfies the correct asymp-
totic behavior for slab surfaces. For jellium slabs, Horowitz
et al. [33] have identified that the asymptotic behavior comes
from the Slater component of the EXX-OEP. Our results imply
that the same conclusion in fact holds for arbitrary slabs.
On the other hand, for surfaces of semi-infinite jellium the
Slater component of EXX-OEP ceases to be responsible for
the asymptotic behavior of exchange. Correspondingly, for
surfaces of semi-infinite materials the asymptotic behavior of
BR89 is not likely correct.

One possible application of the Becke-Roussel’89 poten-
tial is to combine it with any short-ranged potentials (for
example, LDA/GGA, or range separated hybrid functionals,
etc.) to build asymptotically correct model exchange poten-
tials, which can be used for both finite systems and slab
surfaces.
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[11] M. Grüning, O. V. Gritsenko, S. J. A. van Grisbergen, and E. J.

Baerends, J. Chem. Phys. 114, 652 (2001).
[12] Q. Wu, P. W. Ayers, and W. T. Yang, J. Chem. Phys. 119, 2978

(2003).
[13] A. D. Becke and E. R. Johnson, J. Chem. Phys. 124, 221101

(2006).
[14] X. Andrade and A. Aspuru-Guzik, Phys. Rev. Lett. 107, 183002

(2011).
[15] A. P. Gaiduk, D. S. Firaha, and V. N. Staroverov, Phys. Rev.

Lett. 108, 253005 (2012).

[16] A. Savin, in Recent Developments and Applications of Modern
Density Functional Theory, edited by J. M. Seminario (Elsevier,
Amsterdam, 1996), p. 327.

[17] H. Iikura, T. Tsuneda, T. Yanai, and K. Hirao, J. Chem. Phys.
115, 3540 (2001).

[18] T. Yanai, D. P. Tew, and N. C. Handy, Chem. Phys. Lett. 393,
51 (2004).

[19] O. A. Vydrov, J. Heyd, A. V. Krukau, and G. E. Scuseria, J.
Chem. Phys. 125, 074106 (2006).

[20] E. Livshits and R. Baer, Phys. Chem. Chem. Phys. 9, 2932
(2007).

[21] J.-D. Chia and M. Head-Gordon, J. Chem. Phys. 128, 084106
(2008); Phys. Chem. Chem. Phys. 10, 6615 (2008); Chem. Phys.
Lett. 467, 176 (2008); J. Chem. Phys. 131, 174105 (2009).

[22] Y.-S. Lin, C.-W. Tsai, G.-D. Li, and J.-D. Chai, J. Chem. Phys.
136, 154109 (2012).

[23] Y.-S. Lin, G.-D. Li, S.-P. Mao, and J.-D. Chai, J. Chem. Theory,
Comput. 9, 263 (2013).

[24] T. Kotani, Phys. Rev. Lett. 74, 2989 (1995).
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