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Thermal fractionalization of quantum spins in a Kitaev model: Temperature-linear specific heat
and coherent transport of Majorana fermions
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Finite-temperature (T ) properties of a Kitaev model defined on a honeycomb lattice are investigated by a
quantum Monte Carlo simulation, from the viewpoint of fractionalization of quantum S = 1/2 spins into two
types of Majorana fermions, itinerant and localized. In this system, the entropy is released successively at two
well-separated T scales, as a clear indication of the thermal fractionalization. We show that the high-T crossover,
which is driven by itinerant Majorana fermions, is closely related with the development of nearest-neighbor spin
correlations. On the other hand, the low-T crossover originates in thermal fluctuations of fluxes composed of
localized Majorana fermions, by which the spectrum of itinerant Majorana fermions is significantly disturbed. As
a consequence, in the intermediate-T range between the two crossovers, the system exhibits T -linear behavior in
the specific heat and coherent transport of Majorana fermions, which are unexpected for the Dirac semimetallic
spectrum in the low-T limit. We also show that the flux fluctuations tend to open an energy gap in the Majorana
spectrum near the gapless-gapped phase boundary. Our results indicate that the fractionalization is experimentally
observable in the specific heat, spin correlations, and transport properties.
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I. INTRODUCTION

The fractionalization of electrons in solids is one of
the central topics in modern condensed matter physics. A
prototypical example is found in one-dimensional strongly
correlated electron systems: charge and spin degrees of
freedom in an electron behave as independent particles, which
are termed holon and spinon, respectively [1]. A different form
of fractionalization is also anticipated in insulating magnets
with geometrical frustration. For instance, the existence of
the elementary excitation carrying a half of spin, named
spinon, is predicted in a quantum spin liquid (QSL) [2–4],
and emergence of magnetic monopoles is suggested in spin
ice systems [5]. Another fractionalization was pointed out in
heavy fermion systems as well. The half residual entropy in
the two-channel impurity Kondo system is understood from the
fractionalization of S = 1/2 impurity spin into two Majorana
fermions [6].

A quantum spin model, called the Kitaev model, has
recently attracted considerable attention in broad areas of
research, not only condensed matter physics but also statistical
physics and quantum information [7]. This model is composed
of S = 1/2 spins with bond-dependent interactions on a
honeycomb lattice. Such peculiar interactions were suggested
to be realized in the systems with strong spin-orbit coupling,
such as iridium oxides [8]. The most striking feature of this
model is that it is exactly solvable due to the existence of
Z2 conserved quantity on each hexagon, termed flux. The
ground state dictates both gapless and gapped QSL phases
depending on the exchange coupling constants. The exact
solution is provided by representing S = 1/2 spins by two
types of Majorana fermions: one is localized and composes
the fluxes, and the other forms itinerant bands [9–11]. The
latter itinerant Majorana fermions determine the excitation
spectrum in the QSLs. Thus, the fractionalization of spins
into Majorana fermions is not just a mathematical tool but
physically important in the Kitaev model.

A natural question arising here is how high-temperature (T )
paramagnetic spins are fractionalized into Majorana fermions
when cooling the system. Considering the fact that the spin-
charge separation in the one-dimensional electron systems
plays a key role in comparison with experiments, it is crucial to
elucidate the thermal fractionalization for experimental explo-
ration of the QSL physics. The thermodynamic properties in
the Kitaev model and its extensions have been studied, mainly
for explaining the magnetism in iridium oxides [12–17], but
the signature of fractionalization at finite T was not addressed
in most of the previous studies. Among them, however, the
authors pointed out the significance of fractionalization in a
peculiar phase transition at finite T in a three-dimensional
extension of the Kitaev model [15,16]: the phase transition
is governed by thermal excitations of localized Majorana
fermions. Nevertheless, the relevance of fractionalization
remains unclear, in particular, to the experimentally observable
quantities.

In this paper we investigate the effect of fractionalization
of quantum spins on the finite-T properties of the Kitaev
model on a honeycomb lattice by applying the unbiased
quantum Monte Carlo (QMC) method. In this model the
two Majorana fermions, itinerant and localized, release their
entropy successively at two well-separated T scales. We
elucidate that each crossover has an impact on experimental
observables: the high-T one, driven by itinerant Majorana
fermions, corresponds to the development of spin correlations
between neighboring sites, while the low-T one, originating
from thermal fluctuations of localized Majorana fermions,
is accompanied by a sizable change in the excitation spec-
trum of itinerant Majorana fermions. This leads to apparent
T -linear behavior of the specific heat and coherent transport
of Majorana fermions in the intermediate-T state between the
two crossovers, in contrast to the Dirac semimetallic behavior
and T 2 specific heat anticipated in the low-T limit. Moreover,
we show that the thermal excitation of fluxes tends to open a
gap at finite T near the gapless-gapped phase boundary.
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The paper is structured as follows. In Sec. II we intro-
duce the Kitaev model on a honeycomb lattice, and briefly
review the ground-state properties. In Sec. III we present
the numerical method to analyze the finite-T properties in
the Kitaev model. The definitions of physical quantities are
also given in this section. The numerical results are shown
in Sec. IV. We present the T dependencies of the specific
heat and the entropy, and summarize the two crossovers in
the phase diagram in Sec. IV A. We discuss the origins of the
crossovers by calculating the spin correlation in Sec. IV B and
the flux density in Sec. IV C. We also compute the density of
states (DOS) of the itinerant Majorana fermions in Sec. IV D.
We discuss the peculiar T dependence of the specific heat
in the intermediate-T region in Sec. IV E. In Sec. IV F we
evaluate the optical conductivity and the Drude weight of the
itinerant Majorana fermions at finite T . The effect of thermal
fluctuations near the gapless-gapped boundary is discussed in
Sec. IV G. Finally, Sec. V is devoted to the summary.

II. MODEL

The Kitaev model is composed of S = 1/2 spins defined
on a honeycomb lattice, whose Hamiltonian is given by [7]

H = −Jx

∑
〈jk〉x

σ x
j σ x

k − Jy

∑
〈jk〉y

σ
y

j σ
y

k − Jz

∑
〈jk〉z

σ z
j σ z

k , (1)

where σ l
j is the l(=x,y,z) component of the Pauli matrix

representing an S = 1/2 spin at site j . Corresponding to three
inequivalent bonds on the honeycomb lattice, named x, y, and
z bonds, the sum over 〈jk〉l is taken over the nearest-neighbor
(NN) sites on the l bonds.

The ground state of the model in Eq. (1) was exactly solved
by introducing Majorana fermions [7]. The ground state has
gapped and gapless excitations depending on the exchange
constants, Jx , Jy , and Jz [7] (see the inset of Fig. 6). The
spin correlations are extremely short ranged, i.e., nonzero only
for the NN pairs for all the parameters, which indicates that
both gapped and gapless ground states are QSLs [18–20]. The
model does not exhibit any phase transition at finite T although
a three-dimensional variant does [16].

Hereafter we describe the anisotropy of the exchange
constants by the parameter α as Jx = Jy = α/3 and Jz = 1 −
2α/3 (Jx + Jy + Jz = 1) as shown in the inset of Fig. 6. Along
this cut in the ground-state phase diagram, the gapped-gapless
phase boundary in the ground state is located at α = 3/4.

III. METHOD

An exact solution for the ground state of the Kitaev model
is formulated by the Jordan-Wigner transformation along the
chains consisting of the x and y bonds [9–11]. The fermions
introduced by the transformation can be represented by two
Majorana fermions cj and c̄j at each site j . Using these
Majorana fermions, the Kitaev model is rewritten as

H = iJx

∑
(jk)x

cj ck − iJy

∑
(jk)y

cj ck − iJz

∑
(jk)z

ηrcj ck, (2)

where the sum over (jk) is taken for the NN sites with j < k.
The operator ηr = ic̄j c̄k is defined on each z bond (r is the

bond index). This is regarded as a classical variable taking ±1
because of [H,ηr ] = 0 and η2

r = 1 for all r .
By using this Majorana representation, we carry out the

QMC simulation at finite T . For the model in Eq. (2), the
partition function Z is written in the form

Z = Tr{ηr }Tr{ci }e
−βH =

∑
{ηr }=±1

e−βFf ({ηr }), (3)

where Tr{ηr } and Tr{ci } are the traces for localized and itinerant
Majorana fermions, respectively; β = 1/T is the inverse
temperature (we set the Boltzmann constant kB = 1). Here
Ff ({ηr}) is the free energy of the Majorana fermion system
for a fixed configuration {ηr}, which is easily calculated by the
exact diagonalization. We perform the Markov chain Monte
Carlo (MC) simulation for sampling the configurations of {ηr}
so as to reproduce the thermal distribution of e−βFf ({ηr }) [16].
In the present calculations we performed the QMC simula-
tion hybridized with the parallel tempering technique with
16 replicas [21]. We spent the 10 000 MC steps for thermal-
ization and 40 000 MC steps for measurement in up to an
L = 12 cluster, which contains N = 2 × L2 = 288 sites.

In the QMC simulation we calculate the specific heat as

Cv = 1

NT 2

(
〈E2

f 〉 − 〈Ef 〉2 −
〈
∂Ef

∂β

〉)
, (4)

where Ef ({ηr}) is the energy of the itinerant Majorana fermion
system for a given configuration {ηr}. From the T dependence
of the specific heat, we obtain the entropy per site as

S = ln 2 −
∫ Tm

T

dT ′Cv/T ′, (5)

where Tm is chosen to be Tm = 10 (�Jx + Jy + Jz ≡ 1).
We also calculate the equal-time spin correlations. In the

Kitaev model, as 〈σ l
jσ

l
k〉 �= 0 only for NN bonds [18], we

measure the NN spin correlations by

Sll = 2

N

∑
〈jk〉l

〈
σ l

jσ
l
k

〉
, (6)

which are given by each term in Eq. (2) in terms of the
Majorana fermions. In addition, we compute the thermal
average of the flux density as

W = 2

N

∑
p

〈Wp〉, (7)

where Wp is composed of ηr included in the hexagonal
plaquette p: Wp = ∏

r∈p ηr .
In addition to the above thermodynamic quantities, we

calculate the dynamical quantities for itinerant Majorana
fermions. The DOS of the itinerant Majorana fermions with a
given configuration of ηr is defined by

D(ω,{ηr}) = 2

N

∑
n

δ[ω − εn({ηr})], (8)

where εn is the one-particle energy of the fermion fn which is
introduced so as to diagonalize the Hamiltonian as

H({ηr}) =
∑

n

εn({ηr})
(

f †
n fn − 1

2

)
. (9)
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FIG. 1. (Color online) (a)–(d) T dependencies of the specific heat at (a) α = 1.0, (b) α = 0.8, (c) α = 0.75, and (d) α = 0.5 in the several
clusters with 2 × L2 spins. Here we define the anisotropy parameter α by taking Jx = Jy = α/3 and Jz = 1 − 2α/3. (e)–(h) T dependencies
of the entropy per site S and the thermal average of the density of the flux Wp , W . The horizontal dashed line represents S = 1

2 ln 2. (i)–(l) T

dependencies of the equal-time spin correlations Sll ; Sp = (Sxx + Syy)/2. The horizontal dashed lines represent the values at T = 0 which are
calculated analytically [18], and the dashed-dotted curves represent the high-T Curie behaviors Sll ∼ Jl/T .

We calculate the thermal averages of the DOS, D(ω) =
〈D(ω,{ηr})〉 by the QMC simulation. Note that D(ω) do not
contain the T dependence of the Fermi distribution function:
we take into account the effect of thermal fluctuations only
on ηr .

Moreover, we compute the optical conductivity of itinerant
Majorana fermions. For this purpose we introduce the Fourier
transform of the Hamiltonian as

H =
∑

k

c†kHkck =
∑

n:εnk>0

∑
k

εnk

(
f

†
nkfnk − 1

2

)
, (10)

where ck is a set of the Fourier transforms of cj and the 2 × L2

cluster is regarded as a unit cell. The Bloch Hamiltonian Hk is
diagonalized by introducing a set of fermions fnk belonging to
the nth band with the energy εnk. Then the conductivity tensor
is calculated by

σμν(ω) = 1

L

∫ ∞

0
dtei(ω+iδ)t

∫ β

0
dλ〈Jν(−iλ)Jμ(t)〉, (11)

where δ is an infinitesimal positive number, O(t) =
eiHtOe−iHt , and the current operator is defined as Jμ =∑

knn′ f
†
knfkn′ 〈ukn|∂Hk/∂kμ|ukn′ 〉 with the eigenstate |ukn〉 of

Hk. To extract the contribution to coherent transport, we also
obtain the Drude weight via the sum rule. Specifically, we
compute the Drude weight along the x direction by

Dx = 1

2L

∑
〈ij〉′x

〈
Jxσ

x
i σ x

j

〉 − 1

π

∫ ∞

0
σxx(ω)dω, (12)

where the summation
∑

〈ij〉′x is taken only for the NN x bonds
on the boundary of a finite-size cluster which we regard as a
unit cell in the calculations.

IV. RESULTS

A. Specific heat and entropy

Figures 1(a)–1(d) show the QMC data for the specific
heat Cv [Eq. (4)] as a function of T for several values of
the anisotropy parameter α. For all cases, the specific heat
exhibits two peaks; both are almost system-size independent,

indicating two crossovers. We hereafter term the low- and
high-T crossover temperatures as TL and TH, respectively.
Figures 1(e)–1(h) show the entropy per site obtained by Eq. (5).
The entropy rapidly decreases with decreasing T in the vicinity
of TL and TH corresponding to the two peaks of the specific
heat. A half of the entropy is released successively in each
crossover; consequently, the entropy becomes ∼ 1

2 ln 2 per site
in the region between TL and TH. The plateaulike behavior of
the entropy in this region becomes clearer for smaller α, i.e.,
larger anisotropy of the exchange constants.

Figure 2 shows the contour map of the entropy on the
α-T plane. The high-T crossover temperature TH is almost
independent of α. The origin will be discussed in Sec. IV B. On
the other hand, the low-T crossover temperature TL strongly
depends on α; this will be discussed in Sec. IV C. There are
three regions separated by the two crossovers TL and TH. In
the following sections we clarify the differences between these
regions and their influences on the observable quantities.

α

spin disordered, flux disordered

spin NNC, flux disordered

spin NNC, flux “aligned”
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FIG. 2. (Color online) Contour map of the entropy per site S/ ln 2
on a plane of T and α. The dashed line represents crossover
temperature obtained by the perturbation theory in the limit of
Jz � Jx,Jy (α � 1). The dashed-dotted line represents the crossover
temperature obtained by assuming the constant DOS. NNC stands for
a NN correlation.
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B. High-T crossover: Spin correlation

Let us first discuss what takes place in the high-T crossover
at TH. The itinerant Majorana fermions cj form a band whose
width is WB = 2(Jx + Jy + Jz) −  = 2 − , where  is the
excitation gap in the gapped phase. Suppose that the system
is in the gapless region and the DOS is constant ∼1/WB , the
specific heat originating from the itinerant Majorana fermions
takes maximum at T ∼ 0.511. This value well coincides with
TH in a wide region of α, even in the gapped region for α <

0.75, as shown by the dashed-dotted line in Fig. 2. The result
clearly indicates that the high-T crossover originates in the
itinerant Majorana fermions.

We find that the crossover at TH is closely related with
the development of NN spin correlations given in Eq. (6),
which is observable in experiments. The T dependencies of
Sll are presented in Figs. 1(i)–1(l) for the same set of α as in
Figs. 1(a)–1(h). In the high-T limit, Sll is given by the high-T
expansion as Tr[σ l

jσ
l
ke

−βH]/Tre−βH ∼ −βTr[σ l
jσ

l
kH] = βJl .

Our QMC data obey this Curie behavior, indicated by the
dashed-dotted curves in Figs. 1(i)–1(l). In the crossover region
near TH, however, the spin correlations show deviations from
the Curie behavior, and quickly saturate to the values that are
analytically obtained for the ground state (horizontal dashed
lines in the figures) [18]. Hence, the high-T crossover by
the itinerant Majorana fermions corresponds to physically
important behavior in this quantum spin system: the growth
of the NN spin correlations. We note that the spin correlations
also show slight changes in the low-T crossover at TL. This
behavior is discussed in Sec. IV G.

C. Low-T crossover: Flux density

Next we discuss what occurs in the low-T crossover.
The entropy release near TL originates from the localized Ma-
jorana fermions c̄j (or equivalently ηr ). This is confirmed by
calculating the T dependence of the flux density W in Eq. (7),
as shown in Figs. 1(e)–1(h). The results show that W rapidly
decreases from 1 with increasing T in the vicinity of TL. Hence,
the crossover at TL is due to the thermal fluctuation of fluxes.

This is further confirmed by considering the toric code limit
corresponding to Jx,Jy � Jz (α � 1). In this limit the Kitaev
model is reduced to the effective model Heff = −Jeff

∑
p Wp,

where Jeff = J 2
x J 2

y /(16J 3
z ) [7]. Since this effective model

describes free Ising spins in the magnetic field Jeff , the
specific heat is of Schottky type, which takes a maximum
at T ∼ 0.833Jeff . The asymptotic behavior is shown by the
dashed line in Fig. 2. The agreement between this line and
TL further supports that the low-T crossover is caused by the
thermal disturbance of fluxes.

We also note that the agreement of the asymptotic behavior
is consistent with the absence of phase transition in this
two-dimensional system. This is in contrast to the three-
dimensional case; there are local constraints for Wp in the
Kitaev model defined on a three-dimensional hyperhoneycomb
lattice, leading to a finite-T phase transition [16]. On the other
hand, there is no constraint for Wp in the two-dimensional case,
which results in the absence of the phase transition for T > 0.

To summarize the above results, the three regions in the
phase diagram depicted in Fig. 2 are characterized as follows.
The high-T region for T � TH is a conventional paramagnetic
state, where the NN spin correlations obey the Curie behavior.
On the other hand, in the low-T region for T < TL, the
NN spin correlations are saturated to the T = 0 values, and
furthermore, the fluxes are also aligned. Thus, the system
below TL behaves similar to the ground state QSL. In the region
for TL � T � TH, a peculiar intermediate state appears: the
NN spin correlations are well developed, whereas the fluxes
are thermally disordered. In the following sections, we discuss
the nature of this intermediate state.

D. Density of states of itinerant Majorana fermions

Since the Z2 variables ηr couple with the itinerant Majorana
fermions, we expect that the enhanced fluctuations of fluxes
above TL affect the nature of itinerant Majorana fermions
considerably. In order to elucidate such behavior, we calculate
the DOS of itinerant Majorana fermions. The calculations
were done for the 10 × 10 supercell, where the L = 12 cluster
obtained by the MC simulation is regarded as a unit cell. The
calculations at T = 0 (T = ∞) are performed for a L = 6000
(L = 60) cluster. In the calculation at T = ∞, we take a simple
average over 10 000 random configurations of {ηr}.

Figure 3(a) shows the result for the isotropic case α =
1.0 (Jx = Jy = Jz). The QMC data are shown near TL,
together with the results at T = 0 and T = ∞. In this
gapless case, at T = 0, the DOS shows semimetallic be-
havior D(ω) = 〈D(ω,{ηr})〉 ∝ ω for small ω, reflecting the
Dirac dispersion. While increasing T above TL, however,
the semimetallic dip of DOS is filled rapidly, leading to
“metallic” behavior, D(ω = 0) �= 0. The result clearly indi-
cates that the thermal fluctuations of fluxes near TL signifi-
cantly affect the low-energy spectrum of itinerant Majorana
fermions.

E. Peculiar T dependence of the specific heat

The significant change in the DOS for T > TL affects the
T dependence of the specific heat Cv . In the gapless QSL
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FIG. 3. (Color online) The DOS of Majorana fermions at (a) α = 1.0, (b) α = 0.9, (c) α = 0.8, and (d) α = 0.75. Except the results at
T = 0 and T = ∞, the DOS are calculated by QMC for the 10 × 10 superlattice of the L = 12 cluster.
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FIG. 4. (Color online) T dependence of the specific heat Cv at
α = 1.2 in the L = 12 cluster. For comparison, the results calculated
by fixing all ηr to +1 and by assuming random {ηr} are shown by the
solid and dashed curves, respectively. The log plot of Cv/T is also
shown in the inset.

region, the low-T specific heat is expected to be proportional
to T 2 because of the Dirac semimetallic dispersion for aligned
fluxes. However, Cv calculated by assuming all ηr = +1
largely deviates from our QMC data in the calculated T

range, as shown for α = 1.2 in Fig. 4. This indicates that the
asymptotic T 2 behavior will be limited only in the extremely
low-T region, much lower than TL.

Instead, in a wide range of TL � T � TH, we find that
Cv scales well to ∝T , which originates from the metallic
DOS caused by thermally fluctuating fluxes above TL. Indeed,
the overall behavior including T � TH is well reproduced
by completely random {ηr}, as shown in Fig. 4. Thus, as
a consequence of the thermal fractionalization of quantum
spins, we find the apparent T -linear behavior, not T 2, in the
intermediate-T region where the NN spin correlations are well
developed.

F. Optical conductivity and Drude weight

The significant change in the DOS of the itinerant Majorana
fermions will affect transport properties as well. Here we show
it by computing the optical conductivity of itinerant Majorana
fermions [Eq. (11)]. We consider the longitudinal component
along the x direction (μ = ν = x). The calculations were done
for the 1 × 1 supercell of the L = 12 cluster.

Figure 5(a) shows the results of σxx(ω) at several T for
α = 1.0. The incoherent component at finite ω increases
with decreasing T below TH. To extract the contribution to
coherent transport, we calculate the Drude weight Dx of the
itinerant Majorana fermions by using the sum rule in Eq. (12).
Figure 5(b) shows the T dependence of Dx . While decreasing
T , the Drude weight gradually increases below TH, and sharply
decreases to zero below TL after showing a peak near TL. The
result suggests that the transport quantities, such as the thermal
conductivity, have sizable values between the two crossovers.

G. Gapless-gapped phase boundary

Finally, we discuss the effect of thermal fluctuations near
the phase boundary between the gapless and gapped phases.
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FIG. 5. (Color online) (a) The optical conductivity at α = 1.0 on
the L = 12 cluster at several T . (b) T dependence of the Drude weight
of itinerant Majorana fermions at α = 1.0.

Whereas the T -linear behavior in the specific heat and the
coherent transport are observed widely in the region where
the ground state is gapless, they are disturbed in the vicinity
of the phase boundary at α = 0.75. In this region, thermal
fluctuations in the Z2 variables {ηr} bring about different
behavior in the low-energy part of D(ω) = 〈D(ω,{ηr})〉.
Figures 3(b), 3(c), and 3(d) show the DOS of the itinerant
Majorana fermions at α = 0.9, α = 0.8, and α = 0.75, re-
spectively. At α = 0.8 and α = 0.75, the system develops an
energy gap with increasing T in the vicinity of TL, in sharp
contrast to the gap filling at α = 1.0 and α = 0.9. The results
indicate that there is an intermediate region in terms of the
anisotropy α where the thermal fluctuation of ηr gaps out the
low-energy excitation of itinerant Majorana fermions.

The intermediate region is identified by calculating the
magnitudes of the gaps at T = 0 and T = ∞, as presented
in Fig. 6. The schematic phase diagram determined by the
DOS at T = ∞ is presented in the inset. Remarkably, the
gapped-gapless boundary is similar to that in the dynamical
phase diagram [22], suggesting a relation between thermal and
quantum fluctuations. We also note that the boundary is similar
to the result for the full flux state [23].

The modification of the boundary at finite T implies
that effective exchange couplings are renormalized in an
anisotropic way by the thermal fluctuation of the Z2 variables
{ηr}. Indeed, the anisotropy of spin correlations is slightly
enhanced near TL while increasing T , as shown in Figs. 1(j)
and 1(k). Thus, the slight change in the spin anisotropy is
interpreted as a consequence of the change of the excitation
gap in the itinerant Majorana fermions fractionalized from the
quantum spins.
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FIG. 6. (Color online) The excitation gap for the Majorana
fermions at T = 0 (blue solid line) and T = ∞ (red symbols) as
a function of α. The inset indicates the gapped-gapless boundaries
on the plane of Jx + Jy + Jz = 1. The blue solid lines represent the
phase boundaries in the ground state, while the red dashed lines
represent the boundaries obtained from the DOS at T = ∞. See the
text for details.

V. SUMMARY

In summary, we have investigated the thermal fraction-
alization of quantum spins into Majorana fermions in the
Kitaev model by using the QMC simulation. We clarified

that the fractionalization appears as two crossovers, both of
which are physically observable in the thermodynamics. The
higher-T crossover is identified by the development of NN spin
correlations, which will be observed in, e.g., neutron scattering
experiments. In between the crossovers, the Drude weight of
itinerant Majorana fermions takes a sizable value, which might
be observed by the thermal conductivity. Meanwhile, the low-
T crossover leads to a peculiar T -linear behavior in the specific
heat above the crossover temperature. We also showed that
the thermal fractionalization affects the gapped-gapless phase
boundary by renormalizing the spin anisotropy. The present
results complete how the fractionalization of quantum spins
into Majorana fermions occurs while changing temperature
in the ideal Kitaev model. This provides a useful reference
to the experimental exploration of QSLs in, e.g., iridium
oxides [24–28] and ruthenium compounds [29–32], where the
dominant interaction is expected to be of Kitaev type.

ACKNOWLEDGMENTS

This work is supported by Grant-in-Aid for Scientific
Research, the Strategic Programs for Innovative Research
(SPIRE), MEXT, and the Computational Materials Science
Initiative (CMSI), Japan. Parts of the numerical calculations
are performed in the supercomputing systems in ISSP, the
University of Tokyo.

[1] S. Tomonaga, Prog. Theor. Phys. 5, 544 (1950).
[2] X. G. Wen, Phys. Rev. B 44, 2664 (1991).
[3] Z. Nussinov, C. D. Batista, B. Normand, and S. A. Trugman,

Phys. Rev. B 75, 094411 (2007).
[4] B. Normand and Z. Nussinov, Phys. Rev. Lett. 112, 207202

(2014).
[5] C. Castelnovo, R. Moessner, and S. L. Sondhi, Nature (London)

451, 42 (2008).
[6] V. J. Emery and S. Kivelson, Phys. Rev. B 46, 10812 (1992).
[7] A. Kitaev, Ann. Phys. 321, 2 (2006).
[8] G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102, 017205

(2009).
[9] H.-D. Chen and J. Hu, Phys. Rev. B 76, 193101 (2007).

[10] X.-Y. Feng, G.-M. Zhang, and T. Xiang, Phys. Rev. Lett. 98,
087204 (2007).

[11] H.-D. Chen and Z. Nussinov, J. Phys. A Math. Theor. 41, 075001
(2008).

[12] J. Chaloupka, G. Jackeli, and G. Khaliullin, Phys. Rev. Lett.
105, 027204 (2010).

[13] J. Reuther, R. Thomale, and S. Trebst, Phys. Rev. B 84, 100406
(2011).

[14] J. Chaloupka, G. Jackeli, and G. Khaliullin, Phys. Rev. Lett.
110, 097204 (2013).

[15] J. Nasu, T. Kaji, K. Matsuura, M. Udagawa, and Y. Motome,
Phys. Rev. B 89, 115125 (2014).

[16] J. Nasu, M. Udagawa, and Y. Motome, Phys. Rev. Lett. 113,
197205 (2014).

[17] J. Nasu, M. Udagawa, and Y. Motome, J. Phys.: Conf. Ser. 592,
012115 (2015).

[18] G. Baskaran, S. Mandal, and R. Shankar, Phys. Rev. Lett. 98,
247201 (2007).

[19] K. P. Schmidt, S. Dusuel, and J. Vidal, Phys. Rev. Lett. 100,
057208 (2008).

[20] J. Vidal, K. P. Schmidt, and S. Dusuel, Phys. Rev. B 78, 245121
(2008).

[21] K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn. 65, 1604
(1996).

[22] J. Knolle, D. L. Kovrizhin, J. T. Chalker, and R. Moessner, Phys.
Rev. Lett. 112, 207203 (2014).

[23] V. Lahtinen, G. Kells, A Carollo, T. Stitt, J. Vala, and J. K.
Pachos, Ann. Phys. 323, 2286 (2008).

[24] Y. Singh and P. Gegenwart, Phys. Rev. B 82, 064412 (2010).
[25] Y. Singh, S. Manni, J. Reuther, T. Berlijn, R. Thomale, W.

Ku, S. Trebst, and P. Gegenwart, Phys. Rev. Lett. 108, 127203
(2012).

[26] S. K. Choi, R. Coldea, A. N. Kolmogorov, T. Lancaster, I. I.
Mazin, S. J. Blundell, P. G. Radaelli, Y. Singh, P. Gegenwart,
K. R. Choi, S.-W. Cheong, P. J. Baker, C. Stock, and J. Taylor,
Phys. Rev. Lett. 108, 127204 (2012).

[27] R. Comin, G. Levy, B. Ludbrook, Z.-H. Zhu, C. N. Veenstra, J. A.
Rosen, Y. Singh, P. Gegenwart, D. Stricker, J. N. Hancock, D.
van der Marel, I. S. Elfimov, and A. Damascelli, Phys. Rev. Lett.
109, 266406 (2012).

[28] K. Ohgushi, J. Yamaura, H. Ohsumi, K. Sugimoto, S. Takeshita,
A. Tokuda, H. Takagi, M. Takata, and T. Arima, Phys. Rev. Lett.
110, 217212 (2013).

[29] K. W. Plumb, J. P. Clancy, L. J. Sandilands, V. V. Shankar,
Y. F. Hu, K. S. Burch, H. Y. Kee, and Y. J. Kim, Phys. Rev. B
90, 041112 (2014).

[30] Y. Kubota, H. Tanaka, T. Ono, Y. Narumi, and K. Kindo, Phys.
Rev. B 91, 094422 (2015).

[31] J. A. Sears, M. Songvilay, K. W. Plumb, J. P. Clancy, Y. Qiu,
Y. Zhao, D. Parshall, and Y.-J. Kim, Phys. Rev. B 91, 144420
(2015).

[32] M. Majumder, M. Schmidt, H. Rosner, A. A. Tsirlin, H. Yasuoka,
and M. Baenitz, Phys. Rev. B 91, 180401(R) (2015).

115122-6

http://dx.doi.org/10.1143/ptp/5.4.544
http://dx.doi.org/10.1143/ptp/5.4.544
http://dx.doi.org/10.1143/ptp/5.4.544
http://dx.doi.org/10.1143/ptp/5.4.544
http://dx.doi.org/10.1103/PhysRevB.44.2664
http://dx.doi.org/10.1103/PhysRevB.44.2664
http://dx.doi.org/10.1103/PhysRevB.44.2664
http://dx.doi.org/10.1103/PhysRevB.44.2664
http://dx.doi.org/10.1103/PhysRevB.75.094411
http://dx.doi.org/10.1103/PhysRevB.75.094411
http://dx.doi.org/10.1103/PhysRevB.75.094411
http://dx.doi.org/10.1103/PhysRevB.75.094411
http://dx.doi.org/10.1103/PhysRevLett.112.207202
http://dx.doi.org/10.1103/PhysRevLett.112.207202
http://dx.doi.org/10.1103/PhysRevLett.112.207202
http://dx.doi.org/10.1103/PhysRevLett.112.207202
http://dx.doi.org/10.1038/nature06433
http://dx.doi.org/10.1038/nature06433
http://dx.doi.org/10.1038/nature06433
http://dx.doi.org/10.1038/nature06433
http://dx.doi.org/10.1103/PhysRevB.46.10812
http://dx.doi.org/10.1103/PhysRevB.46.10812
http://dx.doi.org/10.1103/PhysRevB.46.10812
http://dx.doi.org/10.1103/PhysRevB.46.10812
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1103/PhysRevLett.102.017205
http://dx.doi.org/10.1103/PhysRevLett.102.017205
http://dx.doi.org/10.1103/PhysRevLett.102.017205
http://dx.doi.org/10.1103/PhysRevLett.102.017205
http://dx.doi.org/10.1103/PhysRevB.76.193101
http://dx.doi.org/10.1103/PhysRevB.76.193101
http://dx.doi.org/10.1103/PhysRevB.76.193101
http://dx.doi.org/10.1103/PhysRevB.76.193101
http://dx.doi.org/10.1103/PhysRevLett.98.087204
http://dx.doi.org/10.1103/PhysRevLett.98.087204
http://dx.doi.org/10.1103/PhysRevLett.98.087204
http://dx.doi.org/10.1103/PhysRevLett.98.087204
http://dx.doi.org/10.1088/1751-8113/41/7/075001
http://dx.doi.org/10.1088/1751-8113/41/7/075001
http://dx.doi.org/10.1088/1751-8113/41/7/075001
http://dx.doi.org/10.1088/1751-8113/41/7/075001
http://dx.doi.org/10.1103/PhysRevLett.105.027204
http://dx.doi.org/10.1103/PhysRevLett.105.027204
http://dx.doi.org/10.1103/PhysRevLett.105.027204
http://dx.doi.org/10.1103/PhysRevLett.105.027204
http://dx.doi.org/10.1103/PhysRevB.84.100406
http://dx.doi.org/10.1103/PhysRevB.84.100406
http://dx.doi.org/10.1103/PhysRevB.84.100406
http://dx.doi.org/10.1103/PhysRevB.84.100406
http://dx.doi.org/10.1103/PhysRevLett.110.097204
http://dx.doi.org/10.1103/PhysRevLett.110.097204
http://dx.doi.org/10.1103/PhysRevLett.110.097204
http://dx.doi.org/10.1103/PhysRevLett.110.097204
http://dx.doi.org/10.1103/PhysRevB.89.115125
http://dx.doi.org/10.1103/PhysRevB.89.115125
http://dx.doi.org/10.1103/PhysRevB.89.115125
http://dx.doi.org/10.1103/PhysRevB.89.115125
http://dx.doi.org/10.1103/PhysRevLett.113.197205
http://dx.doi.org/10.1103/PhysRevLett.113.197205
http://dx.doi.org/10.1103/PhysRevLett.113.197205
http://dx.doi.org/10.1103/PhysRevLett.113.197205
http://dx.doi.org/10.1088/1742-6596/592/1/012115
http://dx.doi.org/10.1088/1742-6596/592/1/012115
http://dx.doi.org/10.1088/1742-6596/592/1/012115
http://dx.doi.org/10.1088/1742-6596/592/1/012115
http://dx.doi.org/10.1103/PhysRevLett.98.247201
http://dx.doi.org/10.1103/PhysRevLett.98.247201
http://dx.doi.org/10.1103/PhysRevLett.98.247201
http://dx.doi.org/10.1103/PhysRevLett.98.247201
http://dx.doi.org/10.1103/PhysRevLett.100.057208
http://dx.doi.org/10.1103/PhysRevLett.100.057208
http://dx.doi.org/10.1103/PhysRevLett.100.057208
http://dx.doi.org/10.1103/PhysRevLett.100.057208
http://dx.doi.org/10.1103/PhysRevB.78.245121
http://dx.doi.org/10.1103/PhysRevB.78.245121
http://dx.doi.org/10.1103/PhysRevB.78.245121
http://dx.doi.org/10.1103/PhysRevB.78.245121
http://dx.doi.org/10.1143/JPSJ.65.1604
http://dx.doi.org/10.1143/JPSJ.65.1604
http://dx.doi.org/10.1143/JPSJ.65.1604
http://dx.doi.org/10.1143/JPSJ.65.1604
http://dx.doi.org/10.1103/PhysRevLett.112.207203
http://dx.doi.org/10.1103/PhysRevLett.112.207203
http://dx.doi.org/10.1103/PhysRevLett.112.207203
http://dx.doi.org/10.1103/PhysRevLett.112.207203
http://dx.doi.org/10.1016/j.aop.2007.12.009
http://dx.doi.org/10.1016/j.aop.2007.12.009
http://dx.doi.org/10.1016/j.aop.2007.12.009
http://dx.doi.org/10.1016/j.aop.2007.12.009
http://dx.doi.org/10.1103/PhysRevB.82.064412
http://dx.doi.org/10.1103/PhysRevB.82.064412
http://dx.doi.org/10.1103/PhysRevB.82.064412
http://dx.doi.org/10.1103/PhysRevB.82.064412
http://dx.doi.org/10.1103/PhysRevLett.108.127203
http://dx.doi.org/10.1103/PhysRevLett.108.127203
http://dx.doi.org/10.1103/PhysRevLett.108.127203
http://dx.doi.org/10.1103/PhysRevLett.108.127203
http://dx.doi.org/10.1103/PhysRevLett.108.127204
http://dx.doi.org/10.1103/PhysRevLett.108.127204
http://dx.doi.org/10.1103/PhysRevLett.108.127204
http://dx.doi.org/10.1103/PhysRevLett.108.127204
http://dx.doi.org/10.1103/PhysRevLett.109.266406
http://dx.doi.org/10.1103/PhysRevLett.109.266406
http://dx.doi.org/10.1103/PhysRevLett.109.266406
http://dx.doi.org/10.1103/PhysRevLett.109.266406
http://dx.doi.org/10.1103/PhysRevLett.110.217212
http://dx.doi.org/10.1103/PhysRevLett.110.217212
http://dx.doi.org/10.1103/PhysRevLett.110.217212
http://dx.doi.org/10.1103/PhysRevLett.110.217212
http://dx.doi.org/10.1103/PhysRevB.90.041112
http://dx.doi.org/10.1103/PhysRevB.90.041112
http://dx.doi.org/10.1103/PhysRevB.90.041112
http://dx.doi.org/10.1103/PhysRevB.90.041112
http://dx.doi.org/10.1103/PhysRevB.91.094422
http://dx.doi.org/10.1103/PhysRevB.91.094422
http://dx.doi.org/10.1103/PhysRevB.91.094422
http://dx.doi.org/10.1103/PhysRevB.91.094422
http://dx.doi.org/10.1103/PhysRevB.91.144420
http://dx.doi.org/10.1103/PhysRevB.91.144420
http://dx.doi.org/10.1103/PhysRevB.91.144420
http://dx.doi.org/10.1103/PhysRevB.91.144420
http://dx.doi.org/10.1103/PhysRevB.91.180401
http://dx.doi.org/10.1103/PhysRevB.91.180401
http://dx.doi.org/10.1103/PhysRevB.91.180401
http://dx.doi.org/10.1103/PhysRevB.91.180401



