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Using a modified spin-wave theory which artificially restores zero sublattice magnetization on finite lattices,
we investigate the entanglement properties of the Néel ordered J1-J2 Heisenberg antiferromagnet on the square
lattice. Different kinds of subsystem geometries are studied, either corner-free (line, strip) or with sharp corners
(square). Contributions from the nG = 2 Nambu-Goldstone modes give additive logarithmic corrections with a
prefactor nG/2 independent of the Rényi index. On the other hand, π/2 corners lead to additional (negative)
logarithmic corrections with a prefactor lcq which does depend on both nG and the Rényi index q, in good
agreement with scalar field theory predictions. By varying the second neighbor coupling J2 we also explore
universality across the Néel ordered side of the phase diagram of the J1-J2 antiferromagnet, from the frustrated
side 0 < J2/J1 < 1/2 where the area law term is maximal, to the strongly ferromagnetic regime −J2/J1 � 1
with a purely logarithmic growth Sq = nG

2 ln N , thus recovering the mean-field limit for a subsystem of N sites.
Finally, a universal subleading constant term γ ord

q is extracted in the case of strip subsystems, and a direct relation
is found (in the large-S limit) with the same constant extracted from free lattice systems. The singular limit of
vanishing aspect ratios is also explored, where we identify for γ ord

q a regular part and a singular component,
explaining the discrepancy of the linear scaling term for fixed width vs fixed aspect ratio subsystems.
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I. INTRODUCTION

Entanglement properties of interacting quantum spin sys-
tems have recently attracted a lot of interest. In particular, great
attention is paid to the universal information carried by bipar-
tite entanglement measures such as the Rényi entanglement
entropies (EEs) defined by

Sq = 1

1 − q
ln Tr(ρ̂�)q, (1.1)

where ρ̂� is the reduced density matrix of a given subsystem �

(see Fig. 1) computed in the ground-state wave function. Note
that the special limit of q → 1 corresponds to the standard
von Neumann EE given by S1 = −Trρ̂� ln ρ̂� and is always
implicitly understood whenever we refer to q = 1. As a general
result, at T = 0 the Rényi EEs follow an area law [1,2] in
dimension d,

Sq = aqL
d−1 + · · · , (1.2)

where Ld−1 is the size of the boundary between subsystem �

and the rest, and the ellipses are subleading corrections. Such
corrections have been shown to carry universal information
about topological order [3–6], or the presence of Nambu-
Goldstone modes associated with the breaking of a continuous
symmetry [7–10]. In the latter case, Metlitski and Grover (MG)
[7] have derived the following analytical expression in the case
of smooth boundaries (no corner), as, for instance, depicted
for d = 2 in Fig. 1(a) for L × � strip subsytems:

Sq = aqL
d−1 + nG

2
ln

(ρs

v
Ld−1

)
+ γ ord

q , (1.3)

where ρs is the stiffness, v the velocity of the nG Nambu-
Goldstone modes, and γ ord

q a universal geometric constant. In
the case of subsystems having sharp corners, as depicted in

Fig. 1(b), it is expected that [7]

Sq = aqL
d−1 + nG

2
ln

(ρs

v
Ld−1

)

+ nG

∑
c

lcq(ϕc) ln

(
L

a

)
+ γ ord

q , (1.4)

where a is a nonuniversal length scale, and the corner
contribution depends on nG, the Rényi parameter q, and the
number of corners c of angle ϕc. The contributions lcq(ϕc)
from each corner come from the (free) Goldstone modes and
can be computed, following the work of Casini and Huerta
[11] on scalar field theory, by the numerical solution of a
set of nonlinear differential equations, valid for ϕc ∈ [0,π ]
(lq(ϕ) = lq(2π − ϕ)) and q ∈ N \ {1}.

Previous works have explored the scaling of the entan-
glement entropy in ground states of systems that break con-
tinuous symmetries in the thermodynamic limit. Subleading
logarithmic corrections arising from the Goldstone modes
have been observed in quantum Monte Carlo simulations
of finite spin systems [12–14], even though the prefactor of
this correction did not perfectly agree with the prediction
nG/2, until a very recent large-scale, low-temperature quantum
Monte Carlo (QMC) investigation by Kulchytskyy et al. [9] for
the two-dimensional (2D) XY model and q = 2. Logarithmic
corrections have also been observed in finite-size spin-wave
(SW) calculations [8] (similar to the ones presented in this
manuscript), but not with a high-enough precision to again
ascertain the prediction, except for the case of a line-shaped
subsystem for which the prefactor nG/2 could be recovered
assuming further subleading corrections [10] (see also the
recent work Ref. [15]). The existence of logarithmic correc-
tions have also been discussed based on a phenomenological
picture of the tower of low-lying states in the symmetry-broken
phase of antiferromagnets [12]. Logarithmic corrections due
to corner contributions have on the other hand been identified
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FIG. 1. (Color online) Schematic picture for the L × L square
lattice J1-J2 antiferromagnet on a torus with two types of entangle-
ment bipartitions: (a) rectangular strip of extent L × � with no corners
and (b) square of extent � × � with four π/2 corners. In all this work,
we assume periodic boundary conditions in both directions.

and calculated precisely in free lattice systems [11], broken
continuous symmetries systems [12], as well as for various
critical points using QMC, cluster expansions or tree tensor
network techniques [12–14,16–24]. In a recent work [25],
predictions for the universality of corner contributions in
various theories are also provided. Finally, Kulchytskyy et al.
[9] could also compute with QMC the subleading constant
correction γ ord

2 in the 2D XY model, finding a good agreement
with the prediction of MG in Ref. [7].

In this paper, we provide a systematic high-precision study
of the universal nature of three subleading terms of the Rényi
EE appearing in Eq. (1.4) for a generic model of quantum an-
tiferromagnetism in two dimensions (d = 2). This is achieved
using a large-S semiclassical approach, the modified linear SW
theory, where the rotational SU(2) symmetry, while practically
broken, is artificially restored for finite-size systems [26,27].
We focus on the J1-J2 spin-S antiferromagnet defined on a
bipartite square lattice of N = L × L sites, by the following
Hamiltonian,

H = J1

∑
〈ij〉

Si · Sj + J2

∑
〈〈ij〉〉

Si · Sj + h
∑

i

(−1)iSz
i ,

(1.5)

where S are spin-S operators, interactions act between nearest
neighbors 〈ij 〉, and second nearest neighbors 〈〈ij 〉〉 along the
diagonals of a square lattice (see Fig. 1), and h is an external
staggered field which is positive (negative) on the sublattice
A (B) of the bipartite square lattice. We impose periodic
boundary conditions in all directions. At h = 0 this model
spontaneously breaks the SU(2) symmetry at zero temperature
in the thermodynamic limit, and displays Néel order for
J2 < Jc

2 , with J c
2 → J1/2 for S → ∞ [28]. The restoration of

zero sublattice magnetization in finite systems is made possible
by tuning the small staggered field h∗(L) such that on any site
〈Sz

i 〉 = 0. As first done in Refs. [8,10], this allows one to
correctly compute Rényi EEs on finite systems. Here we make
a systematic and extensive study across the full Néel regime
−∞ < J2 < Jc

2 for various subsystem shapes and sizes in
order to characterize contributions from (i) Nambu-Goldstone
modes, (ii) corners, (iii) frustration effects J2/J1 > 0, and (iv)
geometric effects appearing through the universal constant γ ord

q

in Eq. (1.3).

Let us briefly summarize our main results. Using a large-S
approach, we have numerically extracted the three subleading
corrections in the scaling of EEs Eq. (1.4) with nG = 2 for
SU(2) antiferromagnets [29]. Universality has been tested in
the entire Néel ordered regime of the J1-J2 Heisenberg model
Eq. (1.5) for various S, even in the frustrated regime where
QMC is inapplicable. In the case of subsystems having sharp
corners, small negative corner terms lcq are found, in perfect
agreement with the predictions by Casini and Huerta for free
scalar fields [11]. The nonuniversal area-law term has also been
studied as a function of the second neighbor coupling, showing
remarkable behaviors both in the mean-field limit (−J2/J1 �
1) where it vanishes, and close to the frustrated critical point
J c

2 where the area law prefactor strongly increases, while log
corrections due to Nambu-Goldstone modes are still present.
Furthermore, the additional geometric constant γ ord

q , which
depends on the subsystem aspect ratio �/L, is extracted for
various Rényi indices, and a simple relation with the free
scalar field result is derived. We have also explored the limit
of vanishing aspect ratios where a nontrivial slow singular
behavior shows up as γ ord

q (�/L 	 1) → −∞.
The rest of the paper is organized as follows. In Sec. II

we start by recalling the modified SW formalism for the
J1-J2 spin-S antiferromagnet, and how it can be used to
compute the Rényi EEs. We then turn to the results for EEs
in Sec. III where we discuss several aspects: We first describe
numerical diagonalization results, which can be conveniently
performed up to subsystems of �105 sites, for various shapes
of subsystems including strips [Sec. III A and Fig. 1(a)] and
squares [Fig. 1(b)], with a particular focus on the corner
contributions (Sec. III B) and their dependence on the Rényi
parameter q. In Sec. III C the dependence on the second
neighbor coupling J2 is studied, focusing on the nonuniversal
area law prefactor aq . In Sec. IV we discuss the constant
term γ ord

q which is compared to the field-theory prediction
of MG in Sec. IV A. An interesting connection to the free
scalar field result is achieved in Sec IV B. We further explore
the singular limit of vanishing aspect ratios in Sec. IV C using
quasianalytical results for single and double line subsystems
where translation symmetry inside the subsystem allows one
to get an explicit expression for Sq . Finally we summarize
and discuss our results in Sec. V. Details of spin-wave
calculations are provided in Appendix A, analytical results for
the mean-field limit −J2/J1 � 1 are presented in Appendix B,
and an analytical derivation for one-dimensional subsystems
is given in Appendix C.

II. MODIFIED SPIN-WAVE APPROACH

A. Dyson-Maleev transformation
and Bogoliubov diagonalization

We use the Dyson-Maleev formalism [30,31] to map spin
operators onto bosonic ones. For sites on sublattice A of the
square lattice,

Sz
i = S − b

†
i bi , S+

i = (2S − b
†
i bi )bi , S−

i = b
†
i , (2.1)

and for the sublattice B,

Sz
i = b

†
i bi − S, S+

i = −b
†
i (2S − b

†
i bi ), S−

i = −bi .

(2.2)
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Truncating at 1/S order, the J1-J2 Hamiltonian Eq. (1.5)
becomes (up to a constant)

H =
∑

i

(h + 4S[J1 − J2])b†i bi

+
∑
〈ij〉

SJ2(b†i bj + b
†
j bi ) −

∑
〈ij〉

SJ1(bi bj + b
†
j b

†
i ).

(2.3)

After a Fourier transformation, it reads

H =
∑

k

Ak(b†kbk + b
†
−kb−k) + Bk(b†kb

†
−k + bkb−k), (2.4)

with

Ak = 2SJ2 cos kx cos ky + 2S(J1 − J2) + h

2
, (2.5)

Bk = −SJ1[cos kx + cos ky]. (2.6)

The quadratic part of the above Hamiltonian can be diagonal-
ized via a standard Bogoliubov transformation:

bk = ukαk − vkα
†
−k b

†
k = ukα

†
k − vkα−k. (2.7)

The quasiparticle operators αk and α
†
k satisfy bosonic commu-

tation relations provided u2
k − v2

k = 1, and diagonalize (2.4)
if

u2
k = 1

2

⎛
⎝ Ak√

A2
k − B2

k

+ 1

⎞
⎠, (2.8)

v2
k = 1

2

⎛
⎝ Ak√

A2
k − B2

k

− 1

⎞
⎠. (2.9)

In terms of Bogoliubov quasiparticles, the J1-J2 Hamiltonian
takes the simpler form,

H =
∑

k

�kα
†
kαk + constant, (2.10)

with the SW excitation spectrum �k = 2
√
A2

k − B2
k (this

spectrum is illustrated in Appendix A). In the vicinity of the
two minima at k = (π,π ) and (0,0), the dispersion is linear,
with a velocity,

vsw = 2
√

2S
√

J1(J1 − 2J2), (2.11)

which is defined only if J2 < J1/2. The SW spectrum and
velocity are illustrated in Figs. 13 and 14 of Appendix A.

In the thermodynamic limit, the continuous SU(2) symme-
try of the original J1-J2 Hamiltonian can be spontaneously
broken, with the two associated Nambu-Goldstone modes at
k = (π,π ) and (0,0). The corresponding staggered magneti-
zation order parameter is given at the 1/S order by

mAF = lim
h→0

lim
N→∞

∣∣〈Sz
i

〉∣∣
= S + 1

2
− 1

8π2

∫
Bz

d2k
Ak

�k
. (2.12)

In Appendix A, this expression is evaluated numerically to
obtain the range of parameter space where Néel order is
expected from this SW treatment.

B. Spin-wave theory for finite-size systems

The above SW approach assumes a classical ordered state as
a starting point. This does not allow for a correct study of finite-
size effects since the spin rotational symmetry has to remain
unbroken on finite-size lattices. In order to repair this, adding
a staggered magnetic field to the quantum antiferromagnet
allows one to artificially restore zero sublattice (SW-corrected)
magnetization, as originally proposed in Refs. [26,27]. This
will turn crucial to capture the subleading scaling terms in the
entanglement entropy.

In this approach, one imposes that for any given finite-size
sample 〈Sz

i 〉 = 0 ∀i, which yields a staggered field h∗ such
that the number of Holstein-Primakoff bosons 〈n〉 = S. This
leads to ∑

k

Ak(h∗)

�k(h∗)
= N (2S + 1). (2.13)

This regularizing field is very small and scales rapidly to zero
with the system size [8]. Indeed, one can rewrite Eq. (2.13) as
follows:

N (2S + 1) −
∑
k �=k0

Ak(h∗)

�k(h∗)
= 2

Ak0 (h∗)

�k0 (h∗)
, (2.14)

where k0 = (0,0) and (π,π ) are the singular modes where
the dispersion vanishes in the absence of staggered field. The
contributions from these two modes, divergent in the limit
h∗ → 0, are similar:

Ak0

�k0

= 4SJ1 + h∗
√

h∗(h∗ + 8SJ1)
. (2.15)

Defining

m∗(N,h∗) = S + 1

2
− 1

2N

∑
k �=k0

Ak(h∗)

�k(h∗)
, (2.16)

we obtain a self-consistent equation for h∗,

h∗ = 4SJ1

⎡
⎣ 1√

1 − (
1

Nm∗
)2

− 1

⎤
⎦. (2.17)

In the limit N � 1, m∗ → mAF, and we have

h∗  2SJ1

m2
AF

1

N2
. (2.18)

As seen below, it is essential to determine the actual value of
h∗(L) with a high precision in order to compute accurately
various finite-size correlations. Since the field h∗ gets rapidly
very small with increasing system sizes, we resort to a multiple
precision evaluation of the self-consistent equation, Eq. (2.17).
In Fig. 2 we present the result showing the behavior of h∗(L)
for some representative values of J2 and S. In all cases, the
staggered field vanishes very fast and is well described by
Eq. (2.18) at large enough L.
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FIG. 2. (Color online) Regularizing staggered magnetic field h∗

in the J1-J2 antiferromagnet such that SW corrected magnetization
vanishes.

Interestingly this small staggered field opens a gap in the
excitation spectrum,

	∗ 
√

2SJ1h∗

 2SJ1

mAF

1

N
, (2.19)

which scales in the same way as the Anderson tower of states
[32]. Therefore, the excitation spectrum has linearly dispersing
Nambu-Goldstone (SW) modes with a level spacing ∼1/L and
a tower of states like finite-size gap ∼1/L2 produced by the
symmetry restoring staggered field.

We use this modified finite-size SW approach to compute
the entanglement entropy as detailed below. In order to show
that it reproduces fairly well the physics of finite-size systems,
we also compare in Appendix A results for the finite-size
structure factor for S = 1/2 and various J2 < 0 to the ones
obtained with the exact QMC method.

C. Entanglement entropy

As the diagonalized Hamiltonian Eq. (2.10) is noninteract-
ing, Wick’s theorem eases the computation of entanglement
entropy, which can nicely be extracted from the correlation
matrix [33], an object which contains all two-body correlations
within a block of sites. For completeness, we recapitulate here
the essential formulas.

We first need to define single-particle Green’s function
〈b†i bj 〉 = − δij

2 + fij and 〈bi bj 〉 = gij , with

fij = 1

2N

∑
k

Ak cos[k · (ri − rj)]

�k
,

gij = − 1

2N

∑
k

Bk cos[k · (ri − rj)]

�k
. (2.20)

We remark that gij = 0 (fij = 0) if i and j belong to the same
(different) sublattice(s).

The entanglement entropy of a region � containing N�

sites can then be extracted [34–36] from the eigenvalues ν2
l of

the N� × N� correlation matrix C,

Cij =
∑
i ′∈�

(fii ′ + gii ′)(fi ′j − gi ′j ), (2.21)

where i,j ∈ �. Due to the sublattice properties of f and g, we
have that Cij = Cji if i and j belong to the same sublattice,
Cij = −Cji otherwise.

The Rényi entanglement entropy is obtained as [33]

Sq = 1

q − 1

N�∑
l=1

ln

[(
νl + 1

2

)q

−
(

νl − 1

2

)q]
, (2.22)

which for q = 1 reads

S1 =
N�∑
l=1

∑
ε=±1

ε
(
νl + ε

2

)
ln

(
νl + ε

2

)
, (2.23)

and for q = ∞,

S∞ =
N�∑
l=1

ln

(
νl + 1

2

)
. (2.24)

As first shown by Srednicki [37] and Callan and Wilczek [38],
the entropy of a free massless bosonic field obeys a strict area
law, which is what we observe (data not shown) in the absence
of the regularizing staggered field h∗. However, as we will see
below, the finite staggered field which opens a finite-size gap
∼1/N leads to an additive logarithmic correction proportional
to the number of Goldstone bosons.

III. RESULTS FOR EE

A. Strip geometry

Let us start with the case of an L × � strip subsystem
embedded in an L × L torus, as depicted in Fig. 1(a).
This geometry has no corner and we therefore expect the
expression Eq. (1.3) to hold. Results obtained from the exact
diagonalization of the correlation matrix C for systems up
to ∼105 lattice sites are shown in the upper panel of Fig. 3
where the Rényi entropies for q = 1,2,3 are displayed for three
representative aspect ratios �/L = 1/2,1/4,1/8. Note that for
this strip geometry, translation symmetry of the subsystem is
used, allowing the diagonalization procedure to reach large
sizes. This plot clearly demonstrates the area law behavior
Sq ∼ aqL since the dominant scaling behavior does not depend
on the number of subsystem sites but only on its perimeter 2L,
which is independent of the aspect ratio of the subsystem. The
properties of the area law prefactor aq will be analyzed in
detail in Sec. III C, and the universal additive constant γq from
Eq. (1.3) in Sec. IV.

Here, we want to focus on the logarithmic correction
associated to the breaking of SU(2) rotational symmetry with
nG = 2 Nambu-Goldstone modes, expected to be nG

2 ln L.
This correction is believed to be universal as it should not
depend on the geometry and only reflect the nature of the
continuous symmetry which is broken in the ground state
[7,9,10]. Therefore, we perform fits to the general scaling
ansatz,

Sq(L) = aqL + lq ln L + bq + cq/L + dq/L
2, (3.1)

over various fit ranges [Lmin,Lmax]. Results for lq are plotted
in the lower panel of Fig. 3 for various values of the Rényi
parameter and several aspect ratios. For q = 1,2 we clearly
observe that lq = 1 over basically the whole range of Lmin,
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FIG. 3. (Color online) Entanglement Rényi entropies for the strip
subsystem with different aspect ratios �/L (upper panel) and fit results
for the prefactor lq of the logarithmic scaling term as a function of the
minimal system size Lmin included in the fit (lower panel). The results
displayed here have been obtained for S = 1

2 and J2 = 0. Clearly,
lq = 1 independent of q and the aspect ratio of the subsystem.

whereas for larger values of q, the convergence is relatively
slow as these results are to our experience hampered by
more severe finite-size effects. Nevertheless, the resulting lq is
already very close to 1 and the deviation decreases slowly as
Lmin is increased. This leads us to the conclusion that, within
our SW approach, we find lq = nG/2 = 1 to be independent
on q and the aspect ratio of the subsystem, in perfect agreement
with the field theoretical result by MG [7].

B. Square subsystems: corner contributions

In addition to the breaking of continuous symmetries,
logarithmic corrections to the area law can also be caused
by geometry: In particular, logarithmic corrections induced by
sharp corners of the subsystem have been discussed in several
works [11,13,14,16–18,20–22,25,39,40]. The prefactor of the
logarithmic corner correction term is expected to be universal
for all systems with the same type of symmetry breaking/phase
transition. However, such corrections are quite difficult to
capture with QMC since the prefactor is very small. Together
with the contributions coming from Nambu-Goldstone modes
Eq. (1.4), we expect a total correction of the form,

nG

(∑
c

lcq(ϕc) + 1

2

)
ln L, (3.2)

where the sum is taken over all sharp corners inside the
subsystem making an angle ϕc. Here we aim at numerically
extracting lcq(π/2) for a square subsystem [ Fig. 1(b)], expected
to coincide with the result of a free scalar field [11]. To do so,
we work with a L × L torus and substract the entropies of
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FIG. 4. (Color online) Difference of entanglement entropies for
the S = 1/2 J2 = 0 Heisenberg antiferromagnet of square and
strip subsystems having the same boundary length. The remaining
dominant scaling term is the logarithmic term which stems from
the corners of the square subsystem. We show fits (full lines) to the
form 8lcq (π/2) ln(L) + bq + cq/L + dq/L

2. SW results (symbols) are
shown for two different aspect ratios a for q = 1,2,3, and 4.

a periodic (corner-free) strip of size L × � from those of a
L/2 × L/2 square. Both subsystems having the same area law
∼2L, independent of the strip aspect ratio �/L, and identical
logarithmic corrections due to Goldstone modes, we therefore
expect the leading term of this difference to be given only by
the corner log contribution:

Ssquare
q − Sstrip

q = 8lcq(π/2) ln L + · · · . (3.3)

Numerical results are plotted in Fig. 4 where we clearly see
that the above difference Eq. (3.3) is indeed dominated by a
logarithmic scaling which allows us to extract lcq(π/2). Small
variations of the results for different aspect ratios of the strips
(see left and right panels of Fig. 4) can be used as a measure
of the error due to finite-size effects and fitting procedure.
Our results are displayed in Table I where we compare to the
free-field results by Casini and Huerta (CH) [11].

Interestingly, we can also study the dependence on the
Rényi index for noninteger values of q. In Fig. 5 we show
lcq(π/2) versus the Rényi parameter q for four different aspect
ratios. For q not too large, the estimates obtained after
fitting our numerical data (see caption of Fig. 4), are clearly
independent of the aspect ratio, as expected. This nontrivial q

dependence for a free scalar field can be compared to recent
numerical results for O(1) and O(2) Wilson-Fisher critical
points [21], featuring qualitatively similar behaviors.

TABLE I. Prefactor lcq (π/2) of the corner logarithmic correction
obtained after fitting data in Fig. 4. A comparison with data of Casini
and Huerta (CH) [11] is also given.

q = 1 q = 2 q = 3 q = 4

CH [11] −0.0118 −0.0064 −0.0051
This work −0.0118(1) −0.0064(1) −0.0050(1) −0.0043(1)
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FIG. 5. (Color online) Logarithmic contribution of a π

2 corner of
the subsystem as a function of q. This result is obtained for J2 = 0 and
S = 1

2 by subtracting the entanglement entropy of a strip subsystem
with the same perimeter as the square subsystem with 4 π

2 corners
and fitting to the same form as shown in Fig. 4 for different aspect
ratios of the strip. Up to slight deviations for larger Rényi indices q

due to finite-size effects, the results do not depend on the aspect ratio.

C. J2 dependence and area law prefactor

Besides universal contributions arising from Nambu-
Goldstone modes and corners, we now study the dominant part
which governs the entanglement growth with the subsystem
area. As already discussed in the beginning of the paper, the
J1-J2 spin-S Heisenberg model on the square lattice is Néel
ordered for J2/J1 < 0.5 in the large S limit (see Appendix A
and Fig. 15 for the critical value of J2 as a function of S).
Scanning across the entire Néel ordered regime, we have
performed fits to the form Eq. (3.1) for various values of the
second neighbor coupling J2 and spin S for the strip geometry
(corner-free) with a 1/8 aspect ratio. Shown in Fig. 6, the area
law coefficient aq displays a quite remarkable behavior. First,
the results appear to be almost independent of the spin size
S. Then, as expected from the mean-field limit J2/J1 → −∞
(see Refs. [41,42] and Appendix B), aq goes to zero in the limit
−J2/J1 � 1. This is because the ground state becomes more
and more classical, with a very low entanglement. However,
less is known when frustration is turned on, and we observe
a rapid growth of the area law term when the critical point
is approached, a feature also observed for the unfrustrated
Heisenberg bilayer [14]. Note that the validity of the SW
calculation can be questioned when quantum fluctuations
become large, approaching the critical point J c

2 . Nevertheless,
we believe the results to be under control if 1 − mAF/S 	 1,
a condition which can be checked in Fig. 15 of Appendix A.
Moreover, as long as the logarithmic term in the entanglement
entropy scaling is still present and equal to one (due to the
two Nambu-Goldstone modes, as shown in the bottom panel
of Fig. 6 thus confirming the universality across the ordered
phase), we believe the SW approximation correctly captures
the behavior of EE. In practice, we start to see a deviation
of lq from unity only for the very last points at J2/J1 � 0.3
in Fig. 6.
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0.4
0.5
0.6
0.7
0.8

a
q

S =0.5, q = 1
S =0.5, q = 2

S =5, q = 1
S =5, q = 2

S =9, q = 1
S =9, q = 2

−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

−J2/J1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

l q

FIG. 6. (Color online) (Top) Area law coefficients aq for q = 1,2
(extracted for an aspect ratio �/L = 1/8) as a function of the
next neighbor coupling J2/J1. Approaching the critical point in the
frustrated regime (J2 > 0) the area law coefficient grows rapidly.
(Bottom) Prefactor lq of the log correction in Eq. (1.3) due to the two
Goldstone modes of the antiferromagnet. The deviation of lq from 1
close to the critical point in the frustrated regime reveals the limitation
of the SW approximation.

IV. UNIVERSAL ADDITIVE CONSTANT γ ord
q

A. Direct extraction from large-S data

Following MG [7], a universal additive constant γ ord
q (�/L),

depending on the aspect ratio �/L of a strip, appears in the
Rényi EE scaling Eq. (1.3). Nevertheless, there is also a
nonuniversal term involving the spin stiffness and the SW
velocity in Eq. (1.3). It is therefore much easier to work
in the S → ∞ limit of the J1-J2 Heisenberg Hamiltonian
where ρs and v are known exactly. In such a limit and having
shown above that the logarithmic prefactor is exactly given
by lq = nG/2 = 1 (the corner contribution vanishes for this
geometry), we expect the EE scaling for strips with an aspect
ratio �/L to be in the S � 1 limit,

Sq = aqL + ln

(
S

√
J1 − 2J2

8J1
L

)
+ γ ord

q (�/L). (4.1)

This large S expression has been used to fit our numerical
SW data obtained for S = 100 and J2/J1 = 0,−1. Results
for the additive constant γ ord

q (�/L) are plotted in Fig. 7 as a
function of the aspect ratio �/L for various Rényi parameters
q. The agreement with the result extracted from Ref. [7] is
excellent for q = 2. The universal character of γ ord

q (�/L) is
also corroborated by the fact that our estimates do not depend
on the values of the second neighbor coupling J2/J1 = 0,−1;
the sole J2 dependence being given by the two first terms in
Eq. (4.1).

For the S = 1/2 Heisenberg model (J2 = 0), while we
have seen above that the logarithmic corrections are perfectly
captured, a precise determination of the additional constant
γ ord

q (�/L) is less obvious. Indeed, as shown in Fig. 8 for q = 2,
using ρs/v = 0.11675 from previous 1/S estimates [44], the
γ ord

2 estimates are close but do not agree with the S = 100

115126-6



SPIN-WAVE APPROACH FOR ENTANGLEMENT ENTROPIES . . . PHYSICAL REVIEW B 92, 115126 (2015)

0.0 0.1 0.2 0.3 0.4 0.5

�/L

−14

−12

−10

−8

−6

−4

−2

0

γ
o
rd

q

0.1 0.2 0.3 0.4 0.5

�/L

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8
γ
o
rd

q

q = 1
q = 3
q = 4

q = 2
q = 2, J2 = −1

q = 2, MG

FIG. 7. (Color online) Universal additive constant γ ord
q (�/L) for

different Rényi indices q as a function of the aspect ratio of the
strip geometry for the S = 100 Heisenberg J1-J2 antiferromagnet
at J2 = 0. The inset displays a zoom, showing that our result is in
perfect agreement with the universal geometric constant obtained by
MG [7] for q = 2. Results for J2/J1 = −1 at q = 2, shown by red
plus signs, agree perfectly with MG (black circles) and J2 = 0 (black
“x”), confirming universality.

results. Taking instead the most recent QMC estimate [43] for
this ratio ρs/v = 0.10882(4), the agreement is clearly better.
We have also checked that results on γ ord

q (�/L) obtained by
taking into account higher orders in 1/S from Ref. [44] give
indeed an improvement over the 1/S order, but are not as good
as the QMC result.
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FIG. 8. (Color online) Results for S = 1
2 and J2 = 0 for γ ord

2

obtained from fits using rectangular subsystems with fixed aspect
ratios. For S = 1

2 , we show two sets of results using slightly different
estimates for ρs/v. Data shown in blue use ρs/v = 0.10882(4) from
the most recent QMC estimate [43], while data shown in green use
ρs/v = 0.11675 from a 1/S calculation [44]. The use of the QMC
result leads to a much better agreement with our S = 100 data.
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FIG. 9. (Color online) Universal additive constant γ free
q (�/L) for

free bosons plotted against the aspect ratio of the strip subsystem.
Linear SW results for the S = 1/2 Heisenberg antiferromagnet at
J2 = 0 are shown together with large-S estimates of γ ord

q .

B. Connection to the free scalar field result

In a (corner-free) strip subsystem geometry with a finite
aspect ratio �/L, one expects for gapped free bosons with a
very large correlation length ξ � L the following subleading
corrections to the area law [7]:

	Sq = 1

2
ln

(
ξ

L

)
+ γ free

q (�/L), (4.2)

where γ free
q (�/L) is a universal geometric constant which

depends nontrivially on both the Rényi parameter and the
aspect ratio. By artificially gapping the linear SW Hamiltonian
Eq. (2.4) with a very small staggered field h, the dispersion
relation in the vicinity of its two minima reads

�(k) =
√

8SJ1h + 8S2J1(J1 − 2J2)|k|2, (4.3)

thus leading to

ξ =
√

S(J1 − 2J2)

h
. (4.4)

The correction due to the two minima becomes

	Sq = ln

(√
S(J1 − 2J2)

hL2

)
+ 2γ free

q (�/L), (4.5)

which is used to fit numerical SW results with a very small
field h = 10−18 to extract γ free

q (�/L), shown in Fig. 9.
Quite interestingly, from the above formulation we can infer

a very simple and direct relation between γ ord
q and γ free

q . Indeed,
in the large S limit the size-dependent staggered field (added
to artificially restore zero sublattice magnetization) takes the
exact form h∗(L) = 2J1

SL4 . Plugging this into Eq. (4.5) yields

γ ord[SU(2)]
q = 2γ free

q + ln 2, (4.6)

which agrees with MG [7], but only when q = 2. In Fig. 9,
comparing γ free

q to (γ ord[SU(2)]
q − ln 2)/2 for q = 1,4 gives a

perfect agreement for a wide range of aspect ratios.
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FIG. 10. (Color online) S2/L vs 1/L for the strip shaped subsys-
tem with different aspect ratios (rainbow curves). SW data obtained
for S = 100 and J2 = 0. The dotted lines show an extrapolation for
infinite system sizes which demonstrates that for all aspect ratios the
leading scaling term is indeed an area law. We also show results for
the line and 2,3,4, and 5 leg ladder subsystems (labeled lines) which
clearly deviate significantly from this behavior. This discrepancy is
caused by the singular behavior of γ ord (and higher subleading terms),
as the aspect ratio of these subsystems changes constantly with L and
runs into the divergence of small aspect ratios (see text).

One can also repeat the same argument for the XY model
with only one Nambu-Goldstone mode [10] to get

γ ord[U(1)]
q = γ free

q + 5

4
ln 2. (4.7)

The reason for the disagreement between our large S

approach—expected to become unbiased in the limit S →
∞—and the result from Ref. [7] for γ ord

q is not clear at the
moment.

C. Limit of vanishing aspect ratio

In this section we shed light on the divergent behavior of
γ ord for small aspect ratios by calculating γ ord in the extreme
limit of �/L → 0 using subsystems with a fixed number � of
lines and thus a varying aspect ratio as a function of L. In order
to achieve this, we work with S = 100 at J2 = 0, and we want
to subtract all dominant terms, in particular the linear area law
contribution aqL.

Let us therefore start with a study of the dominant scaling
contribution of Sq by plotting Sq/L vs 1/L as displayed in
Fig. 10. We show the area law behavior by plotting S2/L

vs 1/L and an extrapolation L → ∞, which guarantees to
eliminate all subleading terms. The figure shows two sets of
curves. In the first one, each curve corresponds to subsystems
with a constant aspect ratio, such that γ ord

2 is a constant for
each curve. These curves all yield identical area law prefactors
a∗

2 = 0.190216(1) as expected.
The second set of curves shows results corresponding to a

fixed number � of lines in the subsystem (i.e., a �-leg ladder),
which implies that the aspect ratio of the subsystem is a
function of L. The dominant linear prefactor a�

q found for
the �-leg ladder subsystem is different from the fixed aspect

0.00 0.05 0.10 0.15 0.20

�/L

−0.04

−0.02
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γ
q

� L
,

c
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�
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L
2

γ∗
2 ≈ −0.04579

η∗
2 ≈ 0.01151

γord
2

�
L

cubic fit

c2
�2

L2

cubic fit

FIG. 11. (Color online) Singular contribution γ ∗
2 of γ ord

2 ( �

L
) (red)

and singular contribution η∗
2 of cq (black). The dashed line corre-

sponds to cubic fits for the smallest aspect ratios and are used to
extract estimates of γ ∗

2 and η∗
2 , given by the intercept at vanishing

aspect ratio. γ ∗
2 corresponds to the contribution of γ2 to the linear

scaling of the entanglement entropy of fixed width subsystems. η∗
2

is the linear scaling contribution stemming from the EE scaling
term cq/L.

ratio value, which is approached only for � � 1. The reason
for this discrepancy lies in the divergent behavior of γ ord

2 when
�/L tends to zero and the fact that the assumption that the only
surviving term in the scaling of Sq/L at large sizes is the area
law is no longer true. In fact, as the aspect ratio of the subsystem
changes constantly, γ ord

q seems to have a contribution that is
linear in the inverse aspect ratio, and hence leads to a shift or
an effectively changed area law prefactor. As a next step, we
will try to determine this contribution.

Figure 11 shows our data for γ ord
2 as obtained in Sec. IV

multiplied by the aspect ratio �
L

as a function of the aspect ratio
in order to extract the singular contribution γ ∗

2 as the intercept
at vanishing aspect ratio. The data shows convincing evidence
that this contribution indeed extrapolates to a nonvanishing
value, which we determine by a cubic fit. With this information,
we can now decompose γ ord

q in a singular and a regular
component:

γ ord
q

(
�

L

)
= γ reg,ord

q

(
�

L

)
+ L

�
γ ∗

q ,

lim �
L
→0

(
�

L
γ reg,ord

q

)
= 0. (4.8)

For completeness, we provide a table of γ ∗
q for other Rényi

indices q in Table II.
In general, we can assume that other subdominant terms

show pathologic behavior in the limit of vanishing (and

TABLE II. Values of γ ∗
q for different Rényi indices.

q 1 2 3 4

γ ∗
q −0.07677 −0.04579 −0.03530 −0.03123
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nonconstant) aspect ratios, i.e., for fixed width � subsystems,
we will for the moment assume that they could produce a total
correction to the area law of the form η∗ L

�2 in total. The scaling
of the EE then reads

Sq = (a∗
q + γ ∗

q /� + η∗
q/�

2)L

+ nG

2
ln

(ρs

v
L

)
+ γ reg,ord

q + . . . . (4.9)

Clearly, for fixed aspect ratio subsystems the terms γ ∗
q and

η∗
q become irrelevant for the area law for large system sizes.

However, for fixed width subsystems, the effective linear (in
L) scaling coefficient a�

q is in fact given by

a�
q = a∗

q + γ ∗
q /� + η∗

q/�
2. (4.10)

We can therefore obtain (in the limit of large L) γ ord
q from

fixed width subsystems by subtracting several terms from Sq :
Obviously we need to subtract (a�

q − γ ∗
q /�)L to eliminate the

linear contribution (note how this automatically takes care of
the unknown terms η∗

q).
The second term that we have to subtract from the EE is

the logarithmic term which is due to the spontaneous breaking
of SU(2) symmetry. We have argued above alongside with
several works [7–9] that its value is nG/2 = 1 for the case of
fixed aspect ratio subsystems and shown in Ref. [10] that this
is also true for fixed width � subsystems, such as the single
line with � = 1, we therefore subtract the term nG/2 ln( ρs

v
L),

taking also care of the constant stemming from ρs/v, that we
know with great accuracy for the case of S = 100 at J2 = 0.

Remaining subleading terms are expected to die off in the
limit of �/L → 0 and are therefore unimportant in the region
of interest.

In total, for the limit of L → ∞ and a fixed width � of the
subsystem, we obtain γ ord

q through

γ ord
q

(
�

L

)
= Sq − (

a�
q − γ ∗

q /�
)
L − nG

2
ln

(ρs

v
L

)
. (4.11)

We can now apply Eq. (4.11) to calculate γ ord
q in the small

aspect ratio regime from fixed width subsystems of width
�. Figure 12 shows our result in comparison the previously
obtained values of γ ord

2 from fixed aspect ratio subsystem
(strips). SW results for � = 1 and � = 2 are built on an
analytical derivation (presented in Appendix C) obtained
exploiting the fully symmetric nature of such subsystems.
The perfect agreement of the results obtained with different
methods and in particular the agreement of the results for
different � is a strong evidence for the reliability of this result
and therefore demonstrates also the singular nature of γ ord

q

given by the singular component γ ∗
q .

Can higher subleading terms generate corrections to the
area law coefficient? It is certainly legal to assume that
pathological behavior in the limit of �/L → 0 is not only
present in the scaling constant γ ord

q but also in higher terms,
such as cq/L and dq/L

2. However, for them to modify the area
law coefficient, they have to diverge much faster, i.e., as �2/L2

for the case of cq . In order to investigate this possibility, we
plot c2

�2

L2 in black in Fig. 11 and observe that a (small) nonzero
contribution to the linear scaling in L is indeed present which
we call η∗

2 (here we will neglect the contributions to η from
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FIG. 12. (Color online) Data for γ ord
2 as obtained from fits for

fixed aspect ratio subsystems (red “x”) shown together with the result
of Eq. (4.11) for fixed width subsystems. The agreement is excellent,
even for relatively large aspect ratios which correspond to small
systems in the fixed width case. The inset shows a zoom. Lines are
guides to the eye.

even higher terms, which are difficult to access through fits to
numerical data). Let us finally plug all the information together
and see if the singular contributions of subdominant terms can
explain the discrepancy between a∗

q and a�
q observed in Fig. 10

by comparing in Table III results for a�
q as obtained from a

direct fit to fixed width EEs and for a∗
q + γ ∗

q /� + η∗
q/�

2. The
left column shows the total linear scaling prefactor a�

q for fixed
width subsystems as displayed in Fig. 10, while the rightmost
column shows the fixed aspect ratio linear scaling prefactor
a∗

q corrected by the singular contribution of γ ord
q , giving

reasonable agreement. The middle column takes into account
the next subdominant singular contribution η∗

q from the term
cq/L as discussed above and reproduces the direct fit result
to very high accuracy, thus providing strong evidence for the
correctness of Eq. (4.10). We expect that even less dominant
terms, such as dq/L

2 will provide further corrections, which
are relevant for small widths � and should account for the

TABLE III. Comparison of the directly obtained linear scaling
factor a�

q of fixed width subsystems to the result obtained using
the singular contributions γ ∗

2 and η∗
2 from subdominant terms.

The inclusion of η∗
q significantly improves the result and provides

numerical evidence for the correctness of Eq. (4.10).

� a�
q a∗

q + γ ∗
q /� + η∗

q/�
2 a∗

q + γ ∗
q /�

1 0.156142 0.155936 0.144426
2 0.170287 0.170199 0.167321
3 0.176265 0.176232 0.174953
4 0.179543 0.179488 0.178768
5 0.181492 0.181518 0.181058
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remaining discrepancy, these terms are, however, very small
and extremely difficult to extract numerically.

V. DISCUSSIONS AND CONCLUSIONS

In this work, we have performed a high-precision SW
study of the J1-J2 Heisenberg SU(2) antiferromagnet on the
square lattice in order to investigate its quantum entanglement
properties. Numerical calculations on finite-size systems have
been performed with an artificial restoration of zero sublattice
magnetization using a small size-dependent staggered field
h∗(L). Several situations have been explored, and we have
obtained finite-size scaling results at large enough size such
that the various terms appearing in the entanglement entropies
have been precisely computed.

The universal logarithmic correction due to Nambu-
Goldstone modes associated with the breaking of a continuous
symmetry [SU(2) in the present case] are well captured,
giving a correction perfectly fitted by nG

2 ln L, independent
of the Rényi index q. In the case of subsystem having sharp
corners, additional (negative) logarithmic corrections have
been precisely evaluated, in perfect agreement with scalar
field theory predictions [11]. The J1-J2 model also offers
a nice playground where we could check universality of
the logarithmic term across the entire ordered regime but
where we could further study the nonuniversal area law part
which exhibits a nontrivial behavior, with a noticeable growth
approaching the critical point in the frustrated regime. In
the opposite limit of strong ferromagnetic second neighbor
coupling, the mean-field limit is recovered with a vanishing
area law term and a smooth crossover to a purely logarithmic
scaling of the entropies.

Part of this work was also devoted to the study of the
additional constant term γ ord

q , expected to be universal for strip
subsystems [7], only depending on their aspect ratio. It then
appeared crucial to impose zero sublattice magnetization in
the finite-size SW theory, yielding a unique size-dependent
staggered field h∗(L) which (i) mimics a tower of state
gap ∼1/L2 in the excitation spectrum (responsible for the
logarithmic correction), and (ii) leads to the correct additional
geometric constant γ ord

q , in perfect agreement with MG
[7], at least for q = 2. A simple and direct relation with
noninteracting bosons was also derived. Finally we have
precisely investigated the limit of vanishing aspect ratios using
very large ladder subsystems in the limit of a finite number of
legs, discovering that the geometric constant contains both a
regular part and a singular component in this limit. Our study
is concluded by showing that singular components of even
less dominant terms explain perfectly the discrepancy of the
area law terms obtained from fixed width vs fixed aspect ratio
subsystems.

Among the potentially interesting future directions, a
quantitative study of the geometric constant using exact Monte
Carlo, while very challenging, appears to be a very important
point in order to test the validity of our prediction for q > 2. It
may also be interesting to extend the present SW approach
to other continuous symmetries like SU(N) models using
modified flavor-wave theory, for instance. Other geometries or
d = 3 are certainly of great interest also, with a larger choice
of subsystem shapes.
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APPENDIX A: DETAILS OF SPIN-WAVE CALCULATIONS

This Appendix provides details of spin-wave calculations
which are not crucial for the computation of entanglement
entropy, but which are nonetheless useful for an understanding
of the method and its range of validity. We also provide a
comparison between the finite-size SW approach and direct
QMC computations for S = 1/2 for the antiferromagnetic
structure factor in the ferromagnetic range of next neighbor
coupling J2 < 0.

1. Spin-wave spectrum and velocity

We present in Fig. 13 the spectrum �k = 2
√
A2

k − B2
k in the

direction kx = ky [obtained from expressions Eq. (2.6)] as a
function of kx , for different coupling strengths J2 and for a spin
value S = 1/2. The inset represents the spin-wave velocity,
Eq. (2.11), as a function of J2/J1. We see that the velocity
vanishes at J2/J1 = 0.5 where the SW spectrum features a
continuous line of minima at kx = 0 and ky = 0, as depicted
in Fig. 14.

2. Range of nonvanishing staggered magnetization

a. Antiferromagnetic order parameter

Equation (2.12) can be evaluated numerically for different
values of the spin size S and second neighbor coupling
strength J2/J1, in order to probe the range of validity of the
spin-wave approach, which assumes an ordered ground state.
This is illustrated in Fig. 15 where the AF order parameter is
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FIG. 13. (Color online) SW spectrum at h = 0 for various J2/J1

plotted along the kx = ky direction. (Inset) SW velocity vsw.
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FIG. 14. (Color online) 2D color map of the SW spectrum at h =
0 for J2/J1 = 1/2 and S = 1. A line of minima is visible along the
kx = 0 and ky = 0 directions.

represented, and as expected, is clearly enhanced by ferromag-
netic diagonal coupling J2/J1 < 0 while it decreases towards
zero when J2/J1 approaches 1/2. The critical frustration J c

2
(in units of J1), above which the SW-corrected order parameter
vanishes, is also represented in the inset of Fig. 15 as a function
of S where we observe that J c

2 → 1/2 when S gets larger.

b. Finite size SW: AF structure factor

To illustrate the interest of using a formulation of SW which
treats more correctly finite-size systems, we present results for
the computation of the staggered structure factor per site on
finite square lattices L × L = N :

s(π,π ) = 1

N2

∑
ij

(−1)|i−j |〈Si · Sj 〉. (A1)
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FIG. 15. (Color online) SW results for the AF order parameter
Eq. (2.12) of the J1-J2 model on the square lattice for various spin
sizes S. (Inset) Critical frustration J c

2 (in units of J1) plotted against
the spin length S.
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FIG. 16. (Color online) Staggered structure factor per site s(π,π )
of the J1-J2 antiferromagnet Eq. (1.5) plotted against the inverse
system length 1/L for three values of J2, with J1 = 1. Symbols
show T = 0 QMC results; dashed lines are quadratic fits of the form
Eq. (A3), and the full lines are modified SW results using Eq (A2).

Using Wick’s theorem, all two-spin correlators can be com-
puted in terms of the fij and gij functions defined in Eq. (2.20)
of the main text. Imposing that 〈Si · Sj 〉 = 〈Sz

i S
z
j 〉 (because the

theory is strictly speaking not rotationally invariant), we obtain

s(π,π ) = 1

N2

∑
ij

(
f 2

ij + g2
ij

) − 1

4N
. (A2)

A quantitative comparison between the above SW expectation
and exact quantum Monte Carlo simulations is shown in
Fig. 16. Ground-state expectation values for s(π,π ) of the
J1-J2 Hamiltonian Eq. (1.5) with S = 1/2 and J2 = 0,−1,−5
have been obtained for various square lattices L × L using
the stochastic series expansion algorithm [45]. One sees in
Fig. 16 that the agreement is fairly good, in particular for
strong second neighbor ferromagnetic coupling J2/J1 = −5.
Interestingly, the finite-size scaling behavior, expected from
previous works, [46,47]

s(π,π ) = m2
AF + m1/L + m2/L

2 + · · · , (A3)

is very well captured by SW calculations, as visible in Table IV
where QMC and SW estimates for mAF,m1, and m2 are
compared and show a good agreement.

The fact that finite-size corrections are well captured by
this modified SW formalism is a confirmation that it is a good
starting point to study ground-state properties on finite systems
and in particular the finite-size scaling of the entanglement
entropy, as discussed in the main text.

TABLE IV. Fit parameters from Eq. (A3).

m2
AF m1 m2

J2/J1 SW / QMC SW / QMC SW / QMC

0 0.092/0.093(1) 0.55/0.60(1) 0.8/0.6(1)
−1 0.175/0.167(1) 0.42/0.47(2) 0.4/0.15(9)
−5 0.225/0.223(1) 0.25/0.26(2) 0.2/0.2(1)
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APPENDIX B: MEAN-FIELD LIMIT

In the limit −J2/J1 � 1 one should recover the mean-
field result obtained, for example, for the Lieb-Mattis model
[41,42]. In such a limit, perfect ferromagnetic correlations
between spins belonging to the same sublattice imply fij = S

for i �= j both on the same sublattice (gij = 0) and fii =
S + 1/2. Antiferromagnetic correlations between opposite
sublattices yield ∑

ij

fij − gij = 0, (B1)

thus leading to gij = S + 1/N for i �= j on opposite sub-
lattices (fij = 0). Therefore nonzero matrix elements of the
correlation C (for i and j on the same sublattice) are given by

Cii = S(1 − r�) + 1

4
,

Cij = S(1 − r�), (B2)

where r� = N�/N is the ratio between the number of sites
inside the subsystem N� and the total number of sites N . The
spectrum of the correlation matrix C is then straightforwardly
given by

ν2
1,2 = N�

2
S(1 − r�) + 1

4
, (B3)

ν2
l = 1

4
, (l = 3, . . . ,N�). (B4)

One sees that only two eigenvalues contribute, in a macro-
scopic way. We then compute directly the Rényi entropies for
any partition N� and any q � 1:

Sq = ln(N�) + ln

[
S(1 − r�)

2

]
+ 2

ln q

q − 1
. (B5)

The area law term vanishes, and the dominant scaling is
now a pure logarithm of the number of sites N�. This exact
expression can be compared to the numerical solution of the
SW Hamiltonian for very large negative values of J2. In Fig. 17
we show numerical results for J2/J1 = −100 000 for two
values of S and two different geometries, which compares
extremely well with the MF limit expression Eq. (B5). Note
that the lines are not fitting functions. If we try instead to fit to
the general form aqL + lq ln L + bq + cq/L + dq/L

2, we end
up with aq ∼ 10−11 and lq = 2.

Before concluding, we want to briefly comment on the
crossover to the MF limit when the ferromagnetic second
neighbor is turned on towards very large values. This is
illustrated in Fig. 18 where the rapid decrease of the area
law coefficient aq (for q = 1,2) is shown versus the quantum
depletion of the AF order parameter S − mAF. In the same time,
the log coefficients l1 and l2, plotted in the inset of Fig. 18,
crossover from lq = 1 up to lq = 2 in the limit of vanishing
quantum fluctuations mAF → S.

APPENDIX C: ANALYTICAL DERIVATION FOR
ONE-DIMENSIONAL SUBSYSTEMS

A great simplification for the computation of entanglement
entropy is possible if all sites i and j inside a subsystem
� are equivalent, or in other words if the matrix elements
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FIG. 17. (Color online) Mean-field limit for the Rényi entropies
Sq . The symbols show numerical results for J2/J1 = −105 with
different geometries and spin lengths (S = 1,10), plotted against
the number N� of sites in the subsystem �. The numerical results
(symbols) are compared to the analytical expression Eq. (B5) with
r� = 3/8 (a) or r� = 1/2 (b), shown by the full lines.

Cij only depend on the relative distance |ri − rj |. In such a
case, for sites on different sublattices Cij = 0. This situation is
achieved for one-dimensional subsystems with one or two lines
[Fig. 1(a) with � = 1,2]. In these specific situations, we can
derive analytic expressions for the eigenvalues of C, avoiding
a numerical diagonalization. This has first been discussed in
Ref. [10], and we provide here details of this calculation,
starting with the case of a line-shaped subsystem.

This subsystem being invariant under translations along the
x direction, the functions fij and gij defined in Eqs. (2.20)
only depend on the distance x = xi − xj along the subsystem.

10−5 10−4 10−3 10−2 10−1 100

S − mAF

10−4

10−3

10−2

10−1

100

a
q

S =0.5,q = 1
S =0.5,q = 2

10−5 10−3 10−1

S − mAF

0.5

1.0

1.5

2.0

l q

FIG. 18. (Color online) Area law coefficient aq as a function
of the normalized order parameter S − mAF, which is small in the
ordered phase. Here, we show results for S = 1

2 . The inset depicts
the prefactor of the logarithmic entanglement entropy scaling term,
which has a plateau at lq = 1 for intermediate J2 and evolves to the
mean-field limit of J2 → −∞. It is unclear if the behavior in the
crossover region is a finite-size effect or an artefact of the spin-wave
method.
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They reduce consequently to

fx = 1

2N

∑
kx

cos(kxx)αkx
,

gx = 1

2N

∑
kx

cos(kxx)βkx
, (C1)

with

αkx
:=

∑
ky

Ak

�k
and βkx

:=
∑
ky

Bk

�k
, (C2)

which satisfy the property αkx+π = αkx
, βkx

= −βkx+π . Since
the functions fx and gx possess translation and reflection
symmetries,

fx = fL−x = fL+x, and gx = gL−x = gL+x, (C3)

so does the correlation matrix: Cij = C(l = |xi − xj |) =
C(L − l) = C(l − L). Since furthermore C(x) vanishes for
odd distances, it is convenient to re-index all sites on one
sublattice from 1 to L/2 [say, blue sites in Fig. 1(a) for � = 1],
and sites on the other sublattices from L/2 + 1 to L [say,
orange sites in Fig. 1(a)] to block-diagonalize C onto two
identical blocks of size L/2 × L/2. The translation invariance
ensures that each block is circulant, with matrix elements
C(l) = ∑

x even fxfx−l − ∑
x odd gxgx−l . The eigenvalues ν2

l of
C are given by the properties of circulant matrices [48]:

ν2
l = c(0) + (−1)lc

(
L

2

)
+

�L/4−1�∑
j=1

c(2j ) cos

(
4π

L
jl

)
,

l ∈
{

0,1, . . .
L

2
− 1

}
, c

(
L

2

)
= 0 if

L

2
mod 2 = 1.

(C4)

We can even simplify calculations by noticing that fx and
gx are discrete Fourier transforms of αk and βk , respectively.
Using the convolution theorem on C(l), we arrive at the
final expression for the L eigenvalues of C of the single-line
subsystem:

ν2
q = 1

4N

(
α2

q − β2
q

)
, (C5)

with q ∈ {−π + 2π
L

, . . . π}.
A very similar reasoning can be applied to the case

of a two-line (ladder) subsystem with 2L sites [� = 2 in
Fig. 1(a)]. It is convenient to re-index sites by labeling (in
a zig-zag fashion) all [say, blue in in Fig. 1(a)] sites of one
sublattice from 1 to L, and [orange in Fig. 1(a)] sites from
the other sublattice from L + 1 to 2L. Again, C is block-
diagonal with identical circulants blocks with matrix elements
C(l) = ∑L−1

x=0 f +
x f +

x−l − ∑
x g̃+

x g̃+
x−l with f +

x = f (x,0) +
f (x,1) and g+

x = g(x,0) + g(x,1). We can now introduce
the discrete Fourier tranforms of the newcomers f (x,1)
and g(x,1),

α̃k :=
∑
ky

Ak cos(ky)

�k
and β̃k :=

∑
ky

Bk cos(ky)

�k
, (C6)

to again be able to apply the convolution theorem. We finally
obtain that the L eigenvalues of one block of C for the ladder
subsystem are given by

ν2
q = 1

4N
[(αq − α̃q)2 − (βq − β̃q)2], (C7)

with q ∈ {−π + 2π
L

, . . . π}. Since C has two identical blocks,
the 2L eigenvalues for the ladder subsystem are obtained by
doubling the above spectrum.

[1] J. Eisert, M. Cramer, and M. Plenio, Colloquium: Area
laws for the entanglement entropy, Rev. Mod. Phys. 82, 277
(2010).

[2] Note that systems having a Fermi surface exhibit multiplicative
logarithmic corrections to the area law; see, for instance, D.
Gioev and I. Klich [Phys. Rev. Lett. 96, 100503 (2006)].

[3] A. Kitaev and J. Preskill, Topological Entanglement Entropy,
Phys. Rev. Lett. 96, 110404 (2006).

[4] M. Levin and X.-G. Wen, Detecting Topological Order in a
Ground State Wave Function, Phys. Rev. Lett. 96, 110405
(2006).

[5] S. Furukawa and G. Misguich, Topological entanglement en-
tropy in the quantum dimer model on the triangular lattice, Phys.
Rev. B 75, 214407 (2007).

[6] S. V. Isakov, M. B. Hastings, and R. G. Melko, Topological
entanglement entropy of a Bose-Hubbard spin liquid, Nature
Phys. 7, 772 (2011).

[7] M. A. Metlitski and T. Grover, Entanglement entropy of
systems with spontaneously broken continuous symmetry,
arXiv:1112.5166.

[8] H. F. Song, N. Laflorencie, S. Rachel, and K. Le Hur,
Entanglement entropy of the two-dimensional Heisenberg anti-
ferromagnet, Phys. Rev. B 83, 224410 (2011).

[9] B. Kulchytskyy, C. M. Herdman, S. Inglis, and R. G.
Melko, Detecting Goldstone modes with entanglement entropy,
arXiv:1502.01722.

[10] D. J. Luitz, X. Plat, F. Alet, and N. Laflorencie, Universal loga-
rithmic corrections to entanglement entropies in two dimensions
with spontaneously broken continuous symmetries, Phys. Rev.
B 91, 155145 (2015).

[11] H. Casini and M. Huerta, Universal terms for the entanglement
entropy in dimensions, Nucl. Phys. B 764, 183 (2007).

[12] A. B. Kallin, M. B. Hastings, R. G. Melko, and R. R. P. Singh,
Anomalies in the entanglement properties of the square-lattice
Heisenberg model, Phys. Rev. B 84, 165134 (2011).

[13] S. Humeniuk and T. Roscilde, Quantum Monte Carlo calculation
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