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We present the theory of dynamical spin response for the Kitaev honeycomb model, obtaining exact results
for the structure factor (SF) in gapped and gapless, Abelian and non-Abelian quantum spin-liquid (QSL) phases.
We also describe the advances in methodology necessary to compute these results. The structure factor shows
signatures of spin fractionalization into emergent quasiparticles: Majorana fermions and fluxes of Z2 gauge field.
In addition to a broad continuum from spin fractionalization, we find sharp (δ-function) features in the response.
These arise in two distinct ways: from excited states containing only (static) fluxes and no (mobile) fermions,
and from excited states in which fermions are bound to fluxes. The SF is markedly different in Abelian and
non-Abelian QSLs, and bound fermion-flux composites appear only in the non-Abelian phase.
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I. INTRODUCTION

A time lag of several millennia between the discoveries
of ferromagnetic and antiferromagnetic (Néel) order, despite
their great microscopic similarity, underscores the impor-
tance of the availability of experimental probes matching
the phenomena in question. The lack of a characteristic
macroscopic observable for the Néel state has an analogy today
in the lack of any local ground-state signatures of topological
states of matter, for which the most natural diagnostics—
entanglement entropy or topological degeneracies—are not
readily accessible to present experimental technology.

The identification of clear-cut experimental signatures is
all the more urgent, after a frustratingly long search following
the original proposal of quantum spin-liquid states [1], there
is no longer any shortage of theoretical models exhibiting
“topological” quantum spin liquid states [2–4]; and in the
meantime, several frustrated magnetic materials have been
identified as promising candidates to host QSL physics [5,6].

Perhaps the most natural local diagnostics for spin liquidity
involve the concomitant and characteristic fractionalized exci-
tations above the featureless, long-range entangled, topologi-
cally degenerate ground states. Due to the mismatch between
the quantum numbers of such fractionalized excitations on one
hand, and the selection rules for standard scattering probes
on the other, experiments do not usually couple to a single
fractionalized quasiparticle, instead exciting multiple quasi-
particles, thereby producing a featureless continuum response.

The dynamical spin response, which can be probed using
conventional experimental techniques such as inelastic neutron
scattering (INS) and electron spin resonance (ESR), is in
principle sensitive to not only the ground state but also to a wide
range of excited states, even at zero temperature. As such, it
may in particular be sensitive to the presence of fractionalized
excitations. Study of the dynamical spin response has proven
to be fruitful in applications to one-dimensional systems,
where it allowed one to establish a quantitative correspondence
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between the theoretically predicted correlation functions (ob-
tained exactly using Bethe-ansatz), and the results of inelastic
neutron scattering measurements [7,8], thereby confirming the
presence of S = 1/2 spinon excitations.

In the recent paper [9], we have commenced an analogous
program for a two-dimensional quantum spin liquid. The
conclusions of Refs. [9,10] were based on an exact calculation
of the dynamic structure factor for the celebrated 2D Kitaev
honeycomb model (KHM); such exact results had thus far
mainly been restricted to one dimension [11–14].

The Hamiltonian of the Kitaev model is remarkably simple,
having only nearest-neighbor exchange. This simplicity has
led to a number of theoretical proposals for its realization
in condensed matter, and in cold atomic systems [15,16].
Materials whose spin and orbital degrees of freedom are
strongly entangled in the presence of spin-orbit couplings,
such as {Na,Li}2IrO3 iridates [15,17–21], and more recently
α-RuCl3 [22–26], are currently the most promising candidates
to realize Kitaev physics. Some of these are believed to be in the
proximity of a quantum spin liquid state. Remarkably, residual
high energy features of these putative QSLs might have already
been observed in present systems [25–27], despite the fact that
the latter are known to form a long-range ordered phase.

The KHM represents one of the exceedingly rare instances
of a tractable strongly interacting quantum system in two
spatial dimensions [28]. As a representative of a broader class
of QSLs whose emergent degrees of freedom are Majorana
fermions and Z2 gauge fluxes, it has become an archetype for
a QSL. Despite being formulated a decade ago, it still holds
surprises, and is being actively studied, e.g., in the context of
the calculations of ground-state degeneracy [29], entanglement
entropy [30], transitions between different topological phases
[31–33], disorder effects [34,35], global quench dynamics
[36,37], and the effects of doping [38–41]. There exist a
number of integrable generalizations of the model [42–44],
as well as its three-dimensional extensions [45–42].

While the calculation of the time-independent correlators
is simple when expressed in appropriate variables [53], the
calculation of dynamical correlators has turned out to be con-
siderably less straightforward. As noted already in Ref. [53],
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it is possible to map this calculation onto a nonequilibrium
problem involving a quantum quench of a local potential,
the physics that closely resembles the venerable x-ray edge
singularity problem [54].

Here, we aim to provide a complete theory of the dynamical
spin response in two-dimensional Kitaev QSLs. We consider
various different spin liquids—both gapped and gapless
Abelian as well as gapped non-Abelian. The latter can appear
upon breaking time-reversal symmetry, and is of special
interest due to proposals of using its non-Abelian excitations
for topological quantum computations. For all of these, we
provide the numerically exact dynamical structure factor,
extending our recent work in Ref. [9].

We find a rich phenomenology, in which each of the consid-
ered QSLs appears with distinctive signatures of the emergent
fluxes and the Majorana fermions. Some of these properties
are rather surprising, such as the appearance of a gap in the
response for a gapless QSL, and the existence of a sharp (delta-
function) response even for a fractionalized (both gapless and
gapped) spin liquid. The explanation of the various features of
the response are natural and simple in terms of the fractional-
ized degrees of freedom, e.g., involving the gap to a state with a
pair of fluxes; or a bound state of the Majorana modes expected
for a p-wave superconductor Hamiltonian representing the
non-Abelian QSL. It would seem hard even to rationalize
these phenomena in an alternative language. Therefore this
ensemble of results can be seen as a rather direct validation of
the fractionalized picture; given its richness, we do not provide
a detailed list of our results in Introduction, and instead devote
Sec. III to a nontechnical account of our central results, which
has been written with a reader in mind who is interested in
phenomena but not too concerned about technical details.

Finding the exact solutions presented here has led us to
engage in a fair amount of method development. Much of the
more technical material included here aims to give a reasonably
self-contained account of this. We have in fact developed a
number of complementary approaches, both exact (for finite
systems based on determinant representation of correlation
functions, and in the thermodynamic limit using singular
integral equations) and approximate but simple (which we
call the adiabatic approximation). It is perhaps worth noting
that these should have applicability well beyond the present
context. Much of this technical material has been collected
into a set of appendices.

While this paper presents an exact treatment of a particular
model QSL, its features should for the usual reasons be
relevant to a much wider range of QSLs, qualitatively and
(semi-)quantitatively. Namely, the gap in the response, which
originates from the flux gap, the broad continuum due to spin
fractionalization, and the sharp delta function response due
to dynamical rearrangement of Majorana density of states,
might hold for QSLs whose low-energy degrees of freedom are
heavy fluxes of gauge field coupled to dispersive fractionalized
excitations. These points are discussed as part of our closing
outlook section.

The structure of the remainder of this paper is the following.
In Sec. II, we introduce a 2D honeycomb Kitaev model,
and its non-Abelian extension. We summarize our main
findings for the dynamical spin correlators together with the
discussion of their qualitative features in Sec. III. A brief

FIG. 1. (a) Honeycomb lattice showing bond directions x,y,z.
Three-spin interactions (with coupling constant K) generate
next-nearest-neighbor hopping for Majorana fermions along di .
(b) Majorana fermion dispersion at the isotropic point Jx = Jy = Jz,
which is gapless for K = 0 (left) and gapped for K �= 0 (right).
(c) Phase diagram of the extended KHM. For K �= 0, the ground
state is a gapped non-Abelian QSL in the central triangle (grey), and
a gapped Abelian QSL in the outer triangles (white).

outline of Kitaev’s exact solution is provided for completeness
in Sec. IV. In Sec. V, we present details of our calculations of
the dynamic structure factor (SF). In Sec. V B, we outline
two complementary exact methods for calculations of the
dynamical correlation functions, and in Sec. V C, we present a
number of approximate approaches. In Secs. VI A and VI B, we
discuss qualitative features of the structure factor in the whole
phase diagram of the extended Kitaev model. The main part of
the paper follows with an outlook, Sec. VII, placing our work
in a broader context and outlining directions for further work.

II. EXTENDED KITAEV MODEL

The KHM has spin-1/2 degrees of freedom on the sites of
a honeycomb lattice. The spins interact via bond-dependent
anisotropic Ising exchange Ja , where the three directions
labeled by a = x,y,z distinguish the three bonds that share
a given lattice site, as illustrated in Fig. 1. In the following,
we will also discuss an extended KHM, which is obtained
from the original model by adding three-spin interactions. The
latter is generated by leading order terms in the perturbative
expansion in the strength of a small external magnetic field
[28]. The three-spin interactions break time-reversal symmetry
and generate a gap in the spectrum of Majorana fermions,
giving rise to non-Abelian excitations [55].

The Hamiltonian of the extended KHM can be written
in terms of Pauli matrices σ̂ a

j , and we use the symbol
〈ij 〉a to indicate that two nearest-neighbor sites (nn) i,j

share the same a bond. The extended KHM is obtained by
adding next-nearest-neighbor (nnn) interactions between three
spins σ̂ a

i σ̂ c
j σ̂ b

k associated with each pair of bonds 〈ij 〉a,〈jk〉b
sharing the site j , where the direction of the component c is
complementary to a,b. The Hamiltonian of the extended KHM
model is

ˆ̃H = −
∑
nn

Jaσ̂
a
i σ̂ a

j − K
∑
nnn

σ̂ a
i σ̂ c

j σ̂ b
k . (1)

The ground states of the Hamiltonian (1) fall into three classes
[28]. For K = 0, there are two distinct phases, which are
gapless and gapped Abelian quantum spin liquids. At nonzero
K , all of these phases acquire a gap, and the excitations of
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FIG. 2. (i) Schematic dependence of the structure factor Saa
q=0(ω) on energy ω and spin component a for the Abelian and non-Abelian QSL

phases of the (extended) KHM. (a)–(e) show behavior at different representative points in the phase diagram along the line Jx=Jy , as indicated
in (ii), with K = 0 for (a)–(c) and K > 0 for (d) and (e). Distinct spin components are denoted by solid (a = z) and dashed (a = x,y) lines.
The insets show the density of states N (ω) of Majorana fermions and the energy of a Majorana bound state, where this is induced by the
presence of a flux pair. As discussed in Sec. III, sharp (δ-function) contributions to Saa

q=0(ω) appear for the Abelian model in the region of the
phase diagram that is unshaded in (ii), but not in the shaded region. An additional sharp component is present in the extended KHM, throughout
the non-Abelian phase and in some regions of the Abelian phases.

the formerly gapless state become non-Abelian. In all phases,
the independent degrees of freedom are static Z2 gauge fluxes
living on the plaquettes of the lattice, and dynamical Majorana
fermions defined on the sites. The time evolution of the
Majoranas is generated by the Hamiltonian whose form is
fixed by a particular configuration of the Z2 gauge field.

The relation between the independent degrees of freedom
and the original spin variables is simplest deep in the Abelian
gapped phase. Consider, for example, Jz � |Jx |,|Jy | and K =
0. Then in the ground state σ z

i σ z
j = +1 for all neighboring pairs

〈ij 〉z, and an excitation of energy approximately 2Jz consists
of a pair with σ z

i σ z
j = −1. Majorana fermions represent

excitations of this kind. Coherence between different pairs
is established in this limit by Jx and Jy . Fluxes characterize
this coherence, as discussed in Ref. [28].

Our central objective is to calculate the dynamical structure
factor (SF)

Saa
q (ω) = 1

N

∑
ij

e−iq(ri−rj )
∫ ∞

−∞
dteiωtSaa

ij (t), (2)

which can be measured in INS and ESR experiments. It is
the Fourier transform in time and space of the dynamical
correlation function

Saa
ij (t) = 〈σ̂ a

i (t)σ̂ a
j (0)〉, (3)

where σ̂ a
i (t) is the ath component of spin-operator in Heisen-

berg representation at time t on site i.
Here, we consider the zero temperature case, so that the

average 〈. . . 〉 is taken in the ground state of the Kitaev model.
The dynamical structure factor contains extensive information
on excitations in the model, as is evident from the Lehmann

representation

Saa
ij (ω) =

∑
λ

〈0|σ̂ a
i |λ〉〈λ|σ̂ a

j |0〉δ(ω − [Eλ − E0]), (4)

where Eλ is the energy corresponding to an eigenstate |λ〉.

III. SUMMARY OF RESULTS

We find that different representatives of the family of
Kitaev Hamiltonians encompass a set of qualitatively different
responses, which we depict schematically in Fig. 2. All have in
common that the spin correlations are ultrashort ranged, as first
noted in Ref. [53]: the structure factor contains contributions
only from on-site and nearest-neighbor correlators, and only
those with the same spin component. This is a consequence of
the static nature of the emergent Z2 gauge fluxes. As a result,
there are no sharp features in reciprocal space—in itself of
course a classic “necessary but not sufficient” diagnostic of
spin liquid behavior—so that we restrict our plots in Fig. 2 to
Sq=0(ω).

The next and considerably more surprising result is that,
in all cases, the dynamical response is gapped, regardless
of whether or not the underlying spin liquid phase has an
excitation gap. The minimal gap in the response is given
by the energy difference between the ground state and the
lowest-energy state with a flux pair in adjacent plaquettes.

One component of the above-gap response is broad in
energy and results from Majorana fermion excitations. Its
low-energy onset is at the two-flux gap in the phase with
gapless Majorana excitations, but is higher in energy in the
gapped Majorana phase. As we discuss below, this broad
response is due mainly to either single-fermion or two-fermion

115127-3



KNOLLE, KOVRIZHIN, CHALKER, AND MOESSNER PHYSICAL REVIEW B 92, 115127 (2015)

excitations, depending on the spin component and Hamiltonian
parameters.

A further striking aspect of the dynamical response is that
it includes in some instances sharp (δ-function) components
in frequency space, a remarkable feature in view of the fact
that all independent quasiparticle excitations of the model
are fractionalized and so cannot be created individually by
the action of a local operator such as σa

i . In our discussion
below, we identify two distinct physical mechanisms by which
these sharp contributions arise. One mechanism involves
“zero-fermion” transitions, in which only Z2 fluxes and no
Majorana fermions are excited; the other stems from the
bound states that are characteristic of vortices in this kind
of non-Abelian spin liquid.

While the excitation spectrum of the KHM is independent
of the sign of exchange interactions, the ferromagnetic and
antiferromagnetic models are clearly distinguished by the q
dependence of their response. Viewed in direct space, a sign
reversal for Ja leaves the on-site correlator Saa

ii unchanged but
reverses the sign of the nearest neighbor Saa

ij . In reciprocal
space, this sign reversal transfers intensity in a characteristic
way between the center and boundary of the Brillouin zone,
as examined in Sec. VI A.

Much of the behavior summarized in Fig. 2 can be under-
stood starting from a selection rule for Majorana excitations.
We set this out in Sec. III A, and provide a more detailed
discussion of our results for each phase in Sec. III B.

A. Selection rules and a dynamical transition

The states |λ〉 that contribute to Lehmann expression,
Eq. (4), for the dynamical structure factor are ones with
nonzero matrix elements 〈λ|σ̂ a

j |0〉. Expressed in terms of Z2

fluxes and Majorana fermions, they obey selection rules that
we now discuss.

The flux selection rule is very simple (see also [53]): the
action of σa

j inserts fluxes through the plaquettes on either side
of the bond 〈jk〉a , as illustrated in Fig. 3. Since the ground state
|0〉 is flux-free and fluxes are static, |λ〉 contains this flux pair
and no others.

To introduce the selection rule involving Majorana
fermions, consider in the first instance the ferromagnetic
Abelian KHM deep in the gapped phase, with Jz � Jx,Jy > 0
and K = 0. It is then natural to discuss energy eigenstates
in the basis of eigenstates of σ̂ z

i , and for states in this basis

FIG. 3. (Color online) A measurement of a dynamic structure
factor leads to a sudden insertion of a pair of Z2 gauge fluxes (shown
with minus signs in red).

to count the number Nz of neighboring pairs of spins 〈ij 〉z
that are antiparallel. One can define a spin-parity operator
Pz ≡ (−1)Nz = ∏

j σ̂ z
j . The Kitaev Hamiltonian commutes

with Pz and so all energy eigenstates can be chosen to have
a definite parity. Moreover, Pz is unchanged by the action of
a single σ̂ z

i operator, but is reversed by the action of a single
σ̂ x

i or σ̂
y

i operator. Hence the ground state |0〉 couples only
to states |λ〉 with the opposite parity for the structure factor
components having a = x,y, and only to states |λ〉 with same
parity for the component with a = z.

Deep in the gapped phase the lowest energy wave function
for Majorana fermions in any flux sector has predominantly
Nz = 0, and therefore belongs to the Pz = +1 sector. The
higher energy states with single Majorana fermion excitations
consist mostly of one antiparallel spin pair and belong to the
Pz = −1 sector. They form an energy band that is centered on
2Jz and has a width set by Jx and Jy .

Components of Saa
ij (ω) with a = x,y therefore arise in this

part of the phase diagram only from states |λ〉 that contain odd
numbers of fermion excitations. Their main weight is due to
single fermion excitations and is concentrated in a band near
ω = 2Jz. These components also have some weight in higher
bands near odd multiples of 2Jz, but this turns out to be very
small.

Conversely, the component with a = z involves only states
with an even number of matter fermion excitations. The lowest
in energy of these is simply the unique excited state |λ0〉
containing no matter fermions and only the added flux pair.
Since the matrix element 〈λ0|σ̂ a

j |0〉 involving this state is
nonzero, it contributes to Saa

ij (ω) a δ function with finite weight
at frequency ω = Eλ0 − E0. Higher energy contributions form
bands around even multiples of 2Jz.

We find a dynamical transition at which this δ function in
the structure factor disappears on moving through the phase
diagram. The mechanism is as follows. Away from the limit
Jz � Jx,Jy , the parities of the ground states in the relevant flux
sectors (zero-flux and the three two-flux states that have flux
pairs either side of x, y, or z bonds) are no longer necessarily
even. In fact, their relative parities change on a line shown
in Fig. 2(ii). All four ground states have the same parity for
Jz � Jx,Jy , but near Jz = Jx = Jy the ground state with a flux
pair across a z bond has opposite Pz parity to the other three
ground states. As a result, there is no δ-function contribution to
any component of Saa

ij (ω) in this phase. Note that the boundary
on which this dynamical transition occurs is distinct from
the previously known thermodynamic boundary between the
gapless and gapped phases, in fact lying within the gapless
phase.

Of course, similar arguments can be constructed using
parity operators Px and Py based on the other components
of spin, leading to the conclusion for the Abelian model that
Saa

ij (ω) has a δ-function contribution in a region of the phase
diagram where Ja is dominant, but not elsewhere.

There is also a second mechanism that may generate a sharp
contribution in the response. It is operative if the spectrum of
Majorana fermion excitations that contributes to {|λ〉} includes
an isolated level, separate from continuous bands. Let |λ1〉 be
the state containing only a flux pair and this fermion excitation.
Provided 〈λ1|σ̂ a

j |0〉 is finite, this state contributes to Saa
ij (ω)

a δ-function at frequency ω = Eλ1 − E0. This is the case
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at some values of Jz � Jx = Jy in the extended KHM, for
a = x,y within both dynamical phases, and for a = z in the
dynamical phase that includes the isotropic point. Here the
isolated level is a Majorana bound state trapped on the flux
pair that is introduced into |0〉 by the action of σ̂ a

j . It is known
that flux excitations in the non-Abelian phase carry bound
states of Majorana fermions, and these spatially localized
states appear below the gap of the single-particle Majorana
fermion continuum [35].

B. Qualitative features of the response

We now discuss more fully the behavior shown in Fig. 2,
where we set Jx/Jz = Jy/Jz = j so that there are only two
distinct components of the response: Szz(ω) and Sxx(ω) =
Syy(ω).

1. Abelian QSL

Schematic results for the structure factor in Kitaev Abelian
QSL phases are shown in panels (a)–(c) of Fig. 2 (i). In the
isotropic model (a), Saa(ω) is nonzero above the energy cost
� for the introduction of a flux pair. Its dominant weight arises
from single Majorana fermion excitations, but a tail continues
to higher energies. Although the energy width of the Majorana
fermion band determines the extent of the main response, the
energy dependence of the intensity has no simple relation to
the magnitude of the Majorana density of states, because the
response involves fermion propagation in the presence of a
flux pair. It nevertheless reflects features such as the van Hove
singularity.

In the anisotropic model (b), there are distinct responses
Sxx(ω) and Szz(ω), including different flux gaps, �x and �z.
Within the gapless phase, both components have nonzero
contributions above the respective flux gap. In addition,
beyond the dynamical phase boundary, Szz(ω) has a δ-function
contribution at ω = �z.

In the gapped Abelian phase (c), the δ function in Szz(ω)
at ω = �z persists, but there is an energy gap separating it
from the two-fermion continuum around ω = 4Jz. By contrast,
Sxx(ω) has no δ-function component and is dominated by a
single-fermion continuum around ω = 2Jz.

2. Non-Abelian QSL

The response in the non-Abelian phase (K �= 0 and 0.5 <

j < 1) has features that are distinct from the ones which we
find for the model with K = 0. They arise because there are
bound states of Majorana fermions associated with flux pairs.

At the isotropic point (d) this composite flux-fermion
bound state manifests itself as a single sharp component in
the dynamic structure factor, that would be absent from the
corresponding Abelian phase. With anisotropy (e) the energies
of sharp contributions to Sxx and Szz are the sum of the
fermion bound state energy and the two-flux gap, �x or �z,
and therefore unequal.

C. Broader implications

The main features of the response described above are
robust against, for example, the addition of weak Heisenberg
interactions to the Kitaev Hamiltonian, since spin-parity

remains a good quantum number. The most important con-
sequence of such additional interactions is that fluxes acquire
dynamics. This will broaden the response around ω = �, but
we expect that it will remain always gapped, and that distinct
contributions to components of Saa

ij from states with zero,
one, and two matter fermion excitations will continue to be
identifiable.

IV. REDUCTION OF THE SPIN HAMILTONIAN
TO A FERMION QUADRATIC FORM

The extended KHM model can be solved exactly following
the original approach of Kitaev [28]. We introduce four
Majorana fermion species ĉi and b̂a

i with a = x,y,z on
every lattice site i. These fermions obey the anticommutation
relations {ci,cj } = 2δij and {b̂a

i ,b̂
a′
j } = 2δij δaa′ . Spin operators

can be represented in terms of ĉi and b̂a
i as

σ̂ a
i = iĉi b̂

a
i . (5)

Next, we define bond operators ûij = ib̂a
i b̂

a
j with i,j

labeling nearest-neighbor sites at the ends of bond a. In terms
of the bond operators ûij and the matter fermions ĉi , the
Hamiltonian of the extended KHM reads

Ĥ =
∑
〈ij〉a

iJaûij ĉi ĉj + iK
∑

〈ij〉a ,〈jk〉b
ûij ûjkĉi ĉk. (6)

Bond operators are constants of motion with the eigenvalues
uij = ±1. Thus the Hilbert space in which Ĥ acts can be
decomposed into “gauge” |F 〉 and “matter” |M〉 sectors.
Replacing the bond operators by their eigenvalues we arrive at
a Hamiltonian which is quadratic in Majorana fermions, and
thus can be diagonalized. Note that three-spin interactions give
rise to next-nearest-neighbor hopping for the matter fermions.

The Hamiltonian of Eq. (6) acts in an enlarged Hilbert
space of four Majorana fermions at each site, rather than
a two-dimensional spin Hilbert space. This redundancy of
the Majorana mapping manifests itself in the local Z2

gauge structure, namely the physical properties (including the
spectrum) depend on the configurations {φ�} of Z2 fluxes
on the plaquettes of the lattice, rather than the configuration
of bond variables. The flux on each hexagon is given by a
product of bond variables φ� = ∏

〈ij〉∈� uij . The physical

eigenstates |	phys〉 = P̂ |	〉 are obtained using a projector to
the physical subspace P̂ = 1

2 P̂ ′[1 + (−1)Nχ (−1)Nf ]. Here, P̂ ′
is the sum of all operators that change bond fermion numbers
in an inequivalent way [42,56], and Nχ/f denote bond/matter
fermion number operators.

Observables should of course be evaluated using physical
eigenstates |	phys〉, but for the operators that do not change
bond fermion number the same result can be obtained by
omitting P̂ and employing the unprojected states of the form
|	〉 = |F 〉 ⊗ |M〉 (see Ref. [53] and Appendix A of Ref. [34]).
In the following, we restrict ourselves to observables of this
type (note that for large systems complications from finite-size
effects are negligible [57]).

For a given configuration of bond variables {uij }, the
Hamiltonian can conveniently be written in the form

Ĥ = i

2

(
ĉA ĉB

)( F M

−MT −D

)(
ĉA

ĉB

)
(7)
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with the N × N matrix Mij = u〈ij〉a Ja for N unit cells. Here,
ĉA/ĉB is shorthand for the N -component vectors ĉAr/ĉBr. The
next-nearest-neighbor matrices Fij and Dij vanish if K = 0,
but are nonzero at finite K , see Eq. (6). We note that Eq. (7) is
the most general form of a quadratic Majorana Hamiltonian.
Instead of dealing with Majorana fermions, it is more conve-
nient to work with standard fermions, which can be obtained
by combining two Majoranas into a single entity. To this end,
we introduce two complex fermion species: bond fermions

χ̂
†
〈ij〉a = 1

2 (b̂a
i − ib̂a

j ) (8)

and matter fermions

f̂r = 1
2 (ĉAr + iĉBr), (9)

which obey standard anticommutation relations [53]. Here,
A and B denote sublattice sites in the unit cell with coordinate
r. The link variables ûij are simply related to the occupation
numbers of bond fermions via

ûij = 2χ̂
†
〈ij〉a χ̂〈ij〉a − 1. (10)

Using the shorthand notation ĉA = f̂ † + f̂ and ĉB =
i(f̂ † − f̂ ), we write the Hamiltonian in terms of complex
fermions as

Ĥ = 1

2
(f̂ † f̂ )

(
h �

�† −hT

)(
f̂

f̂ †

)
, (11)

where h = (M + MT ) + i(F − D) and � = (MT − M) +
i(F + D). The resulting Hamiltonian has the Bogoliubov-de
Gennes form. It is diagonalized using a unitary transformation
T , see, e.g., Ref. [58], with T T † = I and

T

(
h �

�† −hT

)
T † =

(
E 0

0 −E

)
(12)

yielding

Ĥ =
∑
n>0

Enâ
†
nân − 1

2

∑
n>0

En, (13)

where En � 0 for n = 1, . . . ,N are the eigenvalues, which
depend on the flux configuration, En ≡ En({φ�}). The
ground state of the matter fermion Hamiltonian (13) is
defined by âi |gs〉 = 0, with âi = X∗

ikf̂k + Y ∗
ikf̂

†
k . The ground-

state energy is therefore Egs = − 1
2

∑
n En. In order to find

the global ground state of the spin Hamiltonian (1), one
must compare ground-state energies Egs({φ�}) in all flux
sectors. Fortunately, due to a theorem by Lieb, we know
that the fermionic ground state in a translationally invariant
honeycomb lattice is flux-free [59]. We denote the ground
state of Ĥ by |0〉 = |F0〉 ⊗ |M0〉 and fix the gauge such that
û〈ij〉a |F0〉 = +1|F0〉 for all 〈ij 〉a .

A. Ground-state flux sector

In the ground-state flux sector defined above, the Hamil-
tonian commutes with translations, and can be block-
diagonalized via a Fourier transform f̂r = 1√

N

∑
q∈BZ e−iqrf̂q

such that

Ĥ0 =
∑
q∈BZ

(f̂ †
q f̂−q)

(
ξq −�q

−�∗
q −ξq

)(
f̂q

f̂
†
−q

)
. (14)

In this representation, Ĥ0 is equivalent to a BCS Hamiltonian
describing a superconductor with a momentum-dependent gap
�q = −iImsq − κq (complex for K �= 0), whose quasiparticle
dispersion is ξq = Resq, where sq = ∑

i=0,1,2 Jαi
eiqni , and

κq = −4K
∑

i=1,3,5 sin qdi . Here α0 = z,α1 = x,α2 = y, the

nearest-neighbor vectors n0 = (0,0), n1 = (1/2,
√

3/2), n2 =
(−1/2,

√
3/2), and the six next-nearest-neighbor vectors di ,

i = 1, . . . ,6 are defined in Fig. 1(a).
After writing the expression for the gap in the form

�q = |�q|eiφq , the Hamiltonian Ĥ0 can be diagonalized by
the Bogoliubov transformation(

f̂q

f̂
†
−q

)
=

(
cos θq eiφq sin θq

−e−iφq sin θq cos θq

)(
âq

â
†
−q

)
, (15)

where θq is fixed by the condition tan 2θq = |�q|/ξq. Defining
Eq = ξq cos 2θq + |�q| sin 2θq one can write the Hamiltonian
in the form

Ĥ0 =
∑

q

Eq(â†
qâq − 1/2), (16)

whose spectrum is given by

Eq = 2
√

ξ 2
q + |�q|2. (17)

For K = 0, the spectrum Eq = 2|sq| of fermionic matter
excitations â

†
q|M0〉 is gapless if |Jz| < |Jx | + |Jy | (and per-

mutations). At the isotropic point Jx = Jy = Jz, there are two
Dirac cones positioned at Q = ±(2π/3, − 2π/3) with a linear
energy spectrum E(q) ∝ |q| at small energies, see Fig. 1(b).
In the presence of exchange anisotropy, the Dirac cones move
in the Brillouin zone, and merge at the transition line (between
the gapped and gapless QSLs), so that for |Jz| > |Jx | + |Jy |
(and permutations) the spectrum is gapped. The phase diagram
of the Kitaev model through the cut in the parameter space
defined by Jx + Jy + Jz = 1 is shown in Fig. 1(c).

The Dirac cones of the gapless phase (shown in grey)
become gapped for nonzero K , see Fig. 1(b). The spectrum
remains gapless only along the dashed lines in Fig. 1(c) with
quadratic band touching at zero energy. The outer triangles of
the phase diagram correspond to gapped Abelian QSLs whose
fermionic bands are characterized by a zero Chern number.
The particle/hole bands of the formerly gapless phase (central
triangle) have Chern numbers ν = ±1, and the phase possesses
non-Abelian excitations [28].

V. CALCULATION OF THE DYNAMICAL
STRUCTURE FACTOR

In this section, we present several complementary methods,
which we developed to study the dynamical response in
different phases of the (extended) KHM. Those include
two exact methods, as well as a number of approximate
approaches. First, we outline the mapping to the quantum
quench problem, which is the starting point of our analysis.
Second, we present the exact determinant approach, which
allows one to study numerically moderately large systems (see
details in Appendix A), and may provide a starting point for
further analytical investigations. We also discuss another exact
approach, based on the solution of an integral equation, which
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provides results in the thermodynamic limit. We conclude
with the discussion of two approximations: the calculation
of few-particle contributions to the response, and the adiabatic
approach.

A. Quantum quench correspondence

The calculation of the dynamical spin-response in the
(extended) KHM can be mapped onto a local quantum quench
problem for Majorana fermions, where a potential is created
at time t = 0, and Majoranas propagate in the presence of this
potential at t > 0, which is similar to an x-ray edge singularity
problem. This analogy was noticed by the authors of Ref. [53],
and the results of our theory have been presented in earlier work
[9]. Here, we outline briefly the main steps of the quantum
quench mapping; see Ref. [9] for details.

A general expression for the dynamical structure factor is
given by a Fourier transform of a two-time spin-correlation
function. The latter can be expressed, following Kitaev, as the
matrix element of Majorana fermions and flux operators with
respect to the ground state. In this representation the mapping
to a quantum quench problem becomes very clear. The spin
operator at time t = 0 in Eq. (2), for example, on sublattice
“A” given by σ̂ a

i = iĉi[χ̂〈ij〉a + χ̂
†
〈ij〉a ], contains bond fermion

operators which exchange their number on the bond 〈ij 〉a
between zero and one. This corresponds to a change of signs
of two fluxes on two adjacent plaquettes sharing the bond, see
Fig. 3. Since the fluxes are static, the spin flip at time t in Eq. (2)
must revert these fluxes back to their original state in order to
have a nonzero matrix element. This simple selection rule
leads to vanishing dynamical spin correlators beyond nearest
neigbors [53], and the ones that remain nonzero are the on-site
and nearest-neighbor correlators on the bond 〈ij 〉a:

Sab
ij (t) ∝ δ〈ij〉a S(t). (18)

Elimination of the flux degrees of freedom reduces the
correlators to an essentially noninteracting form. However,
there is a price to pay, as in this representation one is faced
with a nonequilibrium problem [53], whose physics is closely
related to the celebrated x-ray edge singularity (see, e.g.,
Ref. [60]). Explicitly, the z components of the correlators,
which enter the structure factor read

Szz
AB(t) = −i〈M0|eiĤ0t ĉAe−iĤzt ĉB |M0〉,

(19)
Szz

AA(t) = 〈M0|eiĤ0t ĉAe−iĤzt ĉA|M0〉,
and similarly for the x and y components. The Hamiltonian
Ĥz, which describes the time-evolution of Majorana fermions
in the matter sector after the quench

Ĥz = Ĥ0 + V̂ , (20)

differs from Ĥ0 only in the sign of the nearest- and (in the
extended KHM) next-nearest-neighbor Majorana hoppings, as
can be seen from the form of a local “quench potential” given
by the sum of two contributions V̂ = V̂z + V̂K , where

V̂z = −2iJzĉAĉB, (21)

V̂K = 2iK[ĉA (̂cAd5 − ĉAd6 ) + ĉB(ĉBd2 − ĉBd3 )]. (22)

For example, the sign of the bond variable uAB in Ĥz is opposite
to the one in the ground state.

This concludes the mapping of the problem of calculat-
ing dynamical spin correlators in Kitaev model to a local
potential quantum quench. Despite an obvious similarity of
the expressions given above with the ones studied in the x-ray
edge problem, we stress that the physics turns out to be quite
different, due to the presence of fractionalized quasiparticles.

In the (extended) KHM, the Majorana density of states at
small energies either vanishes as zero energy is approached,
due to Dirac dispersion, or has a gap, depending on the values
of interaction constants Ja and K . This low-energy behavior
is in contrast to what appears as an essential ingredient of
an x-ray edge singularity problem, namely, finite density of
states, which lead to power-laws in the response. Related to
this is the absence of the standard Anderson orthogonality
catastrophe [61] in our case. For example, deep in the
gapless phase, the overlap between two Majorana ground
states in different flux sectors (with and without V̂ ) does not
vanish in the thermodynamic limit. There is another crucial
ingredient in the Kitaev model that is absent in the x-ray
edge singularity problem, and which leads to a new kind
of Anderson orthogonality catastrophe. Compared with the
standard case, in the Kitaev model only the fermion parity,
but not their number, is conserved. We find that this has
a dramatic effect on the dynamic correlation functions, and
most remarkably, gives rise to a dynamical phase diagram
(see Fig. 7).

B. Exact methods

An exact evaluation of the dynamical structure factor
starting from the Lehmann representation would amount to
a summation of an infinite number of multiparticle processes
generated by a complete set of states |{λα}〉 = �αb̂

†
λα

|MF
0 〉

in Eq. (34). Such a procedure is impractical, and instead we
developed two complementary exact approaches of calculating
the SF, whose utility varies across the phase diagram.

1. Determinant approach for correlation functions

Rewriting the correlators (19) in terms of Bogoliubov
quasiparticles âq , which diagonalize the flux-free Hamiltionian
Ĥ0 [see, e.g., Eq. (C2)], we obtain

Szz
AA/AB(t) = eiE0t

[(
XT

0 + Y T
0

)
M̂(X∗

0 ± Y ∗
0 )
]

00, (23)

where the plus/minus sign corresponds to AA/AB correlators.
The main task is the evaluation of the matrix elements of the
generic form

Mql(t) = 〈M0|âqe
−iĤzt â

†
l |M0〉 , (24)

where Hz is a Hermitian operator containing anomalous terms
such as âq âk + H.c. The latter conserve only the particle
number parity, but not their number.

By representing Eq. (24) in terms of a coherent state path
integral, one can obtain an expression for the matrix elements
Mql in terms of Pfaffians:

Mql(t) = e−iEF
0 tD0

{
Pf

[
S−1

{2N−l,q}
] − Pf[S−1]δql

}
, (25)

see details and definitions in Appendix A.
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This determinant approach is exact for finite-size systems
in all phases of the (extended) KHM, namely it allows
one to obtain the results for time-dependent correlation
functions with any desired accuracy at arbitrary times. Similar
approaches are used in the studies of quantum quenches in,
e.g., quantum Ising model, nonequilibrium Luttinger liquids,
as well as in the context of full counting statistics (FCS)
[62–64].

One can obtain a simplified expression for the matrix
elements, which requires calculation of a single determinant,
and an inverse of an N × N matrix at every time step of the
calculations, as shown in Appendix A. Here we only quote the
final result. With the definition of an N × N matrix

� = YT
F e−iÊF tY∗

F + X†
F eiÊF tXF , (26)

where ÊF is an N × N diagonal matrix formed from the
positive eigenergies EF

n of the Hamiltonian Ĥz and X and Y
matrices correspond to a product of Bogoliubov transforma-
tions, see Appendix C, whose matrix elements read

Mql(t) =
√

Det[�(t)][�−1(t)]ql . (27)

A precise definition of the square root of the determinant can
be found at the end of Appendix A.

We note that one can use Eq. (27) in calculations for
relatively large systems (we used a laptop to study systems
with up to 104 spins). In fact, in the gapped (extended) KHM
phases, it provides essentially numerically exact results for
the response because finite-size effects are negligibly small
even in moderately sized systems. Remarkably, this method
also works well near the isotropic point Jx = Jy = Jz because
the time-dependent correlation function vanishes quickly with
increasing time. This provided us with an independent check
of the integral equation approach.

2. Integral equation approach

In a recent paper, we showed that for a KHM it is
possible to study the time-dependent correlators exactly in
the thermodynamic limit [9]. Here, we outline the main steps
of the calculations for completeness.

In the interaction representation, with the time evolution
governed by the Hamiltonian Ĥ0, the local potential V̂ plays
the role of an interaction. The time evolution of an operator Â

in this representation has the form Â(t) = eiĤ0t Âe−iĤ0t , and
the wave functions evolve under the Ŝ matrix

Ŝ(t,0) = eiĤ0t e−iĤzt = T exp

[
−i

∫ t

0
dτ V̂ (τ )

]
, (28)

where T is the usual time ordering and the nearest-neighbor
dynamical correlator defined in Eq. (19) assumes the form

Szz
AB(t) = −i〈M0|ĉA(t)S(t,0)ĉB(0)|M0〉. (29)

The main simplification and the reason why this mapping
to an x-ray edge form of the correlator is possible can be
traced back to a particularly simple local form of the impurity
potential, e.g., for KHM, V̂z = −2iJzĉAĉB , which is clear from
the representation in terms of f̂ fermions. After introducing
the occupation number operator n̂f = f̂ †f̂ for the latter, where
f̂ † creates a complex matter fermion associated with the bond

of the unit cell r = 0, the potential can be written as

V̂z(t) = −4Jz[n̂f (t) − 1/2]. (30)

With these transformations, the correlation functions can be
reduced to simple expressions:

Szz
AB/AA(t) = i[G(t,0) ± G(0,t)], (31)

where the two Greens functions are given in a standard time-
ordered form:

G(t,0) = −i〈T[f̂ (t)f̂ †(0)e−i
∫ t

0 dτ V̂z(τ )]〉, (32)

G(0,t) = −i〈T[f̂ (0)f̂ †(t)e−i
∫ t

0 dτ V̂z(τ )]〉. (33)

These expressions for the GFs are similar to the ones that
arise in the x-ray edge problem [54,60], and can be evaluated
exactly. This was done by us in Ref. [9] using a Dyson equation.
The Dyson equation can be solved with the help of methods
from the mathematical theory of singular integral equations,
see, e.g., a classic book by Muskhelishvili [65], and details of
our calculations in the Supplementary Material of Ref. [9]. We
checked that our numerical implementation of the determinant
and integral equation approaches produce identical results (see
also Ref. [66]).

Note that deep inside the gapless phase, the ground states
in the matter sector with and without a flux pair have a finite
overlap in the thermodynamic limit, remarkably, there is no
Anderson orthogonality catastrophe [61]. This is due to the
fact that the spectrum of matter fermions in the gapless phase
is linear (Dirac-like), which leads to a vanishing DOS at small
energies, and hence a small number of low-energy excitations,
which can be generated by an abrupt insertion of the fluxes
(whereas in the standard x-ray edge problem the density of
states is finite). Similarly absent are x-ray edge singularities in
the response functions.

3. Few-particle contributions to the response

Before examining results from the exact solution, it is
instructive to look at the Lehmann representation of the
dynamical correlation functions in the matter fermion sector.
In the remainder, we will concentrate on a discussion of the
nearest-neighbor correlators Szz

AB(t); the on-site correlators
Szz

AA(t) can be obtained in a similar way. First, we define the
basis |λ̃〉 of many-body eigenstates of the Hamiltonian Ĥz

with the corresponding eigenvalues EF
λ̃

, where E0 and EF
0 are

the ground-state energies of Ĥ0 and Ĥz, respectively. After
insertion of the identity operator

∑
λ̃ |λ̃〉〈λ̃| into Eq. (19), we

obtain

Szz
AB(t) = −i

∑
λ̃

eit(E0−EF
λ̃

)〈M0|ĉA|λ̃〉〈λ̃|ĉB |M0〉, (34)

whose Fourier transform gives

Szz
AB(ω) = −2πi

∑
λ̃

〈M0|ĉA|λ̃〉〈λ̃|ĉB |M0〉δω−[EF
λ̃

−E0]. (35)

From this representation, it is clear that the response
vanishes below � = EF

0 − E0, which is the energy of the
flux gap [9,67,68]. In a fixed gauge, Ĥ0 and Ĥz conserve
matter fermion parity and the only nonvanishing contributions
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to Eq. (35) arise from excited states |λ̃〉 whose parity is opposite
to the ground state |M0〉. Therefore the relative matter fermion
parity of the ground states with and without fluxes plays a
crucial role, and one has two possibilities. In case (I), the
ground states of Ĥ0 and Ĥz have the same parity, in which
case the states |λ̃〉 must contain an odd number of excitations.
In case (II), when the ground states have opposite parity, |λ̃〉
contains an even number of excitations. The sector with no
excitations makes a special contribution in case (II), because it
is just the ground state of the Hamiltonian Ĥz. Its contribution
to Szz

AB(ω) is sharp in frequency, whereas the contributions
from the sectors with finite numbers of excitations are broad.
As discussed in Sec. III, this striking distinction between cases
I and II gives rise to a dynamical phase diagram because the
relative parity varies as a function of coupling constants; see
also Fig. 7.

Using Eq. (34) one can obtain contributions from different
fermion states, e.g., ground state |MF 〉, single-particle states
|λ〉 = b̂

†
λ|MF 〉, two-particle states |λλ′〉 = b̂

†
λb̂

†
λ′ |MF 〉, etc.,

note the absence of tilde on λ.
In order to calculate these multiparticle contributions to the

response, one has to relate fermionic operators in the different
flux sectors, as we explain in Appendix C. In case (II) (red
region in the dynamical phase diagram), the approach must be
adapted to the situation in which the relative parity is different;
details can be found in Appendix D 1, where it is shown that a
sharp component, which appears exactly at the flux gap, arises
from a zero particle contribution in the Lehman expansion,

S
zz(0)
AB (ω) ∝ δ(ω − �). (36)

We find (see further discussion at the end of Sec. V C) that
the single-particle contribution captures 97.5% of the total
weight of the response at the isotropic point of the phase
diagram with K = 0. Moreover, multiparticle contributions
become smaller away from this point or at nonzero K ,
and so (depending on relative parities of zero-flux and two-
flux ground states) single-fermion or zero- and two-fermion
excitations account for nearly all the response.

C. Approximate methods

1. Adiabatic approach

Due to vanishing density of states in gapless KHM phases,
a replacement of an abrupt quench of the potential by an
adiabatic switching on/off from −∞ to +∞ turns out to
be a very good approximation [9] in the green region of the
dynamical phase diagram (Fig. 7), and this replacement is
exact in the low-energy limit. In this adiabatic approach, the
potential generated by a flip of a flux pair is switched slowly in
time, thus the S matrix S(t,0) can be replaced by S(∞, − ∞),
see, e.g., Ref. [69], and the correlator assumes the form

S
zz,ad
AB (t) = −i〈M0|T [ĉA(t)ĉB(0)S(∞, − ∞)]|M0〉

= −ieitE0〈MF |ĉAe−iĤzt ĉB |MF 〉 (37)

with the only difference between Eqs. (37) and (19) being
that the ground state |M0〉 has been replaced by |MF 〉. This
dramatically simplifies the calculations (because the integral
equation can now be solved by a Fourier transform), and
one arrives at an expression for the structure factor in this

approximation:

S
zz,ad
q=0 (ω) = 8π

∑
λ

|Xλ0|2δω−[EF
λ +�], (38)

where X is a Bogoliubov matrix, see Appendix C.

2. Lehmann representation and single-particle contributions

Another quantitatively good approximation can be derived
from the Lehmann representation (35). It holds in case (I)
[green region in Fig. 7(a)] where both ground states (with and
without fluxes) have the same parity, so that only the states with
odd numbers of fermion excitation parities contribute. Taking
the |λ〉 = b̂

†
λ|MF

0 〉, we find the single-particle contribution to
the structure factor:

S
zz(1)
q=0 (ω) = 8π |〈MF |M0〉|2

∑
λ

|[X−1†X]λ0|2δω−[EF
λ +�], (39)

see Appendix D 2 for details and definitions. Similarly, one
can obtain two-particle contributions, see, e.g., Ref. [11].

A comparison between cumulants

μ[n](ω) =
∫ ω

0
d� �nSq=0(�) (40)

of the exact solution with those of the single-particle response
is presented in Fig. 4. The agreement is remarkable, which is
due to the fact that only a small number of fermionic excitations
is generated by the quench. The absence of orthogonality
catastrophe makes the single-particle contribution (39) a
quantitatively good approximation accounting for 97.5% of the
total intensity. Note that, above the single-particle Majorana
band edge adjusted by the flux gap ω = 6Jz + �, the single-
particle cumulants μ[n] do not depend on ω. In contrast, the
cumulants of the exact solution are frequency dependent due to
many-particle processes (whose contribution to the response
is very small).

FIG. 4. (Color online) Cumulants μn (n = 0,1,2) of Eq. (40) are
shown for K = 0 at the isotropic point. Black lines: exact result.
Colored lines: the single-particle contribution. Note that, at the
frequency of the Majorana fermion band edge shifted by the flux
gap (i.e., ω = 6Jz + �), the contributions from the single-particle
excitations constitute 97.5% of the response. (The calculation is for a
system with 65 × 65 unit cells. The small oscillations at low energies
are due to finite-size effects.)

115127-9



KNOLLE, KOVRIZHIN, CHALKER, AND MOESSNER PHYSICAL REVIEW B 92, 115127 (2015)

q

ω
/J

z

AFM

M K M

6

5

4

3

2

1

0

q

ω
/J

z

FM

M K M

6

5

4

3

2

1

0 0

10

20

30

40

50

60

70

80

0

5

10

15

20

25

30

35

40

Γ Γ

FIG. 5. (Color online) The dynamic structure factor Saa(q,ω) for the ferromagnetic (left) and antiferromagnetic (right) KHM at the isotropic
point, as a function of q and ω on the cut M-�-K-M through the Brillouin zone.

VI. RESULTS FOR THE STRUCTURE FACTOR

In this section, we present a selection of the results for the
structure factor in support of the schematic pictures shown
in Fig. 2. The results here supplement those in Fig. 2 of our
earlier paper [9].

A. Structure factor of the gapless Abelian QSL

An overview of the wave-vector and frequency depen-
dence of the structure factor, and a comparison between
the ferromagnetic and antiferromagnetic models, is shown in
Fig. 5 for the isotropic point of the KHM. The main features
of the ω dependence are relatively insensitive to q and to
the sign of the exchange interactions. However, there is a
striking shift of intensity from the center of the Brillouin zone

FIG. 6. (Color online) Dependence of Szz
q=0(ω) on ω at the

isotropic point of KHM. Blue line (highest peak) is a numerically
exact result. Red line (middle peak), single-particle contribution.
Black line (lowest peak), the result of adiabatic approximation. The
blue line is obtained in the thermodynamic limit via the integral
equation approach; the red and the black lines are obtained for a
system with 65 × 65 unit cells, with an energy averaging over a
window of width 0.025Jz to remove finite-size effects. A comparison
between cumulants calculated within the same approaches is shown
in the inset.

in the ferromagnetic case to the edge of the Brillouin zone in
the antiferromagnetic case, because of the change in sign of
the nearest-neigbor correlator Saa

ij (ω), as discussed in Sec. III.
The frequency dependence of Saa(q,ω) with q = 0 is

shown in Fig. 6 for the ferromagnetic model at the same
point in the phase diagram. The main features set out in
Sec. III are apparent: the response is nonzero only above the
two-flux energy gap, and the dominant contribution extends
over the energy width of the Majorana fermion band. Figure
6 also demonstrates that single Majorana fermion excitations
account for the majority of the response, and that our adiabatic
approximation [scaled using the sum rule Eq. (E1)] captures
the behavior quite accurately.

Evidence for the dynamical phase transition, which is
discussed in detail in Sec. III, is presented in Fig. 7. The
structure factor Szz(ω) includes a δ-function contribution in
the indicated region of the phase diagram, with a weight that
drops discontinuously to zero at the transition. On approaching
the transition from the opposite side, a broad peak above the

FIG. 7. (Color online) (a) Dynamical phase diagram of the KHM
model. The structure factor Szz(ω) contains a δ-function contribution
in the red region of (a), but not in the green region. Thermodynamic
phase boundaries are indicated by white dashed lines. (b) Overlaps
between Majorana fermion ground states from different flux sectors
on the line Jx = Jy (see Appendix D 1 for notation). The weight of the
δ function, which is proportional to the overlap |〈Mxy

F |M0〉|2, is shown
in the red region. At the dynamical phase transition, Jx/Jz = Jy/Jz ≈
0.71, the overlap drops to zero. The alternative overlap |〈MF |M0〉|2,
shown in the green region, is finite where Szz(ω) has no δ-function
contribution.

115127-10



DYNAMICS OF FRACTIONALIZATION IN QUANTUM SPIN . . . PHYSICAL REVIEW B 92, 115127 (2015)

0 0.5 1 1.5 2
ω/J

z

0

50

100

150

200

S
zz

(q
=

0,
ω

) 
ar

b.
un

it
s

FIG. 8. (Color online) Szz
q=0(ω) component of the dynamical

structure factor in the gapless phase (green in Fig. 7) for Jz = 1.
Red, green, and blues curves: Jx = Jy = 0.8,0.9,1.0. Note that the
response diverges at the threshold on approaching the dynamical
phase boundary. A similar divergence appears in the calculation of
the adiabatic approximation (38).

flux gap (see Fig. 6) sharpens and shifts to lower energies,
see Fig. 8. The continuum response has a divergence at the
flux gap energy precisely at the transition. After crossing the
transition, this sharp peak splits into a δ function, and a finite
continuum response as shown in Fig. 9.

B. Structure factor of the extended KHM (K �= 0)

At a finite value of the three-spin interaction K , the next-
nearest-neighbor hopping gaps out the Dirac cones (see Fig. 1),
and the resulting QSL state hosts non-Abelian excitations. This
can be seen in the representation of the Hamiltonain in terms
of spinless fermions, Eq. (14). These interactions break time-

FIG. 9. (Color online) Szz
q=0(ω) component of the dynamical

structure factor in the gapless intermediate phase (red in Fig. 7), for
Jx = Jy = 0.6, Jz = 1. Note a δ-function contribution to the response
at the energy of the flux gap. The broad component of the structure
factor shows a significant multiparticle weight compared to other
phases.
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FIG. 10. (Color online) Spectral features on the line
j=Jx/Jz=Jy/Jz for K = 0.1Jz, shown in order to highlight
the signatures of the thermodynamic phase transition between
Abelian and non-Abelian phases at j = 0.5 and the dynamical phase
transition at j � 0.73. Red line: overlap |〈M0|Mxy

F 〉|; blue line:
the flux gap �. Both the overlap and the flux gap are continuous
at j = 0.5, but their derivatives are discontinuous, signaling the
thermodynamic transition [33], while at j � 0.73 the overlap drops
abruptly to zero, indicating the dynamical phase transition. Black
crosses: dependence of the energy of the lowest excited state (the
band edge) for a translationally invariant system (black crosses);
green diamonds: energy of the lowest excited state for a system with
two fluxes. For the values of j where these energies are different,
the fluxes support a static (as opposed to a dynamically generated)
fermion bound state.

reversal symmetry, and the “superconducting gap” in Eq. (14)
acquires a phase. The Hamiltonian in the translationally
invariant system (in the absence of fluxes) is identical to
a Hamiltonian describing a px + ipy superconductor, which
can support bound states in vortex cores. More specifically,
an isolated half-vortex, equivalent to a Z2 flux in the KHM,
carries a zero-energy state [28,70,71].

When evaluating the dynamical structure factor we are
concerned with fermion states in the presence of a pair of Z2

fluxes, induced by the action of σa
j on the flux-free found state.

Since the two fluxes are in adjacent plaquettes, the zero-energy
modes that would be associated with each one if they were
isolated are hybridized, forming a more conventional bound
state at finite energy, or merging with the continuum for some
values of Ja . The behavior of this bound state and some other
features of the Majorana fermion spectrum in the extended
KHM are illustrated in Fig. 10.

C. Fermionic bound state signatures in the structure factor

In Fig. 11, we present results for the dynamic structure
factor at the isotropic point in the non-Abelian phase. The
main features of the response are a δ-function component due
to a Majorana fermion level bound to a flux pair, and a broad
component from excitations to the fermion continuum. The
sharp feature is at an energy ω = � + EF

1 = 0.924Jz which is
the sum of the two-flux gap � = EF

0 − E0 � 0.545Jz and the
fermion bound state energy EF

1 , while the onset of the broad
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FIG. 11. (Color online) Dynamic structure factor Saa
q (ω) at

Jx=Jy=Jz and K = 0.1Jz as calculated from the exact determinant
approach (blue). In addition, we show the single-particle contribution
(red) and the adiabatic approximation (black, with total intensity
fixed by the sum rule). (Inset) Majorana fermion density of states
N (ω) of the flux-free sector. Note a δ-function contribution to
Saa

q (ω) from the localized Majorana state bound to a flux pair. Its
energy, � + EF

1 = 0.924Jz, is below the single-particle gap. The
calculations are done for a system of 56 × 56 unit cells, using an
energy broadening of 0.025Jz to reduce finite-size effects.

feature is at � + EF
2 , where EF

2 = 2.002Jz is the energy of
the fermion band edge.

In Fig. 12, we show the dynamic structure factor Saa(ω)
at a point in the Abelian phase of the extended KHM. It
displays some of the main features introduced in Sec. III: a
distinctive difference between Sxx(ω), dominated by single-
fermion excitations, and Szz(ω), which has a sharp zero-
fermion contribution at the energy � = 0.0905Jz of the flux
gap, and a small two-fermion band, with an onset at � + 2EF

1 ,

FIG. 12. (Color online) Dynamic structure factor Saa(ω) for in-
equivalent components a=z,x in the Abelian anisotropic QSL at
Jx=Jy=0.25Jz and K = 0.1Jz. (Inset) Majorana fermion density of
states N (ω) in the flux-free sector. The zz correlator has a δ-function
contribution at the two-flux energy, arising from a “zero-fermion”
excitation, and also a weak two-fermion contribution. The main
contribution to the xx correlator is from single fermion excitations.
Calculations are done for a system of size 56 × 56 unit cells using a
broadening 0.025Jz to reduce finite-size effects.

FIG. 13. (Color online) Dependence of the weight of δ-function
contribution to Szz(ω) on j = Jx/Jz = Jy/Jz for K = 0.1Jz. (Inset)
Dependence of the energy ωmin of the δ-function contribution and
the two-flux gap on j . The thermodynamic and dynamical transitions
occur at j = 0.5 and 0.73, respectively. Weights and energies vary
continuously across the transitions, although the origin of the δ

function is different in the two dynamical phases.

where EF
1 is the lowest fermion excitation energy, lying at the

band edge since there is no fermion bound state for this choice
of interaction strengths.

We examine in Fig. 13 the evolution across the phase dia-
gram of the energy and weight of the δ-function contribution
to Saa(ω) in the extended KHM. This arises through different
mechanisms in the two dynamical phases. For j < 0.73, it is
due to a transition to a state with a flux pair but no fermion
excitations, and is visible only in the component a = z. For
0.73 < j � 1, it arises from a transition to a state with a flux
pair and a fermion excitation in a bound state, and appears in all
components a. It is notable that evolution is continuous across
the dynamical transition and also across the thermodynamic
transition at j = 0.5.

VII. OUTLOOK

We have presented a complete and exact calculation of
the dynamical structure factor of the various quantum spin
liquid phases of the Kitaev honeycomb model, with results
summarized in Sec. III. These contain both general features
indicating the presence of fractionalized excitations, as well
as a sufficient amount of detail reflecting the particular QSL
phase to be useful as identifying diagnostics.

A question that follows almost reflexively concerns the
applicability of such a set of results to models away from
special points of exactitude, or indeed actual materials. A case
in point is the kind of Heisenberg-Kitaev J1 − J2 − J3 − �

model, which has been adduced to account for properties of
the Ir-Kitaev materials in 2D.

Here, we expect the important gross features to be robust,
as the mechanisms underpinning these phenomena are not
predicated on integrability. For instance, the emergent fluxes
will continue to be natural variables to describe the spin liquid,
even if they are no longer immobile or entirely absent from
the ground state. A suppression of low-energy scattering due
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to the selection rule on the fluxes should therefore persist.
Similarly, for the sharp delta-function features, both the
ingredients underpinning their appearance survive a departure
from integrability. Given these two—the parity selection rules,
and the presence of Majorana bound states in the case
of the non-Abelian QSL—can further be distinguished by
considering different components of the structure factor in the
anisotropic spin response, this may be a particularly promising
way for detecting a phase with non-Abelian anyons. Regarding
the latter, however, it is worth bearing in mind that there is the
possibility of the bound state energy being increased to the
extent that it will merge with the single-particle continuum.

Our results indicate that the dynamical structure factor
allows for a quite a detailed level of Majorana spectroscopy,
reflecting, e.g., their bandwidth, their interactions with the
flux pair from zero all the way to many-particle signals, their
arrangement in the perturbed ground state, or the presence of
bound states. We believe that this is an important feature in the
broader quest for Majorana physics, which has been central
to topological condensed matter physics for a while. It will
remain to be seen to what extent some of the finer features,
such as the higher multiparticle continua with their relatively
small weight, will in practice be visible. In the first instance,
both the broad and sharp features at relatively low energies are
going to be the most likely signatures, and our exact solution
will hopefully be of use in modeling these in an attempt to fit
experimental results [26].

The technology developed here to study the dynamical
structure factor may be applied to other members of the
large and growing family of Kitaev QSLs [42,43,49,51,52].
Majorana spectroscopy as outlined above will likely be an
appropriate framework for interpreting the results in most
cases, where it is an entirely open question how “details”—
such as spatial dimensionality, dimensionality of the zero-
energy Majorana manifold, symmetries and possibly different
selection rules—will manifest themselves. Beyond building
up a compendium of possible behaviors, we hope that such
a program will lead to a practically useful field guide for the
identification of such QSLs. Investigating the properties of
surface states of 3D QSLs appear to be another promising line
of future work.

Finally, the general methodological advances of our work
should be applicable in contexts beyond the KHM. An
approximate approach to the computation of the dynamic
structure factor, here called the adiabatic approximation, has
been known and used elsewhere for a long time, even in the
remarkably similar problem of a missing core electron in a
“single graphite plane” [72].

Beyond this, however, our calculation of the dynamic
structure factor can be taken as an exact solution of a local
quantum quench [53], related but not identical, to the x-ray
edge problem [54], and as such represents a contribution to
nonequilibrium quantum dynamics in its own right, for which
we have developed two complementary approaches. First, in
order to obtain exact results in the thermodynamic limit, we
have adapted a method from the theory of singular integral
equations [9,65,73], which can be extended to calculations of
the full frequency dependence for the local impurity quenches
with a nonstandard fermionic density of states. Second, we
have derived an exact determinant expression for an arbitrary

quadratic quench (allowing for the presence of anomalous
terms), which can be useful for numerical calculations with
systems considerably larger than those accessible to exact
diagonalization. We hope that the insights presented in our
work, together with the technology developed here, will be
of use for the investigation of an extended class of fermionic
many problems.
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APPENDIX A: DETERMINANT APPROACH
FOR CORRELATION FUNCTIONS

Below we present the derivation of exact expressions for
the dynamical spin correlators, similar in spirit to those of
full-counting statistics (FCS). These results can be applied
to evaluate numerically the structure factor in finite systems,
whose size is much larger than is amenable to exact diag-
onalization approaches. The results of this section are not
constrained to a specific model, and may provide a starting
point for further analytical considerations.

1. Definitions

The dynamical spin correlation functions of the (extended)
KHM can be expressed in terms of matrix elements, see
Eq. (23), which have the following form:

Mql(t) = 〈M0|âqe
−iĤzt â

†
l |M0〉, (A1)

where Ĥz = Ĥ0 + V̂z is the Majorana (matter) Hamiltonian in
the presence of two flipped fluxes (playing a role of a local
potential for Majoranas), and |M0〉 is the ground state of Ĥ0,
defined as âq |M0〉 = 0 for all q ∈ BZ.

We will now derive expressions for the matrix elements
(A1) that are suitable for numerical evaluation, in terms of
Pfaffians. First, it is convenient to express the Hamiltonian Ĥz

in terms of operators âq . In this representation, the Hamiltonian
assumes the Bogoliubov-de Gennes form

Ĥz =
∑
ij

[
hij â

†
i âj + 1

2�
†
ij âi âj + 1

2�ij â
†
i â

†
j

]
, (A2)

where h and � are the matrices to be defined later (the
following discussion does not rely on a specific form of the
matrices, provided that the Hamiltonian is Hermitian).

The matrix elements defined in Eq. (A1) can be calculated
using Grassmann path integrals. First, we represent the state
|M0〉 in terms of a trace over a complete set of states {|n〉}
using a projector to the ground state, which has no fermions,
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so that

Mql(t) =
∑

n

〈n|â†
N â

†
N−1 . . . â

†
1 âqe

−iĤzt â
†
l â1 . . . âN |n〉

= Tr{e−iĤzt â
†
l â1 . . . âN â

†
N . . . â

†
1âq}. (A3)

Here, N is the total number of momentum states in the
Brillouin zone (which is equal to the number of unit cells).
After commuting all â

†
l to the right and all âq to the left, we

obtain

Mql(t) = (−1)q+lTr{â†
N . . . â

†
l+1â

†
l−1 . . . â

†
1

× e−iĤzt â1 . . . âq−1âq+1 . . . âN }
− δqlTr{â†

N . . . â
†
1e

−iĤzt â1 . . . âN }. (A4)

Notice that a single creation operator â
†
l , and a single

annihilation operator âq is absent in the first term. Now our
task is to derive a generating functional F[J ∗,J ]. Then the
matrix elements Mql (and other Green functions) are obtained
by a differentiation with respect to the source terms J . For
example,

Tr{â†
N . . . â

†
1e

−iĤzt â1 . . . âN } = ∂2NF[J ∗,J ]

∂JN . . . ∂J1∂J ∗
1 . . . ∂J ∗

N

.

Using the identity operator for the set of Grassmann
variables {φα}, α = 1 . . . N (see, e.g., Ref. [74])

Î =
∫ N∏

α=1

dφ∗
αdφαe−∑

α φ∗
αφα |φ〉〈φ|, (A5)

one can write for D0 ≡ Tr[e−iĤzt ],

D0 =
∫ N∏

α=1

dφ∗
αdφαe−∑

α φ∗
αφα 〈−φ|e−iĤzt |φ〉.

Using the Suzuki-Trotter decomposition on the right-hand side
(r.h.s.) of this equation by inserting M − 1 times the identity
operator, so that we have M time intervals (δt = t/M), we
obtain

D0 = lim
M→∞

∫
D[φ∗,φ]e−∑M

l=1〈φl |(φl−φl−1)〉

× e−iδt
∑M

l=1[〈φl |ĥ|φl−1〉+ 1
2 〈φl |�̂|φl∗〉+ 1

2 〈φ(l−1)∗|�̂†|φl−1〉].

Here,
∫

D[φ∗,φ] ≡ ∫ ∏M
l=1

∏N
α=1 dφl∗

α dφl
α , and the fields

obey antiperiodic boundary conditions φM
α = −φ0

α . Next, we
introduce a Fourier transform in the Matsubara space:

φl
α = 1√

M

p= M
2 −1∑

p=− M
2

φ̃p
α eiωpl, (A6)

with the Matsubara frequencies given by ωp = 2π
M

(p + 1
2 ).

The sum over frequencies in Eq. (A7) can be separated into
positive and negative components (note that ω−(p+1) = −ωp).
We absorb the common factor iδt into a redefinition of
matrices h̃ = ihδt and �̃ = i�δt , and take the large M limit.
Note that the latter introduces a phase ambiguity in the path
integral, see, e.g., Ref. [75], which will be resolved at a
later stage. By introducing a vector notation (in the index

α), we combine the Grassmann variables into a single vector
|�p〉 = [|φ̃p〉 |φ̃−(p+1)∗〉]T , and after defining the matrix

F̂p =
[
iωp + 1

2 h̃ 1
2�̃

1
2 �̃† iωp − 1

2 h̃T

]
, (A7)

the expression for the D0 assumes a compact form:

D0 = lim
M→∞

∫
D[�†,�]e−∑ M

2 −1

p=0 〈�p |F̂p |�p〉. (A8)

In order to evaluate the path integral in Eq. (A9), we first
diagonalize the quadratic Hamiltonian

Ĥ = 1

2
[â†

i âi]

[
h̃ �̃

�̃† −h̃T

][
âj

â
†
j

]
≡ α̂†H̄ α̂ (A9)

using a Bogoliubov transformation described by a matrix T̂ ,
see Ref. [58], such that

T̂ H̄ T̂ −1 = 1

2

[
�̂ 0

0 −�̂

]
, (A10)

where �̂ is an N × N diagonal matrix of eigenvalues �n. Note
that the eigenvalues En in Eq. (12) and the eigenvalues �n in
Eq. (A10) differ by a factor of iδt . We can now write the
expression for Ĥ in the diagonal form Ĥ = ∑

n>0 �nb̂
†
nb̂n −

1
2

∑
n>0 �n. In the remainder, we will omit the constant

contribution, which will be restored in the final expression.
The matrices of the Bogoliubov transformations have been
defined in Sec. IV, and have a form

T̂ −1 =
[
X T Y†

YT X†

]
and T̂ =

[
X ∗ Y∗
Y X

]
(A11)

with X and Y being N × N matrices. We recall that this trans-
formation relates the operators âα and b̂α , which diagonalize
the Hamiltonian Ĥ0 in the flux-free sector and the Hamiltonian
Ĥz in the two-flux sector, respectively. Now we can write
Eq. (A9) in a diagonal form. After introducing another vector
combined of Grassman variables 〈	p| ≡ [〈ψp∗

1 | 〈ψp

2 |] =
〈�p|T̂ −1, we obtain

D0 =
∫

D[	†,	]e
−∑∞

p=0〈	p |
⎡
⎣iωp + �̂ 0

0 iωp − �̂

⎤
⎦|	p〉

=
N∏

n=1

e
∑∞

p=−∞ ln (iωp+�n) =
N∏

n=1

(
1 + e−iEF

n t
)
. (A12)

The last line was obtained by evaluating the Grassmann
integrals, see, e.g., Ref. [75], and we used a standard formula∑

p ln (iωp + �n) = ln[1 + e−iEnt ] (note that �n = iδtEF
n ).

2. Generating functional

We construct a generating functional by adding source
terms, represented by vectors of Grassman variables |J̃ p〉 =
[|J̃ p〉, − |J̃−(p+1)∗〉]T , to the path integral

F[J ∗,J ] =
∫

D[�†,�]e−∑
p〈�p |F̂p |�p〉e

∑
p〈�p |J̃ p〉+〈J̃ p |�p〉.

(A13)
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The Gaussian integrals are calculated using the Bogoliubov
transformation, and after taking the inverse Fourier transform
back from the Matsubara frequency space,

J̃ p
α = 1√

M

M∑
m=1

eiωpmJm
α , (A14)

we arrive at the expression

F[J ∗,J ] = D0e

∑
p,mn

〈J m|T̂ †

⎡
⎢⎢⎣

e−iωp (m−n)

iωp+�̂
0

0 e+iωp (m−n)

iωp−�̂

⎤
⎥⎥⎦T̂ |J n〉

.

In the following, we will only require the functional derivatives
taken at the times having the index M , e.g., the matrix elements
of the form ∂2F/∂JM

i ∂JM∗
j , because all operators â

†
i and âj in

Tr{. . . â†
i . . . e−iĤzt . . . âj . . .} are taken at the same time [at the

boundary, see Eq. (A6)], and we set m = n = M . Further, we
extend the sums over p negative frequencies, and introduce
the definitions

∑∞
p=−∞[iωp ± �̂]−1 ≡ n∓(Ê), where Ê is a

vector of eigenvalues En. The phase ambiguity in the path
integral can be fixed by comparing the results with the ones
calculated by the standard operator theory of low-order matrix
elements, e.g., Tr{â†

l e
−iĤzt âq}, see Ref. [66]. The functions

n∓(Ê) = 1

1 + e±Ê
(A15)

assume the form of the Fermi distribution, and we obtain

F[J ∗,J ] = D0e

1
2 〈J |T̂ −1

⎡
⎣n−(Ê) 0

0 n+(Ê)

⎤
⎦T̂ |J 〉

. (A16)

Note the factor of 1/2, which is due to the fact that the sums
have been extended to negative frequencies; we have dropped
the index M . The matrix can now be written in explicit form:

T̂ −1

[
n−(Ê) 0

0 n+(Ê)

]
T̂ =

[A B
C D

]
,

where the entries A,B,C,D are given by N × N matrices:

A = X T n−X ∗ + Y†n+Y, B = X T n−Y∗ + Y†n+X ,

C = YT n−X ∗ + X†n+Y, D = YT n−Y∗ + X†n+X .

In terms of these matrices, the partition function reads

F[J ∗,J ] = D0e
1
2 {〈J |Â|J 〉−〈J |B̂J ∗〉−〈J ∗|Ĉ|J 〉+〈J ∗|D̂|J ∗〉}, (A17)

where we substituted D with −AT , which fixes the phase
ambiguity. Note that in the absence of the anomalous terms in
the Hamiltonian, the expression for the generating functional
that we obtained reduces to the standard free-fermion result
[74].

One could now in principle calculate the matrix elements
in Eq. (A4) by differentiating Eq. (A17) with respect to the
sources. However, we find it more convenient to proceed in
a different way. First, we reorder the expression under the
exponent into a trace with the antisymmetric matrixS = −ST ,
defined as

S ≡
[ −B A
−AT −C

]
, (A18)

so that we can write

F[J ∗,J ] = D0e
1
2 〈J |S|J 〉. (A19)

3. Matrix elements

Let us now discuss the calculation of the matrix element

L(t) ≡ Tr{â†
N . . . â

†
1e

−iĤzt â1 . . . âN }

= (−1)N
∫

D[φ∗,φ]e−S[φ∗,φ]φM∗
N . . . φM∗

1 φ0
1 . . . φ0

N

= ∂2N

∂JN . . . ∂J1∂J ∗
1 . . . ∂J ∗

N

F[J ∗,J ],

where the sign factor (−1)N on the second line appears due
to antiperiodic boundary conditions on Grassmann variables.
Differentiation with respect to Grassmann variables is essen-
tially the same as integration (see Ref. [76]) so that

L(t) =
∫

dJN . . . dJ1dJ ∗
1 . . . dJ ∗

N F[J ∗,J ]. (A20)

After relabelling [J ∗
1 . . . J ∗

NJ1 . . . JN ] → [θ1 . . . θ2N ], we ar-
rive at the result

L(t) = (−1)
N(N−1)

2 D0 ×
∫

dθ2N . . . dθ1e
1
2 θT Sθ

= (−1)
N(N−1)

2 D0 PfS. (A21)

In the last line, we used the Gaussian integration of antisym-
metric matrices with the Grassmann variables, which results
in a Pfaffian, see, e.g., Ref. [76].

The first term in the matrix element Mql in Eq. (A4) has
the form with a creation and an annihilation operator removed,
namely,

Rql(t) ≡ Tr{â†
N . . . â

†
l+1â

†
l−1 . . . â

†
1

× e−iĤzt â1 . . . âq−1âq+1 . . . âN }

= (−1)
(N−1)(N−2)

2 D0

∫
D[θql]e

1
2 θT Sθ ,

where the measure of the integral is defined as

D[θql] = dθ2N . . . dθ2N−l+1dθ2N−l−1 . . . dθq+1dθq−1 . . . dθ1.

In the series expansion of the exponent, the only nonvanishing
terms, which remain after the integration, are those that contain
2N − 2 Grassmann operators:∫

D[θql]e
1
2 θT Sθ = 2−N+1

(N − 1)!

∫
D[θ ](θTSθ )N−1

= 2−N+1

(N − 1)!

∑
P

sgn[P ]Si1i2Si3i4 . . .

= PfS[ql],

where P is a transposition of 2N − 2 indices (i.e., 1 . . . 2N

excluding q and 2N − l). The matrix S[ql] is obtained from the
matrix S by removing two lines and two columns at positions
2N − l and q. Finally, we arrive at the exact expression for the
matrix element:

Rql(t) = (−1)
(N−1)(N−2)

2 D0 PfS[ql]. (A22)
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Equation (A22) requires an evaluation of a Pfaffian of the
matrix S[ql] with size 2(N − 1) × 2(N − 1). In a numerical
implementation of this equation, the determinant |D0| can
become very large, while the absolute value of Pfaffians very
small, which would bring large numerical errors. In order to
regularize the matrix elements, one can use the well-known
property of Pfaffians, namely Pf[BABT ] = DetB × PfA for
any matrix B of the same size as A. To this end, we introduce
a 2N × 2N diagonal matrix B = diag[(1 + e−itEF

n ), 1 . . . 1︸ ︷︷ ︸
N times

],

whose determinant is equal to

DetB =
∏
n

(1 + e−itEF
n ) = D0. (A23)

This matrix provides a required regularization of the matrix
elements through the expression

D0PfS = Pf[BSB]. (A24)

While the matrix under the Pfaffian on the l.h.s. of this
expression can become ill-conditioned, the r.h.s. of this
expression can be evaluated numerically without difficulties.

For the Pfaffian entering the expression for the Rql(t), we
use the expansion formula of Eq. (B2) to derive the identity

PfS[ql] = (−1)l+q(−1)N+1Pf

⎡
⎢⎢⎢⎢⎢⎣

0 0

0 0 0 +1 0

0 0

0 −1 0 0 0

0 0

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
≡S{ql}

,

(A25)
where the 2N × 2N matrix S{ql} on the r.h.s. is obtained from
the matrix S by setting the rows and columns 2N − l and q to
zero, and Sq 2N−l = −1 and S2N−l q = +1. We have

Rql(t) = (−1)q+l(−1)
N(N−1)

2 D0Pf[S{ql}], (A26)

where the Pfaffian is calculated for a 2N × 2N matrix.
As was shown above for the matrix S, one can regularize

the Pfaffian PfS{ql} using the same matrix B. After defining a
phase factor

K(t) = e−iEF
0 t (−1)

N(N−1)
2 , (A27)

and collecting all contributions, we obtain the expression for
the complete matrix element:

Mql(t) = K(t){Pf[BS{ql}B] − δqlPf[BSB]}, (A28)

which is Eq. (25) of the main text. This expression can be
further simplified by generalizing a theorem for Pfaffians, see
Ref. [77], and we obtain

Mql(t) = −K(t)D0PfS × [ÎN + ĜT ]ql, (A29)

where Ĝ is the upper right N × N block of the inverse of S,
and IN is the N × N identity matrix. One can still reduce the
size of the matrices that needs to be inverted by a factor of
two due to a special structure of the result. Let us introduce an
N × N matrix:

� = YT
F e−iÊF tY∗

F + X†
F eiÊF tXF , (A30)

where ÊF is a N × N diagonal matrix of EF
n . We arrive at the

following simple result:

Mql(t) =
√

Det[�(t)][�−1(t)]ql, (A31)

where a precise definition of the square root is the following:√
Det[�(t)] =

√
|Det[�(t)]|eiϕ�(t)/2, (A32)

and the phase ϕ�(t) = arg[Det[�(t)]] is taken to be a contin-
uous function of time. Note also that Mql(0) = δql . The phase
ϕ�(t) contains a large linear part −2E0t , and in numerical
calculations it is convenient to separate this contribution first.
In fact, the loop contribution in the diagrammatic expansion
can be written as

〈Ŝ(t,0)〉 = eiE0t 〈e−iĤzt 〉 = eiE0t
√

Det[�(t)]. (A33)

APPENDIX B: SOME USEFUL PROPERTIES
OF PFAFFIANS

The results of the previous section have been expressed in
terms of Pfaffians, which often appear in Gaussian integrals
over anticommuting variables, see, e.g., Ref. [76]. Below we
present a short overview of the definitions and the properties
of Pfaffians that are relevant for our calculations.

A Pfaffian is an extension of a determinant for skew-
symmetric matrices A = −AT . It is always possible to write
a determinant of a skew-symmetric matrix as the square of a
polynomial in the matrix elements [76],

[PfA]2 = DetA. (B1)

The formal definition of a Pfaffian for a 2N × 2N skew-
symmetric matrix A is

PfA = 1

2NN !

∑
P∈i1...i2N

sgn[P ] ai1i2ai3i4 . . . ai2N−1i2N

with the matrix elements aij , and sgn[P ] = ±1 the sign of
the permutation P . Hence the Paffian has a unique sign for
the square root PfA = ±√

DetA. Note that the Pfaffian of an
odd-dimensional matrix is zero.

Several properties known from determinants carry over in
a modified way to Pfaffians [76,78]: (i) multiplication of a row
and a column on a constant is the same as multiplication of the
entire Pfaffian on this constant; (ii) interchanging two rows and
the corresponding columns flips the sign of the Pfaffian; and
(iii) adding multiples of a row and the corresponding column
to another row and a column does not affect a Pfaffian.

Another very useful property (in particular for numerical
computations) is an expansion formula for the Pfaffians:

PfA =
2N∑
i=2

(−1)ia1i Pf[A1i], (B2)

with the reduced matrix A1i having the first row and the ith
column removed. In addition, we will use the relation

Pf[BABT ] = PfA DetB, (B3)

which is valid for an arbitrary square matrix B having the same
dimension as A.
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APPENDIX C: GROUND-STATE OVERLAP FROM
THE BOGOLIUBOV TRANSFORMATIONS

The Bogoliubov transformations for the matter fermion
operators in a given flux sector (in a fixed gauge) read [58]

f̂i = XT
ikâk + Y

†
ik â

†
k, f̂

†
j = Y T

jl âl + X
†
j l â

†
l , (C1)

where X and Y are N × N matrices, and we assumed summa-
tion over repeating indices. The calculation of the dynamical
structure factor requires matrix elements between states in
different flux sectors. Let b̂ and â be the operators in
inequivalent flux sectors in which the Hamiltonians for the
matter fermions are diagonal. For definiteness let us take a
system with (index F ) and without (index 0) fluxes. The
Hamiltonian in each case is diagonalized by the respective
Bogoliubov transformations, namely, in the flux-free sector,
we have (

X∗
0 Y ∗

0

Y0 X0

)(
f̂

f̂ †

)
=

(
â

â†

)
(C2)

with the inverse(
XT

0 Y
†
0

Y T
0 X

†
0

)(
â

â†

)
=

(
f̂

f̂ †

)
. (C3)

In the sector with fluxes,(
X∗

F Y ∗
F

YF XF

)(
f̂

f̂ †

)
=

(
b̂

b̂†

)
. (C4)

Now one can use these to express b̂ operators in terms of â’s:(X ∗ Y∗

Y X

)(
â

â†

)
=

(
b̂

b̂†

)
. (C5)

Here, we introduced the matrices(X ∗ Y∗

Y X

)
=

(
X∗

F XT
0 + Y ∗

F Y T
0 X∗

F Y
†
0 + Y ∗

F X
†
0

YF XT
0 + XF YT

0 YF Y
†
0 + XF X

†
0

)
. (C6)

The ground states are related by the unitary transformation
T of Eq. (C6), and their relative parity is even or odd if the
determinant of the real orthogonal matrix

B = UT U † and U =
√

i

2

(
1 −i

i −1

)
. (C7)

is equal to ±1. Provided that the ground states of Majoranas
in the sectors with and without fluxes have the same parity, the
two-flux ground state |MF 〉 defined as b̂|MF 〉 = 0, is related
to the flux-free ground state â|M0〉 = 0 via the following
equation, see Ref. [58]:

|MF 〉 = Det
(
X†X

) 1
4 e− 1

2 Fij â
†
i â

†
j |M0〉, (C8)

Fij = [X ∗−1V∗]ij . (C9)

Hence the overlap between two ground states reads

〈MF |M0〉 = Det
(
X†X

) 1
4 . (C10)

A related overlap arises in the x-ray edge problem between
electron ground states with and without a local potential.

APPENDIX D: MULTIPARTICLE CONTRIBUTIONS
TO S(q,ω)

1. Zero- and two-particle contributions

In order to calculate the δ-function contribution in case (II),
one has to modify slightly Eq. (34). In the previous appendix
section, Appendix C, we explained how to relate different flux
sectors via proper Bogoliubov rotations, in particular Eq. (C8)
establishes the relation between ground states of different flux
sectors. Importantly, the product of the parities of two ground
states can be found from Eq. (C7). It is clear from Eq. (C8)
that |MF 〉 generated using a proper Bogolyubov rotation has
the same parity as |M0〉, so that for case (II) the approach has
to be extended to the situation in which the parity changes,
which we do in the following.

The problem with the naive use of the Lehmann repre-
sentation can be traced back to the fact that we have not
projected the identity operator to the physical subspace. In
order to cure this problem, one can reintroduce projectors,
or alternatively use improper Bogoliubov transformations.
However, there is a simpler way, which is to take advantage
of the gauge structure of the Kitaev model. As we discussed
above, the model conserves the parity of the total number of
fermions N = Nf + Nχ . A gauge transformation changes the
parity of bond and matter fermions while keeping the total
parity intact. We note that only the relative parity of matter
fermion ground states in two flux sectors (which differ by local
fluxes) is important. Since Majorana fermions are their own
adjoints ĉ2

A = 1, a correct form of the Lehmann expansion
can be obtained by plugging a modified identity operator
ĉA

∑
λ̃ |λ̃〉〈λ̃|ĉA into Eq. (19), which gives for case (II),

Szz
AB(t) = −ieiE0t

∑
λ̃

〈M0|e−iĤxy t |λ̃〉〈λ̃|ĉAĉB |M0〉. (D1)

Here, we used the fact that ĉAe−iĤzt ĉA = e−iĉAĤzĉAt with

Ĥxy ≡ ĉAĤzĉA = Ĥ0 + V̂x + V̂y (D2)

being a gauge transformation, i.e., it does not alter the
flux sector. The Hamiltonian Ĥxy can be obtained from
Ĥz by reversing the signs of all nearest neighbor, and the
next-nearest-neighbor hoppings on bonds sharing a site A. The
eigenstates of Ĥxy form a set of many-body eigenstates |λ̃〉,
which can be generated by creating excitations on top of the
ground state with fluxes, which it is convenient to represent in
terms of the ground state without fluxes via Eq. (C8). Note that
the spectrum EF

λ̃
is invariant under the gauge-transformation

discussed above, but the parity of its ground state |Mxy

F 〉 is
opposite to the parity of the ground state of Ĥz, namely |MF 〉.
Hence, in the case (II), i.e., with vanishing overlap 〈MF |M0〉
due to different parities, the overlap of the gauge-transformed
ground state is finite, and is given by

∣∣〈Mxy

F

∣∣M0
〉∣∣2 = Det|X xy |, (D3)

where the matrix X xy is defined in Appendix A.
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The zero-particle contribution is obtained by restricting the
sum over λ̃ in Eq. (D1) to the ground state

S
zz(0)
AB (t) = −ieit(E0−EF

0 )
〈
M0

∣∣Mxy

F

〉〈
M

xy

F

∣∣ĉAĉB |M0〉
= eit(E0−EF

0 )
∣∣〈Mxy

F

∣∣M0
〉∣∣2{1 − 2[Y †(Y − F∗X∗)]00

}
,

so that the structure factor at q = 0 reads

S
zz(0)
q=0 (ω) = 8π

∣∣〈Mxy

F

∣∣M0
〉∣∣2δ(ω − �)

×{1 − [Y †Y ]00 − Re[Y †F∗X∗]00}. (D4)

In order to satisfy the parity constraint, the next nonvanishing
contribution to Eq. (D1), in addition to the δ function, arises
from two-particle excited states

S
zz(2)
q=0 (ω) = 8π

∣∣〈Mxy

F

∣∣M0
〉∣∣2 ∑

λλ′
δ
(
ω − [

EF
λ + EF

λ′ + �
])

× {|Gλλ′ |4 + Re
[
iG4

λλ′G
2∗
λλ′

]/
2
}

(D5)

with matrix elements

G
[2]
λλ′ = 〈M0|b†λb†λ′

∣∣Mxy

F

〉
= 〈

M
x,y

F

∣∣M0
〉{
YλlX T

lλ′ + YλlFlkYT
kλ′

}
, (D6)

and

G
[4]
λλ′ = 〈M0|ĉB0ĉA0b

†
λb

†
λ′
∣∣Mxy

F

〉 = −iG
[2]
λλ′ + g

[4]
λλ′ + g̃

[4]
λλ′ .

(D7)

Here, we also defined the following contributions:

g
[4]
λλ′ = 2i

〈
M

xy

F

∣∣M0
〉{
XλiXi0Xλ′jYj0

−XλiYi0Xλ′jXj0 + Y ∗
i0Y0iYλlX T

lλ′
}
, (D8)

and

g̃
[4]
λλ′ = 2i

〈
M

xy

F

∣∣M0
〉{
YλlX T

lλ′X
T
0jFjiYi0

+YλlFliX
T
0iXλ′jYj0 + YλlFT

li Yi0Xλ′jXj0

+XλiXi0Yλ′lFlj Yj0 − XλiYi0Yλ′lFljXj0

−YλlFlkYT
kλ′Y

T
0jY

∗
j0

}
. (D9)

2. Single-particle contributions

In case (I), the green region in Fig. 7, the ground states of
Majorana fermions have the same parity in both (initial/final)
flux sectors. In order to calculate the spin correlators from
the Lehmann representation, we insert the identity operator
into Eq. (19) such that only the states of opposite parities
contribute. Here, we restrict the calculation to account for the
contributions from single-particle states. The latter have the
form |λ〉 = b̂

†
λ|MF

0 〉. With the help of the equation

Xλj − VλlFlj = [
X†]−1

λj
(D10)

the nearest-neighbor spin correlator assumes the form

S
zz(1)
AB (t) = |〈MF |M0〉|2

∑
λ

eit(E0−EF
λ )

×(X − Y )†0lX−1
lλ (X−1)†λj (X + Y )j0, (D11)

where we use the summation convention on repeating indices.
From this expression (and a similar one for S

zz(1)
AA ), the single-

particle contribution at q = 0 follows, see Eq. (39).

APPENDIX E: STATIC CORRELATORS, AND SUM RULES

As a check of our calculations of the dynamical correlation
functions, we make use of the sum rules, e.g.,

Szz(t = 0) = 1

2π

∫ +∞

−∞
dω Szz(ω), (E1)

which relates equal time correlators to the integrated dynami-
cal response. We employ this to check our exact results, as well
as the quality of the multiparticle approximation. The equal
time correlator can be obtained from the equation

Szz
AB(t = 0) = 1

N

∑
q∈BZ

cos θq (E2)

with θq defined in Eq. (15). At the isotropic point for
K = 0,Ja = 1 we obtain Szz

AB(t = 0) = 0.5249 in the ther-
modynamic limit. In Fig. 14(a), the equal time correlation

FIG. 14. (Color online) Dependence of the nearest-neighbor
equal-time correlator Szz

AB (t = 0) on the values of the exchange
couplings. (a) corresponds to the case K = 0, where the strength
of the nearest neighbour (n.n.) correlator is shown along the cut Jx +
Jy + Jz = 1 in the parameter space. (b) Nearest-neighbor correlator
as a function of K/Jz, at several fixed values of j = Jx/Jz = Jy/Jz,
see inset.
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function is shown in the full phase diagram [53] for K = 0.
The isolated Ising dimer limit Szz

AB(t = 0) = 1 is quickly
approached for Jx,Jy � Jz,Jz = 1. In panel (b) of the same

figure, we show the evolution of Szz
AB(t = 0) as a function of K

for different values of j = Jx/Jz = Jy/Jz. Static correlations
always decrease with increasing |K|.
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