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The nonequilibrium dynamics of a system that is located in the vicinity of a quantum critical point is affected
by the critical slowing down of order-parameter correlations with the potential for novel out-of-equilibrium
universality. After a quantum quench, i.e., a sudden change of a parameter in the Hamiltonian, such a system is
expected to almost instantly fall out of equilibrium and undergo aging dynamics, i.e., dynamics that depends on
the time passed since the quench. Investigating the quantum dynamics of an N -component ϕ4 model coupled
to an external bath, we determine this universal aging and demonstrate that the system undergoes a coarsening,
governed by a critical exponent that is unrelated to the equilibrium exponents of the system. We analyze this
behavior in the large-N limit, which is complementary to our earlier renormalization-group analysis, allowing in
particular the direct investigation of the order-parameter dynamics in the symmetry-broken phase and at the upper
critical dimension. By connecting the long-time limit of fluctuations and response, we introduce a distribution
function that shows that the system remains nonthermal and exhibits quantum coherence even on long time
scales.
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I. INTRODUCTION

Nonequilibrium behavior of interacting many-body sys-
tems is becoming a field of increasing importance in different
areas of physics. It is largely driven by two main experimental
advances: (i) the ability to bring a system into an out-of-
equilibrium state in a controlled and reproducible manner and
(ii) the ability to observe and follow the subsequent dynamics
in real time, i.e., on microscopic time scales. Different tools
have been developed for different experimental systems.
Important examples are various cold-atom setups [1–6], ultra-
fast pump-probe spectroscopy of quantum materials [7–10],
and heavy-ion collisions that explore the dynamics of the
quark-gluon plasma [11]. These experiments clearly reveal
that observations far away from equilibrium can yield new
insights.

Nonstationary out-of-equilibrium dynamics is often char-
acterized by a lack of time-translation invariance. As a result,
the fluctuation-dissipation theorem does not typically hold
and memory effects occur; i.e., the dynamics depends on the
initial state of the system. Major questions in nonequilibrium
are (i) what are the effects of interactions; do nonlinearities,
aging, and memory effects occur, and how are they char-
acterized [12–14]; (ii) what are the properties of transient
metastable “prethermal” states [15–27]; and (iii) how does
the system eventually reach a steady state and is it given by a
(generalized) thermal distribution [2,28–30]? Aging describes
the phenomenon that correlation and response functions
GK (t,t ′) and GR(t,t ′) depend on both time arguments t,t ′ and
not just on their time difference t − t ′ as is the equilibrium case;
i.e., they depend on the age of the system. These effects are well
known to occur in kinetic Ising models, structural glasses, spin
glasses, and disordered systems [31–37]. As these effects are
related to spatial and temporal fluctuations it is often required
to perform an analysis beyond the mean-field approximation.

It is in general difficult to make quantitative predictions for
the nonequilibrium dynamics of interacting quantum many-

body systems beyond the mean-field approximation [38]—
except in cases where exact solutions are available [39–49] or
when controlled numerical approaches are established such
as for impurity models [50–57] and for one-dimensional
systems [22,58–66]. Here, we exploit the presence of a
quantum critical point to analytically solve for the universal
dynamics of an interacting quantum ϕ4 model, which is an
effective description of a number of experimental systems [67].
We obtain solutions both for short as well as for long
times.

Universality close to (quantum) critical points is well
established in equilibrium and follows from a divergence of
the correlation length ξ and time ξτ near criticality [67–69].
Observables such as the order parameter or correlation func-
tions can be expressed in terms of universal scaling functions
with dimensionless arguments. As a function of, for example,
the distance to the critical point they follow power laws with
universal critical exponents. In nonequilibrium, the correlation
length is itself a function of time. For example, if a parameter
of a system is changed sufficiently slowly, the state and
the correlation length of the system can adiabatically follow
this change. Close to a critical point, however, adiabaticity
demands that the parameter change must occur infinitesimally
slowly due to the divergence of the correlation time. At any
finite sweep rate, the system eventually falls out of equilibrium.
In the Kibble-Zurek description of such a parameter sweep
through a critical point, the correlation length is assumed
to remain constant at this freeze-out length scale for the
remainder of the sweep [70,71]. It then follows that the
number of (topological) excitations depends on the rate via
a universal scaling law that solely contains equilibrium critical
exponents [72–76]. Similarly, it follows that the long-time
approach to equilibrium of a system that is suddenly quenched
close to a (quantum) critical point is governed by equilibrium
exponents [77]. We confirm this behavior in our study as well.
Kibble-Zurek scaling has been experimentally observed, in
particular in the regime of slow sweeps [2,78–80]. In the
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opposite regime of fast parameter quenches also different
scaling behavior has been reported [81].

Recently, however, it was shown for the Kibble-Zurek
regime of a gradual sweep that the dynamics of a system
does not completely freeze-out once the system falls out of
equilibrium [82]. Instead, the correlation length ξ (t) remains
a function of time. If the system is located close to a critical
point, where ξ diverges in equilibrium, the correlation length
in fact diverges in a light-cone-like fashion according to a
power law

ξ (t) ∝ t1/zd (1)

with a characteristic dynamic coarsening exponent zd [82].
While the coarsening exponent is in general different from
the dynamic critical exponent z that characterizes the quantum
dynamics in equilibrium, it turns out that the two are equal in
our approach. This scaling behavior (1) is also one of the results
of our calculations for the case of a quantum quench. A crucial
implication of it is that correlation and response functions
GK,GR obey a generalized scaling form, which incorporates
the time dependence of ξ (t). Using this scaling form, we are
able to find an analytic solution of the universal dynamics of
correlation and response functions, both at short and at long
times.

In this article we study the postquench nonequilibrium
dynamics of a dissipative N -component ϕ4 model. Dissipation
is introduced via coupling to an external bosonic bath with
Ohmic, sub-Ohmic, or super-Ohmic spectrum. In equilibrium,
the model exhibits a quantum critical point (QCP) that
separates a disordered (symmetry-unbroken) from an ordered
(symmetry-broken) phase. The equilibrium properties of this
model are discussed, for example, in Refs. [67,83,84]. We con-
sider a system that is initially prepared in an equilibrium state
away from the quantum critical point, where the correlation
length ξ is finite. We discuss both the situation of an initial
state in the symmetry-broken and in the symmetry-unbroken
phase. Then, at time t = 0 a parameter in the system is rapidly
changed, i.e., quenched, to a value that corresponds to the
quantum critical point in equilibrium. Experimentally, this
parameter can, for example, be pressure, strain, magnetic field,
or interaction strength.

We are interested in the postquench dynamics of the
correlation and response functions as well as the time evolution
of the order parameter itself. We obtain analytic expressions
for the universal part of the time dependence, inspired by
Refs. [12,85]. For a system at high and low temperature due
to the rapid quench the correlation length first collapses to a
nonuniversal value of the order of a microscopic length scale in
the system. Since the system is located at the (quantum) critical
point, however, it then recovers by critical coarsening in the
light-cone fashion ξ (t) ∝ t1/zd . An important implication of
this power-law recovery of ξ , both for classical and quantum
dynamics, is a universal time regime, that resembles the
frequently discussed prethermal regime. There, the dynamics
of the correlation function and the order parameter φ(t) is
described by the universal critical exponent

φ(t) ∝ t θ . (2)

For θ > 0 it follows that the order parameter increases after
an initial collapse due to the fast spreading of correlations

in the system, while for θ < 0 the order decreases [86]. The
exponent θ also characterizes the divergence in the classical
and quantum response functions at short times. While the
dynamics of the order parameter and the response function
turns out to be similar in both the high and the low temperature
regime, we find crucial differences in the behavior of the
correlation function and the value of the exponent θ . For
example, in the limit t � t ′, the free quantum correlation
function GK (q,t,t ′) takes the form

GK (q,t,t ′) = GR(q,t) ∝ t−1+2/z (3)

for short times t < γ z/2q−z, where γ is the coupling to the
bath, in contrast to the classical result GK

cl (q,t,t ′) ∝ t ′2/z.
The duration of the prethermalization regime is determined

by the quench amplitude and increases for smaller quench
amplitudes, i.e., if the initial state of the system was close to
criticality. We note that while universality is often associated
with large length and time scales, it here arises from the critical
light-cone recovery of the correlation length over time, similar
to the coarsening in heterogeneous systems [87].

After the prethermalized regime at large times, we show that
the system eventually relaxes to equilibrium quasiadiabatically
with a power law that contains equilibrium critical exponents.
Still, the prethermalization exponent θ enters the long-time
expressions as a universal prefactor in the relaxation ampli-
tudes of the order parameter and the correlation functions. We
note that the dominant slow dynamics is determined by the
interactions that are present within the model and the coupling
to the bath mainly ensures equilibration in the long-time limit.
At long times we can define a time-dependent distribution
function n(t,ω) using the relation between response and
correlation functions known as the fluctuation-dissipation
theorem in equilibrium. We find that the deviation δn from
the equilibrium Bose-Einstein distribution is given by

δn(t,ω) = − coth

(
ω

2T

)
γ θ
(2/z)

sin(π/z)t2/z
Re GR

eq(q,ω), (4)

where T is the bath temperature, GR
eq denotes the equilibrium

retarded Green’s function at the QCP, and t is the time after the
quench. As we show, this result implies that the distribution
function is nonthermal even in the long-time regime: δn

decays only algebraically at large frequencies, while a thermal
distribution decays exponentially. The approach to equilibrium
over time is slow and described by a power law ∝ t−2/z. Finally,
the fact that δn changes sign and can become negative for z < 2
implies that the density matrix of the system is nondiagonal in
the energy basis and quantum coherence is present.

The quench protocol to the critical point that we consider is
inspired by the pioneering work on classical critical points by
Janssen, Schaub, and Schmittmann in Ref. [12] who analyzed
the postquench dynamics of a classical ϕ4 theory in contact
with an Ohmic bath. The analysis of the classical case was
extended to colored noise in Ref. [85]. Previously, we have
reported results on the dissipative quantum ϕ4 model using
a renormalization-group (RG) approach in nonequilibrium
and calculated the new exponent θ in an expansion in ε =
4 − d − z close to the upper critical dimension [88]. For a
closed ϕ4 model without an external bath, θ was recently
derived in Refs. [89,90] using a different nonequilibrium
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renormalization-group method. In this paper, we complement
our previous analysis by an expansion in 1/N , where N is
the number of components of the field. We also largely extend
our previous study, which focused on a quench starting from
the symmetry-unbroken phase, by a direct investigation of
the order parameter dynamics φ(t) starting from an initial
state with nonzero φ. We explicitly prove that the exponent
θ is independent of the initial state and the particular quench
protocol. All previous investigations were limited to space
dimensions below the upper critical dimension. We also
discuss the behavior at the upper critical dimension duc =
4 − z, where logarithmic corrections occur and

φuc(t) ∝ [ln(t/tγ )]θuc (5)

with tγ being a microscopic time scale that marks the beginning
of the universal prethermalization regime.

The remainder of the paper is organized as follows: In
Sec. II, we introduce the model and the Hamiltonian, and
define the quench protocol and the coupling to the external
bath. In Sec. III, we present a nonequilibrium formulation
of the large-N expansion and derive the large-N saddle-
point equations. To solve these equations self-consistently we
employ a scaling form for the Green’s functions that we discuss
in Sec. IV. We present the large-N solution for a quench to the
quantum critical point starting from the disordered phase in
Sec. V and starting from the ordered phase in Sec. VI. In
Sec. V A, we relate the short-time scaling exponent θ to the
time dependence of the self-energy, which can be captured by
a time-dependent effective mass, and determine the short-time
behavior of the Green’s functions. In Sec. V B, we elaborate
on the long-time behavior of the Green’s function, which
enters into the central calculation in Sec. V C, where we show
the self-consistency of the solution, which fixes the value
of the exponent θ . In Sec. V D we show that the system is
characterized by a nonthermal distribution function at long
times. In Secs. V E and VI C we discuss the dynamics at the
upper critical dimension. In Sec. VI, we consider a quench
that starts from the ordered phase, and find in Sec. VI A the
scaling of the order parameter and the crossover time that
separates the regimes of prethermal scaling dynamics from
the adiabatic long-time dynamics that is characterized by
equilibrium critical exponents as discussed in Sec. VI B. We
finally summarize our main results and conclude in Sec. VII.
In the appendices, we provide further details on the analytical
calculations, in particular on the different short time scales in
the problem in Appendix A, on the derivation of the large-N
equations in Appendix B, on the free postquench Keldysh
function in Appendix C, and on the long-time limit of the full
Green’s functions in Appendix D.

II. THE MODEL AND THE QUENCH PROTOCOL

A. The ϕ4 model

We consider the postquench nonequilibrium dynamics
of a ϕ4 model coupled to an external bath. The system
is schematically depicted in Fig. 1(a). To be specific, we
also show one particular experimental realization, the dimer
antiferromagnet realized, for example, in TlCuCl3 [91] in
Fig. 1(b). Other realizations of our theory are discussed below.

FIG. 1. (Color online) (a) Schematic description of the ϕ4 model
coupled to an external bath. The order parameter φ experiences a
potential landscape that depends on a set of parameters R. If the
initial parameters Ri are such that the system is prepared in the
symmetry-broken state with finite order parameter φi , we consider
a sudden change of the parameters from Ri to Rf that brings the
system to the quantum critical point, where φ = 0 in equilibrium. (b)
One experimental realization of the ϕ4 model for N = 3 is a quantum
dimer model in contact with phonons. The quench can be performed
by rapidly changing the pressure.

The ϕ4 model is described by the Hamiltonian

Hs(t) = 1

2

∫
x

[
π2 + (∇ϕ)2 + r0(t)ϕ2

+ u(t)(ϕ · ϕ)2

2N
− h(t) · ϕ

]
. (6)

Here, ϕ(x) = (ϕ1(x), . . . ,ϕN (x)) is an N -component vector
field and π (x) its canonically conjugated momentum with
[ϕl(x),πl′ (x ′)]− = iδll′δ(x − x ′). In addition, we used the
shorthand notation

∫
x

≡ ∫
ddx. The nonequilibrium dynamics

is a consequence of the explicit time dependence of either
the bare mass r0(t), the interaction strength u(t), or the
externally applied field h(t), respectively. In the case of
constant parameters the system is in equilibrium and undergoes
at temperature T = 0 and for h = 0 a quantum phase transition
at a critical value r0,c(u) of the bare mass r0. This transition
can be captured analytically by using an expansion for small
1/N . In fact, the coefficient 1/N in front of the ϕ4 term
was introduced to allow for a well-defined N → ∞ limit.
The large-N approximation is complementary to our earlier
nonequilibrium renormalization-group theory of Ref. [88]. In
particular, it allows for a rather straightforward analysis of the
dynamics of a system that was initially in the symmetry-broken
phase.

B. The quench protocol

We consider the following protocols for the time depen-
dence of

R(t) ≡ (r0(t),u(t),h(t)). (7)

The system is initially prepared in the ground state with Ri =
(r0,i ,ui,hi) somewhat away from the critical point located
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FIG. 2. (Color online) (a) Schematic equilibrium phase diagram
of the ϕ4 model at T = 0 including the different quench paths that
we consider in this article. We either approach the quantum critical
point C from the symmetric side (path A → C) or from the symmetry-
broken side (path B → C). We also consider a quench in the presence
of a magnetic field hi that induces a finite initial order parameter
φi (path B ′ → C). (b) Schematic plot of the quench protocol. We
consider fast quenches where the switching time τs from the initial
parameter set Ri to the final one Rf occurs on a microscopic time
scale.

at Rc = (r0,c(u),u,0). Then we switch R(t) such that it
approaches a final value R(t → ∞) = Rf that is closer to
the critical point. The schematic phase diagram showing the
parameter quenches that we consider in the following are
shown in Fig. 2(a). The switching of R(t) takes place on a
time scale τs . We consider the limit where τs is of the order
of the microscopic time scales of the system, i.e., the fastest
time that is consistent with the validity of the ϕ4 model as an
effective low energy description. This situation is depicted in
Fig. 2(b). Keeping this in mind, we can safely perform the
limit τs → 0 in the calculation such that

R(t) = Ri + θ (t)(Rf − Ri), (8)

with step function θ (t). After the quench the system instantly
falls out of equilibrium.

C. Coupling to an external bath

In the context of condensed matter systems, the generic
situation is an open system that is coupled to external bath
degrees of freedom. The bath, here conveniently described
by a set of harmonic oscillators, is assumed to stay at a
constant temperature, T . In particular, if T = 0 and Rf = Rc,
the system does indeed reach the quantum critical point in the
limit t → ∞. This is to be contrasted with the behavior of a
closed system, where energy conservation alone implies that
the system will not be in the ground state of the postquench
Hamiltonian [89,92]. Even if the system thermalizes, a quench
towards the critical point will heat up a closed system to a finite
temperature. If we include the coupling to the bath, the full
Hamiltonian reads

H (t) = Hs(t) + Hb + Hsb. (9)

Here, Hb describes the bath of harmonic oscillators and Hsb

the linear coupling between system and bath:

Hb = 1

2

∑
j

∫
ddx

(
P2

j + 2
j X2

j

)
,

(10)

Hsb =
∑

j

cj

∫
ddxXj · ϕ.

In accordance with Eq. (8) the full Hamiltonian before and
after the quench is then Hi = H (t < 0) and Hf = H (t > 0),
respectively.

In Eq. (10) j are the frequencies of bath oscillators
that couple with coupling constants cj . As the bath stays in
equilibrium throughout, it is fully characterized in terms of the
retarded function

η(ω) = −
∑

j

c2
j

(ω + i0+)2 − 2
j

. (11)

The imaginary part of η(ω) is the spectral function of the bath.
We consider a bath with spectral function

Imη(ω) = γω|ω|α−1e−|ω|/ωc . (12)

Here, the damping coefficient γ determines the overall strength
of the coupling to the bath and ωc is the ultraviolet cutoff
of the bath spectrum. The exponent α characterizes the low-
frequency behavior. α = 1 corresponds to an Ohmic, α > 1
to a super-Ohmic, and α < 1 to a sub-Ohmic bath [93]. The
frequency dependence of Imη(ω) for different α is depicted
in Fig. 3(b). A Kramers-Kronig transformation yields the real
part of η(ω). We obtain

δη(ω) ≡ η(ω) − η(0)

= γ

(
− cot

(
πα

2

)
+ isign(ω)

)
|ω|α (13)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

FIG. 3. (Color online) (a) Keldysh three-time contour. (b) Bath
spectral function for different power-law exponents corresponding to
the sub-Ohmic case α < 1, the Ohmic case α = 1, and the super-
Ohmic case α > 1.
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for frequencies small in magnitude compared to the cutoff
ωc. The zero-frequency value η(0) = γα

2π
ωα

c depends explicitly
on the value of the bath cutoff. As we will see, η(0) merely
shifts the location of the quantum critical point of the system
but does not affect the generic behavior near it. Below we will
also need the analytic continuation ηM (ωn) = η(0) + δηM (ωn)
of η(ω) to the Matsubara axis (ω + i0+ → iωn = i2nπT ). It
holds that

δηM (ωn) = − γ

sin πα
2

|ωn|α, (14)

again valid for frequencies that are small compared to the bath
cut off: |ωn| � ωc.

D. Experimental realizations

There are a number of experimental systems that can be
effectively described by an N -component ϕ4 theory that we
are considering. Realizations for N = 1 are the magnetic
insulators CoNb2O6 [94] and LiHoxY1−xF4 [95], which can
be described by the transverse field quantum Ising model.
Dissipation in these systems arises via coupling to phonons.
Realizations for N = 2 are systems near the superconductor-
insulator (or superfluid-insulator) transition, Josephson junc-
tion arrays, and quantum antiferromagnets in a magnetic
field [67]. Superfluid-insulator transitions in the Bose-Hubbard
model have been experimentally investigated using cold-atom
quantum gases confined to optical lattice potentials [96,97].
Dissipation in those system has been engineered, for example,
by coupling to other species [98]. Dissipative nanowires near
a transition to a superconducting state [99] and an ensemble of
qubits in a photon cavity [100,101] provide further realizations
for N = 2. A realization for N = 3 is the quantum dimer
antiferromagnet TlCuCl3 shown in Fig. 1(b), which can be
driven across the quantum phase transition by either changing
pressure [91] or magnetic field [102].

III. NONEQUILIBRIUM FORMULATION
OF THE LARGE-N EXPANSION

The natural technique to treat the postquench dynam-
ics is the nonequilibrium many-body formalism due to
Schwinger [103], Kadanoff-Baym [104], and Keldysh [105]
(see also Ref. [106]), where the field theory is placed on the
three-time Keldysh contour shown in Fig. 3(a). A subtlety
of our problem is that the initial state at t = 0 is itself a
many-body state where (i) bath and system are entangled and
(ii) interactions cannot be neglected. Thus, we cannot assume
that we evolve from a noninteracting initial state and switch on
the interactions adiabatically afterwards. How to modify the
approach to the scenario where we prepare system and bath
in an entangled interacting equilibrium state governed by Hi

and where the subsequent time evolution is then determined
by Hf was discussed by Danielewicz [107] and Wagner [108].
In what follows we will first summarize and then use this
approach.

A. Action within the three-time-contour formalism

Let us consider an initial state of system and bath in
equilibrium at temperature T . The state right before the quench

at t = 0 is then characterized by the density matrix

ρi = 1

Z
e−βHi , (15)

where β = 1/T and Z = tre−βHi is the prequench equilibrium
partition function. In the limit T → 0 it holds ρi = |�0〉〈�0|,
where |�0〉 is the ground state of the coupled system and
bath with Hamiltonian Hi . The subsequent time evolution is
governed by Hf ; i.e., the density matrix is given as

ρ(t) = U (t,0)ρiU (0,t), (16)

where U (t,t ′) = exp [−i(t − t ′)Hf ]. The expectation value of
an arbitrary operator (for specificity we consider our vector
field ϕ) is then

〈ϕ(t)〉 = tr[ρ(t)ϕ] = 1

Z
tr[e−βHi U (0,t)ϕU (t,0)]. (17)

For simplicity we suppress for the moment the component
index l and spatial coordinate x of the field; i.e., ϕ(t) = ϕl(x,t).
The time evolution that enters the expectation value can be
efficiently placed on the contour C shown in Fig. 3(a) with
evolution operator such that

〈ϕ(t)〉 = tr[TCe
−i

∫
C dsH (s)ϕ(t)]

tr[TCe−i
∫
C dsH (s)]

. (18)

The time argument of ϕ denotes that the Schrödinger
operator has to be inserted at time t . TC is the time-ordering
operator along the contour from iβ → 0 → ∞ → 0. In the de-
nominator we used the fact that e−βHi = U (0,t)U (t,0)e−βHi .
In full analogy one can consider two-time correlation functions

G(t,t ′) = −i〈TCϕ(t)ϕ(t ′)〉 = −i
1

Z
tr
[
TCe

−i
∫
C dsH (s)ϕ(t)ϕ(t ′)

]
.

(19)

To determine these and other observables we consider the
generating functional on the contour C (

∫
t∈C ≡ ∫

C dt)

W [h] =
∫

DϕDXeiS[ϕ,X]−i
∫
x,t∈C h(t)·ϕ(t) (20)

with action

S[ϕ,X] = Ss[ϕ] + Sb[X] + Ssb[ϕ,X]. (21)

S[ϕ,X] consists of the action of the system, the bath, and the
coupling term. The individual terms are

Ss = 1

2

∫
x,t∈C

{
[∂tϕ(t)]2 − r0(t)ϕ(t)2

− [∇ϕ(t)]2 − u(t)

2N
ϕ(t)4

}
(22)

for the action of the system and

Sb = 1

2

∑
j

∫
x,t∈C

(
[∂t Xj (t)]2 − 2

j Xj (t)2
)
, (23)

Ssb = −
∑

j

cj

∫
x,t∈C

Xj (t) · ϕ(t) (24)

for the bath action and the system-bath coupling, respectively.
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We integrate out the bath variables at the expense of a bare
propagator that is highly nonlocal in time:

G−1
0 (t,t ′) = −[

∂2
t + r0(t) − ∇2

]
δ(t − t ′) + �(t − t ′). (25)

The effects of the bath enter via the nonlocal self-energy
�(t − t ′) that is formally given as

�(t − t ′) = −
∑

j

c2
j

(
∂2
t + 2

j

)−1
δ(t − t ′). (26)

The resulting action

S[ϕ] = 1

2

∫
x,t,t ′∈C

ϕ(t)G−1
0 (t,t ′)ϕ(t ′)

− 1

4N

∫
x,t∈C

u(t)[ϕ(t) · ϕ(t)]2 (27)

depends only on the collective field ϕ and yields the generating
functional via

W [h] =
∫

DϕeiS[ϕ]−i
∫
x,t∈C h(t)·ϕ(t). (28)

In the usual Schwinger-Keldysh formalism it is convenient
to place the four possible arrangements of the times t and t ′
on the forward and backward branch of the contour in a 2 × 2
matrix. In our case we have three branches of the contour
which can be captured in terms of a 3 × 3 matrix structure of
the Green’s function [108]

G =

⎛
⎜⎝

iGM G̃< G̃<

G̃> GT G<

G̃> G> GT̄

⎞
⎟⎠. (29)

The first matrix element is up to a factor i the imaginary-time
Green’s function in equilibrium prior to the quench:

GM (τ − τ ′) = −〈TτϕM (τ )ϕM (τ ′)〉, (30)

where ϕM (τ ) = eτHi ϕe−τHi . Tτ is the time-ordering operator
along the vertical segment of the contour. The inverse of the
bare Matsubara function is(

gM
i

)−1
(τ,τ ′) = (

∂2
τ − r0,i + ∇2

)
δ(τ − τ ′) + ηM (τ − τ ′),

(31)

where ηM (τ ) is the Fourier transform of ηM (ωn) in Eq. (14).
GM (τ,τ ′) ≡ GM (τ − τ ′) only depends on the difference be-
tween the two time variables. The Fourier transform of the
bare Matsubara function yields

gM
i (ωn) = 1

−ω2
n − r̄0,i − q2 + δηM (ωn)

. (32)

Here, we have introduced r̄0,i = r0,i − ηM (0) to account for
a trivial shift of the bare mass due to the bath coupling. The
functions

G̃<(τ,t ′) = i〈ϕM (τ )ϕH (t ′)〉,
(33)

G̃>(τ,t ′) = i〈ϕH (t ′)ϕM (τ )〉
describe correlations across the quench, where ϕH (t) =
eiHf tϕe−iHf t is given in the Heisenberg representation after

the quench. The remaining 2 × 2 block with

GT (t,t ′) = −i〈TtϕH (t)ϕH (t ′)〉,
GT̃ (t,t ′) = −i〈T̃tϕH (t)ϕH (t ′)〉,

(34)
G>(t,t ′) = −i〈ϕH (t)ϕH (t ′)〉,
G<(t,t ′) = −i〈ϕH (t ′)ϕH (t)〉

makes up the usual Keldysh matrix where Tt and T̃t refer to
the time-ordering and anti-time-ordering operator along the
horizontal real-time branch of the contour C, respectively.
Of those 9 Green’s functions that occur in the 3 × 3 matrix
structure, only a few contain truly independent information.
By transforming G with the rotation matrix

L =

⎛
⎜⎝

−1 0 0

0 1√
2

1√
2

0 1√
2

− 1√
2

⎞
⎟⎠, (35)

one can benefit from this redundancy among the Green’s
functions and obtain

L−1GL =

⎛
⎜⎝

GM −√
2G̃< 0

−√
2G̃> GK GR

0 GA 0

⎞
⎟⎠. (36)

The scalar field forms a three-component vector (ϕM,ϕc
H ,ϕ

q

H )
with so called classical and quantum components

ϕ
c,q

H (t) = 1√
2

[ϕ+
H (t) ± ϕ−

H (t)], (37)

in addition to the Matsubara component. The two relevant
Green’s functions on the forward and backward branch of the
contour are the retarded Green’s function

GR(t,t ′) = −iθ (t − t ′)〈[ϕH (t),ϕH (t ′)]−〉 (38)

and the Keldysh function

GK (t,t ′) = −i〈[ϕH (t),ϕH (t ′)]+〉, (39)

where [A,B]± = AB ± BA. The retarded function measures
the response of the order parameter at time t caused by an
external field that couples to it and that acted at time t ′ < t

after the quench, while the advanced function

GA(t,t ′) = iθ (t ′ − t)〈[ϕH (t),ϕH (t ′)]−〉 (40)

contains the same information as the retarded function:
GA(t,t ′) = GR(t ′,t). In distinction, the Keldysh function is
a measure of the strength of correlations between order
parameter configurations at distinct times after the quench.
Couplings between the horizontal and vertical branches of the
contour are determined by correlation functions G̃< and G̃>.
These functions take into account the coupling “across the
quench.” Notice that the Matsubara field ϕM only couples to
the quantum component ϕ

q

H . For the bare Green’s functions
this implies that only the Keldysh function contains prequench
memory effects. Thus, the bare postquench Keldysh function
gK

f (t,t ′) of a noninteracting system will depend on both time
variables, i.e., display aging effects. How to determine gK

f (t,t ′)
will be discussed in detail below. The bare retarded function
only depends on the time differences gR

f (t,t ′) = gR
f (t − t ′)
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(both before and after the quench) and can be Fourier
transformed to yield

gR
f (ω) = 1

ω2 − r̄0,f − q2 + δη(ω)
, (41)

where r̄0,f = r0,f − η(0). Notice that this form is only correct
for the bare retarded function, i.e., for u = 0. As we will
see, many-body interactions couple response and correlation
functions and lead to aging effects in the retarded function as
well.

B. Large-N equations

We consider interaction effects within the large-N ap-
proach. For a large number of field components N the
generating functional W [h] can be evaluated in the saddle-
point approximation controlled in small 1/N . In Appendix B,
we explicitly perform this approximation on the three-time
contour and summarize the main steps of the large-N analysis
for a system with quench. The resulting self-consistent large-N
equations before the quench read

hi = riφi, (42)

ri = r̄0,i + ui

2
φ2

i + ui

∫
q,ωn

GM
ri

(q,ωn), (43)

and the equations after the quench read

hf = −
∫ ∞

0
dt ′

(
GR

r

)−1
(t,t ′)φ(t ′) − φi

∫ 0

−∞
dt ′δη(t − t ′),

(44)

r(t) = r̄0,f + uf

2
φ2(t) + uf

2

∫
q

iGK
r (q,t,t). (45)

We use the notation
∫
q

≡ ∫
ddq

(2π)d
and

∫
ωn

≡ T
∑

n for the
momentum integration and the summation over Matsubara
frequencies. φi and ri are the order parameter and renormalized
mass prior to the quench. GM

r is the renormalized Matsubara
function, where r̄0,i in Eq. (32) is replaced by ri . In full analogy
is the renormalized retarded function(

GR
r

)−1
(t,t ′) = −[

∂2
t + r(t) − ∇2

]
δ(t − t ′) + δη(t − t ′)

(46)

governed by the renormalized, time-dependent mass r(t). The
nonequilibrium dynamics leads to a time dependence of the
mass such that the response function is affected by aging
behavior. The set of equations is closed by the Keldysh function
that can be expressed in the form

GK
r (t,t ′) =

∫
s,s ′

GR
r (t,s)M(s,s ′)GA

r (s,t ′), (47)

where we introduced the memory function M(s,s ′) that is
explicitly determined in Appendix C. Once this memory
function is known we have a closed set of equations for the
nonequilibrium dynamics after a quantum quench.

For our subsequent analysis it is convenient to rewrite the
last two equations in terms of an expansion in

δr(t) ≡ r(t) − rf , (48)

where rf ≡ r(t → ∞) is the equilibrium value of the renor-
malized mass for the postquench parameters [see Eq. (54)
below]. This includes a shift due to interactions. It implies in
particular that rf = 0 for a quench right to the critical point.
The renormalized propagators can then be obtained from the
Dyson equations

GR
r (t,t ′) = gR(t − t ′) +

∫ t

t ′
dsgR(t − s)δr(s)GR

r (s,t ′)

(49)

and

GK
r (t,t ′) = gK (t,t ′) +

∫ t ′

0
dsgK (t,s)δr(s)GA

r (s,t ′)

+
∫ t

0
dsgR(t − s)δr(s)GK

r (s,t ′). (50)

Here, the function gR(t − t ′) is the solution of Eq. (46) with
r(t) replaced by rf ; i.e., it reads in Fourier space as

gR(ω) = 1

ω2 − rf − q2 + δη(ω)
. (51)

The Keldysh function gK is determined as in Eq. (47) via
gK (t,t ′) = ∫

s,s ′ g
R(t − s)M(s,s ′)gA(s ′ − t ′).

In Secs. V and VI we present solutions of the large-N
equations for several different quench protocols, both starting
in the disordered and in the ordered phase. In the next sections,
however, we first summarize the equilibrium limit without
quench and motivate the scaling behavior out-of-equilibrium
of various observables that will be confirmed by the subsequent
explicit calculation.

C. The equilibrium limit of the large-N analysis

Without quench, the system remains in equilibrium and
the large-N equations before and after the quench become
identical. In equilibrium, the Keldysh function GK (q,t,t ′) only
depends on the time difference t − t ′, with Fourier transform
determined by the fluctuation-dissipation theorem:

GK
r (q,ω) = 2i coth

(
ω

2T

)
ImGR

r (q,ω). (52)

Using

T
∑

n

GM
r (q,ωn) = 1

2

∫ ∞

−∞

dω

2π
iGK

r (q,ω) (53)

it follows with
∫ ∞
−∞ dtδη(t) = 0 that the equations before and

after the quench give, as expected, the same solution. We can
drop the subscripts i and f that distinguish between the pre-
and postquench regimes. The renormalized mass fulfills

r = r̄0 + u

∫
q,ω

GM
r (q,ω) + u

2
φ2. (54)

The equation of state for the order parameter reads

rφ = h. (55)

In the ordered phase it holds that φ �= 0 and using Eq. (55)
it thus follows for h = 0 that r(h = 0) = 0. The excitation
spectrum is massless due to the Goldstone theorem and the fact
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that longitudinal excitations are of order 1/N . The transition
takes place when r = 0 and φ = 0 and determines the critical
value r̄0,c(u). For T = 0 the latter is determined by

r̄0,c = −u

∫
q,ω

1

ω2 + q2 + δηM (ω)
; (56)

r̄0,c depends on the momentum cutoff � and, via η(0), on
the frequency cutoff of the bath spectrum. However, universal
behavior emerges as a function of the distance δr = r̄0 − r̄0,c

to the quantum critical point. For sufficiently small energies
the dynamics is dominated by the bath. Comparing length and
time scales in the propagator with δηM (ω) ∝ |ω|α yields the
dynamic scaling exponent

z = 2/α. (57)

Analyzing Eqs. (54) and (55) one obtains below the upper
critical dimension d < duc = 4 − z the well known results
for the order parameter |φ| ∝ (−δr)β with β = 1/2, for the
correlation length ξ = r−1/2 ∝ δr−ν with ν−1 = d + z − 2,
and for the order-parameter susceptibility at the critical
point GR(q = 0,ω = 0) ∝ δr−γ with γ = 2ν. For d > duc all
exponents take their mean-field values.

IV. SCALING BEHAVIOR

In this section we discuss scaling arguments for the
nonequilibrium dynamics after a quench towards the crit-
ical point. This analysis follows the logic developed in
Refs. [109,110] for boundary critical phenomena. In addition
to the dynamics of the order parameter φ(t)ϕ̂ = 〈ϕ(k,t)〉 we
are interested in the retarded and Keldysh Green’s functions
GR(k,t,t ′) and GK (k,t,t ′), respectively, where both time
arguments are after the quench. We suppress the field index l

here and in the following for simplicity. These scaling relations
and the corresponding exponents will be determined from a
self-consistent solution of the coupled large-N equation in the
subsequent sections.

In equilibrium, the order parameter at T = 0 obeys

φeq(δr,h) = b−β/νφeq(b1/νδr,bβδ/νh), (58)

with distance to the critical point δr = r̄0 − r̄0,c and scaling
parameter b. Note, δr can in fact be realized by either changing
r̄0 or by changing r̄0,c that depends on u. Thus, for the
discussion of scaling behavior, it is sufficient to include only
two scaling fields R = (δr,h). The choice b = δr−ν implies
for h = 0 that φeq(δr) ∝ δrβ , where β is the order-parameter
exponent. ν is the correlation length exponent with equilibrium
correlation length

ξ ∝ δr−ν . (59)

In analogy, right at the critical point and for finite field follows
with b = h−ν/(βδ) that φeq(h) ∝ h1/δ . Those are the well known
scaling relations in equilibrium.

In a nonequilibrium setting the order parameter will, on the
one hand, depend on time, which transforms under scaling as
t → b−zt . Here, z is the dynamic scaling exponent that relates
typical time and length scales. We consider a regime where the
dynamics is dominated by the coupling to the bath. In this case,
to leading order in 1/N we find that like in the equilibrium
case discussed previously [see Eq. (57)] z = 2/α is determined

by the spectral function η(ω). On the other hand, our quench
protocol implies that the order parameter depends on the initial
distance δri and the final distance δrf to the critical point as
well as on the initial and final fields hi and hf . It just holds
that

φ(t,Ri(1),Rf (1)) = b−β/νφ(b−zt,Ri(b),Rf (b)), (60)

where Rf (b) = (b1/νδrf ,bβδ/νhf ) and Ri(b) =
(bκ/νδri,b

κβδ/νhi). The scaling dimensions of the order
parameter φ and of the final values δrf and hf continue to
take their equilibrium values β, ν−1, and βδ/ν, respectively.
This is a consequence of the fact that the system approaches
equilibrium after very long time scales

lim
t→∞ φ(t,Ri,Rf ) = φeq(Rf ), (61)

independently of the initial values δri and hi . Thus, the corre-
sponding scaling dimensions are the same as in equilibrium.
In this model with a nonconserved order parameter there is,
however, no reason why the scaling dimension of δri and hi

should also be equal to the equilibrium values. This is reflected
in the new exponent κ that enters Eq. (60). At this point it is
not obvious why the same exponent κ modifies the scaling
dimension of δri and hi . This will only become clear in our
explicit analysis of the theory. To demonstrate this and to
determine κ is one of the goals of this paper.

Let us further analyze implications of this scaling behavior.
For simplicity, we first consider the case of a quench right to
the critical point δrf = 0 in vanishing field hi = hf = 0. In
this case Eq. (60) simplifies to

φ(t,δri) = b−β/νφ(b−zt,bκ/νδri), (62)

with b−zt = tγ and tγ being a microscopic time scale. We can
therefore express the order parameter in terms of a scaling
function as

φ(t,δri) = t−
β

νz �(t/t∗), (63)

where t∗ ∝ δr
− νz

κ

i and t , t∗ are in units of tγ . For t � t∗ the
scaling function is expected to approach a constant �(x �
1) → constant and the order parameter decays adiabatically
according to a power law characterized by equilibrium
exponents

φ(t � t∗) ∝ t−β/(νz). (64)

On the other hand, for short times t � t∗ one expects that
φ ∝ δr

β

i such that �(x � 1) ∝ xκβ/(νz). In this regime follows

φ(t � t∗) ∝ t (κ−1)β/(νz). (65)

As shown below the exponent κ varies with z and is for some z

values larger than unity, implying that the order parameter rises
for intermediate time scales, while for other z values κ < 1
such that a slower decay of φ governs the regime up to the
crossover scale t∗. Note that t∗ diverges for shallow quenches
where δri is small. An analogous behavior occurs in the regime
where we perform a quench of the field hi to hf = 0 for a
system at the critical point: δri = δrf = 0. The characteristic

time scale is now given as t∗ ∝ h
− νz

βδκ

i . The resulting time
dependence for t � t∗ and t � t∗ is the same as before.
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Let us now turn to the correlation and response functions. In
equilibrium, the retarded and Keldysh Green’s functions only
depend on the difference t − t ′ of the two time variables and
obey at the critical point the established scaling behavior

GR(K)
eq (q,t,t ′) = FR(K)

eq (qz(t − t ′)/γ z/2)

q2−z−ηγ z/2
, (66)

with scaling functions FR
eq(x) and FK

eq (x). Note that in
contrast to the classical limit at high temperatures, here GK

and GR have the same scaling dimension. The factor γ z/2

occurs to render the scaling functions and their arguments
dimensionless. As discussed, this behavior is only valid for
time scales sufficiently long to ensure that the dynamics is
dominated by the bath and it is justified to neglect ω2 compared
to |ω|α in the bare propagators.

Considering now the out-of-equilibrium dynamics after
the quench to the critical point, correlations and response
depend in general on both time variables. This gives rise to
the additional dimensionless ratio t/t ′, compared to scaling in
equilibrium. Thus, we expect from dimensional considerations
the following behavior:

GR(K)(k,t,t ′) =
(

t

t ′

)θ(θ ′)
FR(K)(qzt/γ z/2,t/t ′)

q2−zγ z/2
. (67)

Here, the scaling functions FR and FK are chosen such that
they depend only weakly on the ratio t ′/t if t � t ′. The
possibility of a singular dependence on t/t ′ is captured by
the exponents θ and θ ′, respectively. Below we will determine
scaling laws that relate the exponents θ , θ ′, and κ in such a way
that only one new independent exponent emerges. Thus, the
postquench dynamics is governed by a single critical exponent
that cannot be expressed in terms of equilibrium exponents.

V. QUENCH FROM THE DISORDERED PHASE

In what follows we present the solution of the coupled
large-N equations [see Eqs. (42)–(47)] for the postquench
nonequilibrium dynamics at the quantum critical point starting
the quench from the disordered phase. The quench protocol is
indicated by A → C in Fig. 2. The effective time dependent
mass in Eq. (45) simplifies to

r(t) = r̄0,f + u

2

∫
ddq

(2π )d
iGK

r (q,t,t). (68)

In the case of a quench to the critical point, r̄0,f takes the value
r̄0,c in Eq. (56). It is convenient to express r̄0,c in terms of the
equilibrium Keldysh function such that

r(t) = u

2

∫
ddq

(2π )d
[
iGK

r (q,t,t) − iGK
eq(q)

]
. (69)

For times larger than the microscopic time scales the Keldysh
function obeys scaling. We refer to Appendix A for a
discussion of the various short time scales in the problem.
Based on dimensional arguments, we make the generalized
light-cone ansatz

r(t) = γ a

t2/z
, (70)

valid for t larger than the microscopic time scale. The prefactor
γ , that determines the strength of the coupling to the bath,
was chosen to ensure that the light-cone amplitude a is
dimensionless. This ansatz corresponds to a time-dependent
correlation length

ξ (t) = |r(t)|−1/2 = 1

(γ |a|)1/2
t1/z, (71)

reflecting the fact that after time t perturbations have travelled
a distance ξ (t). For ballistic propagation with z = 1 this
corresponds to the usual light-cone propagation during time
t . In general, ξ (t) is the length scale on which the signal of a
perturbation can propagate. Among others, this implies that the
system will eventually reach a state with diverging correlation
length. This is expected as the coupling to the heat bath ensures
that the system equilibrates at the quantum critical point since
the bath temperature is zero.

We now demonstrate that Eq. (70) indeed leads to a
self-consistent solution of the coupled large-N equations and
determine the light-cone amplitude a. Let us next explore some
consequences of such a time-dependent mass r(t).

A. Light-cone amplitude a and universal short-time exponent θ

We first establish a relation between the light-cone ampli-
tude a of Eq. (70) and the exponents θ and θ ′ of the retarded
and Keldysh Green’s functions in Eq. (67). We will show that
θ = θ ′, which is in contrast to the regime near classical phase
transitions [12,85] and to the dynamics in an isolated, quantum
system [89]. The equality of both exponents in the quantum
case follows from the fact that the dominant contributions
to gK arise from the high-frequency regime, in contrast to a
classical system, where the low-frequency part is dominant.
This relation can easily be determined from an analysis
of the Dyson equation of GR in the intermediate regime
tγ � t � tq ≡ (

√
γ /q)z and t � t ′. The leading corrections

that follow from Eqs. (49) and (50) in this limit are given by

δGR
r (k,t,t ′) ≈

∫ t

tγ

dsgR(k,t − s)
γ a

s2/z
gR(k,s − t ′), (72)

δGK
r (k,t,t ′) ≈

∫ t

tγ

dsgR(k,t − s)
γ a

s2/z
gK (k,s,t ′). (73)

Here, the lower integration limit tγ appears since the power-law
decay of r(t) ∝ t−2/z sets in only beyond this time scale.

We first consider the correction to the retarded function. For
frequencies ω � (q/

√
γ )z, which correspond to times t �

(
√

γ /q)z, the bare retarded propagator gR at the critical point
is local in space and entirely governed by the bath

gR(q,ω) ≈ 1

δη(ω)
. (74)

Here, δη(ω) is the frequency-dependent contribution of the
bath function η(ω) [see Eq. (13)]. Performing the inverse
Laplace transformation we obtain

gR(q,t) ≈ − sin(π/z)

γ
(2/z)
t2/z−1. (75)
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If we insert this into Eq. (73), it follows for t ′ > tγ that

δGR
r (t,t ′) = a sin2(π/z)

γ
(2/z)2

∫ t

t ′
ds

(t − s)2/z−1(s − t ′)2/z−1

s2/z
.

The integral can be performed analytically. Evaluating it in the
limit t � t ′ yields

δGR
r (t,t ′) = a sin2(π/z)

γ
(2/z)2
t2/z−1 ln

t

t ′
. (76)

To leading order it follows for the retarded propagator

GR
r (t,t ′) = gR(t − t ′)

(
1 + θ ln

t

t ′
+ · · ·

)
, (77)

with

θ = −a sin(π/z)


(2/z)
. (78)

This result demonstrates that a time-dependent mass r(t)
leads to aging behavior of the retarded Green’s function; i.e.,
GR

r (t,t ′) depends on both time arguments t and t ′ separately. If
we include higher order corrections, an analysis along the same
lines yields higher powers of the logarithm with appropriate
coefficients allowing us to exponentiate the logarithm if a

is small. We can then put GR
r (t,t ′) in the scaling form of

Eq. (67) and find that θ is indeed the exponent that appears
in the scaling form. Thus, the dimensionless amplitude a of
the time-dependent mass determines the exponent θ of the
retarded Green’s function. This analysis was performed under
the assumption of negligible q dependence of the retarded
propagator. Including this q dependence is technically slightly
more involved, but leads to the same behavior since the
ln(t/t ′)-time dependence is still the dominant one in the limit
t � t ′.

Let us now discuss the interaction correction to the short-
time behavior of the Keldysh function using Eq. (73). We
need to evaluate the short-time behavior of the noninteracting
Keldysh function gK (t,t ′), for which it is useful to introduce a
double Laplace transformation (see Ref. [85]):

gK (q,ω,ω′) =
∫ ∞

0
dtdt ′ei(ω+i0+)t ei(ω′+i0+)t ′gK (q,t,t ′).

(79)
As we show in Appendix C the Keldysh function can be
expressed in terms of the memory function M(q,ω,ω′) as
gK (q,ω,ω′) = M(q,ω,ω′)gR(q,ω)gR(q,ω′). Using the deep
quench result for the memory function in Eq. (C16) at T = 0,
this takes the form

gK (q,ω,ω′) = i
sgn(ω)δη(ω) + sgn(ω′)δη(ω′)

ω + ω′ + i0+

× gR(q,ω)gR(q,ω′). (80)

The limit t � t ′ corresponds to ω′ � ω. In this limit δη(ω′) is
always large compared to δη(ω) and it follows

gK (q,ω,ω′ � ω) � i
δη(ω′)
|ω′| gR(q,ω)gR(q,ω′). (81)

Using Eq. (74) for the retarded function in the short-time limit,
it immediately follows

gK (q,ω,ω′ � ω) � i

|ω′|g
R(q,ω). (82)

The back transformation is now straightforward and, using that
1/|ω′| turns into a constant upon Laplace transformation, we
find

gK (q,t � t ′) � gR(q,t) = − sin(π/z)

γ
(2/z)
t2/z−1. (83)

In the short-time limit and for t � t ′, the Dyson equations
for the retarded and Keldysh functions thus only differ in the
bare values of the two functions. Since we just demonstrated
that gK (q,t � t ′) and gR(q,t) have the same t dependence
in the relevant regime, both Dyson equations have the same
solutions. This immediately yields θ ′ = θ for the exponent θ ′
of the Keldysh function introduced in Eq. (67). Finally, let
us remark on an important difference between quantum and
classical dynamics: while in the quantum case the free Keldysh
function gK (q,t,t ′) approaches a constant in the limit t ′ → 0,
even for small but finite t , the classical postquench Keldysh
function vanishes for t ′ → 0 according to the power law t ′2/z.

B. Long-time behavior of G K (q,t,t)

We next determine the long-time decay of the Green’s
functions GR and GK of a system with time-dependent
effective mass r(t) as given in Eq. (70). To this end we analyze
the equation of motion (44), in the long-time limit. From the
equation of motion follows

[
∂2
t + r(t) + q2

]
ϕ(q,t) =

∫ t

−∞
dsδη(t − s)ϕ(q,s). (84)

In order to analyze the impact of the time dependence of the
correlation length, we perform an expansion for small r(t). For
the specific ansatz in Eq. (70), this amounts to an expansion in
the dimensionless light-cone amplitude a:

ϕ(q,t) = ϕeq(q,t) + ϕ1(q,t) + O(a2), (85)

where ϕeq(q,t) obeys the equation of motion for r(t) = 0, i.e.,
the equation of motion in equilibrium at the critical point. We
can split the integral on the right-hand side of Eq. (84) into

�(t) =
∫ 0

−∞
dsδη(t − s)ϕ(q,s) (86)

and a contribution that only contains the postquench dynamics
of ϕ(q,t). As far as the postquench dynamics is concerned,
�(t) acts as an inhomogeneity in Eq. (84). At long times
we can neglect this inhomogeneity since δη(t → ∞) vanishes
sufficiently rapidly. This determines the leading perturbative
correction to

ϕ1(q,t) = −
∫ t

t0

dsGR
eq(t − s)r(s)ϕeq(q,s), (87)

where GR
eq(t − t ′) = −iθ (t − t ′)〈[ϕeq(t),ϕeq(t ′)]〉 (suppress-

ing the field index l again).
Using the definition of GR/K in Eqs. (38) and (39) we

can now determine how the Green’s functions relax towards
their equilibrium expressions. Let us first consider the equal-
time Keldysh function GK

r (q,t,t), which turns out to be of
particular importance for the self-consistent solution of the
large-N equation. Using Eq. (85) leads to

GK
r (q,t,t) = GK

eq(q) + δGK
r (q,t,t), (88)
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where

δGK
r (q,t,t) = −2

∫ t

tγ

dsGR
eq(t − s)r(s)GK

eq(t − s). (89)

To evaluate this expression we express the retarded function
in Laplace and the equilibrium Keldysh function in Fourier
space and obtain

δGK
r (q,t,t) = −2i

∫
dωdω′

2π2
Im

[
GR

eq(ω)
]
GK

eq(ω′)

×
∫ t

tγ

ds r(s)e−i(ω−ω′)(t−s). (90)

We want to evaluate this integral in the limit of large t . The
typical frequency scale of the equilibrium Green’s function is
ωq ≈ t−1

q = qz/γ z/2. For times t � ω−1
q the integrand is in

general highly oscillatory, except for contributions that stem
from the upper limit of the integration over time. This yields
up to leading order in t∫ t

tγ

dse−i(ω−ω′)(t−s)r(s) ≈ ir(t)

ω − ω′ . (91)

Performing the remaining frequency integration leads to

GK
r (q,t,t) = GK

eq(q) + 2ir(t)

cKq4−zγ z/2
(92)

with numerical coefficient

cK = 4 sin(πz/2)

z(2 − z) sinz/2(π/z)
. (93)

For later discussion it is useful to note that cK is positive for
z < 4 and for z → 2 it holds cK → π . From Eq. (92) follows
that the equal-time correlation function decays for large times
according to a power law. Including higher order corrections
in the Dyson equation leads to terms of order r(t)2. Thus, the
term GK

1 (q,t,t,) = 2ir(t)/(cKq4−zγ z/2) appearing in Eq. (92)
is the slowest decaying correction at large times. This is
an interaction effect, because the bare correlation function
gK (q,t,t) decays for finite momenta always exponentially
∝ exp (−qzt/γ z/2) to its value in equilibrium. Critical fluc-
tuations lead to a significant slowing down of the equilibration
of the system.

C. Self-consistent determination of the light-cone amplitude

In this section, we demonstrate that the ansatz for the
time-dependent mass r(t) in Eq. (70) indeed leads to a
self-consistent solution of the coupled large-N equations and
we show how to determine a. Let us begin with some general
remarks about Eq. (69) that we want to solve self-consistently:

aγ

t2/z
= uKd

2

∫ �

0
dq q3−z−ε

[
iGK

r (q,t,t) − iGK
eq(q)

]
. (94)

Here, Kd = 
(d/2)/[2πd/2(2π )d ] takes into account the
integration over angles and

ε = 4 − d − z. (95)

We want to determine the dimensionless light cone amplitude
a self-consistently for small ε. Since u will turn out be also
of order ε [see Eq. (100) below] it is tempting to speculate

that one only has to expand GK
r in a. To leading order

it would then suffice to insert the bare Keldysh function
gK (q,t,t) in Eq. (94). Since gK decays exponentially to GK

eq
the integral is convergent in the limit � → ∞. However, as
was shown in the previous paragraph, first-order corrections to
the Keldysh function decay much more slowly. Using Eq. (92)
such corrections GK

1 (q,t,t) ∝ r(t)/q4−z are proportional to
q−4+z. Upon integration this generates terms that behave as
1/ε for small ε:∫ �

q0

dq
1

q1+ε
= −1

ε
(�−ε − q−ε

0 ), (96)

where q0 is some appropriate lower cutoff that we elaborate
on below. Such a term, multiplied with r(t) ∝ a will be of
same order O(ε0) as the bare gK . Thus, in the expansion
of GK

r in a we have to keep those slowly decaying terms
proportional to q−4+z. From GK

1 in Eq. (92) follows that large
times t correspond to large momenta q � q0 ≡ γ 1/2/t1/z,
which naturally introduces the lower cutoff q0 in Eq. (96).
As we have previously shown in Sec. V A, in the opposite
limit of small momenta q � q0 the Keldysh function becomes
momentum independent [see Eq. (83)] and cannot generate
contributions that behave as 1/ε.

With these considerations, we are able to solve the large-
N equations self-consistently. We expand GK

r = gK + GK
1 in

small r(t) to find

r(t) = uKd

2

∫ ∞

0
dq q3−z−ε

[
igK (q,t,t) − iGK

eq(q)
]

+ uKdr(t)

cKεγ z/2

[
�−ε −

(
γ 1/2

t1/z

)−ε
]
. (97)

In the first integral we already took the limit � → ∞ because
gK approaches GK

eq exponentially quickly and the integral
is thus convergent at the upper limit. To proceed, we use
the scaling form of Eq. (67) and introduce a dimensionless
integration variable x = qzt/γ z/2 to obtain

aγ

t2/z
= uKd

2zγ z/2

γC0t
ε/z

γ ε/zt2/z
+ uaγKd

cKεγ z/2t2/z

(
�−ε − t ε/z

γ ε/2

)
, (98)

where we have introduced the dimensionless integral

C0 =
∫ ∞

0
dx x2/z−1

[
if K (x,1) − iFK

eq

]
. (99)

Equation (98) must hold for all times t � tγ , and therefore
terms with and without t ε/z must cancel separately. This allows
us to extract the two conditions

u = u∗ ≡ cKγ z/2�ε

Kd

ε, (100)

a = cKC0

2z
ε. (101)

The first equation determines the deep-quench fixed point
value of u. It does not imply that u must be tuned precisely to
this value. Instead, it should be understood as a consequence
of using the deep-quench scaling form of GK

r . Nonuniversal
contributions in GK

r will renormalize u, which is fully
consistent with our renormalization-group-based reasoning in
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FIG. 4. (Color online) Prethermalization exponent θ as a func-
tion of dynamic critical exponents z. Here, ε = 4 − d − z and
z = 2/α is determined by the form of the bath spectral function at
low energies Imη(ω) ∝ |ω|α . For θ < 0 one observes an underdamped
approach of the free Keldysh Green’s function GK

0 (t,t) towards equi-
librium. The transition from overdamped to underdamped behavior
occurs close the location of the sign change.

Ref. [88]. The second equation (101) determines the value of
a and, using Eq. (78), the value of the new critical exponent

θ = − sin(π/z)a


(2/z)
= −cK sin(π/z)

2z
(2/z)
C0ε. (102)

Note that exactly the same value was obtained in our previous
renormalization-group analysis in the limit N → ∞ [88],
where we have shown that the integral C0 can be performed
analytically in the case of an Ohmic bath. For general dynamic
critical exponents 1 < z < 4 we evaluate it numerically and
the result is presented in Fig. 4.

The relation between the light-cone amplitude a and the
retarded short-time critical exponent θ is identical for a classi-
cal and a quantum system; however, the z dependence of θ is
completely different due to the fact that quantum fluctuations
are only present in the quantum system. Quantum fluctuations
influence θ in two ways: (i) via the numerical constant cK in
Eq. (93) and (ii) via the result of the dimensionless integral C0

over the Keldysh functions in Eq. (99).
The constant cK determines the fixed point u∗ as well as

the long-time decay of GK
r . For a quantum system, cK is

positive for z � 4 and linearly approaches zero for z → 4.
The constant C0 is given by the difference of the postquench
Keldysh scaling function f K (x) and the equilibrium Keldysh
scaling function FK

eq . For a classical system, the system is
always overdamped and f K is smaller than FK

eq for all values of
z. Hence, the exponent for a classical system is always positive
θcl > 0. For an Ohmic bath, for example, one finds θcl = εcl/4
with εcl = 4 − d [12]. For a quantum system, however, f K

can exhibit oscillations, in particular for super-Ohmic bath
spectral functions where z � 2 the Keldysh function becomes
underdamped. This leads to a sign change of θ at z ≈ 1.8.

While the classical result of the exponent for an Ohmic bath
is θcl = εcl/4, which is the same value as in the quantum case
for z = 2, θ (z = 2) = ε/4, this is only a coincidence, since
the constants cK and C0 take different values for T = 0 and
T → ∞. For an Ohmic bath, one can therefore still distinguish

the quantum postquench dynamics from the classical one by
analyzing, for example, the long-time behavior of the Keldysh
function. Moreover, since ε depends on z, we find the same
short-time exponent for classical and quantum systems in
different dimensions. For example, we predict θcl = 1/4 for
a classical system in contact with an Ohmic bath in d = 3
dimensions, while θ = 1/4 for a quantum system in contact
with an Ohmic bath in d = 1 dimension.

D. Distribution function n(t,ω)

The analysis of the long-time behavior of the equal-time
Keldysh function GK (q,t,t) in Sec. V B can be straightfor-
wardly extended to different times t,t ′ as well as to the retarded
function GR(q,t,t ′). We show in detail in Appendix D that in
the limit where both time arguments are large compared to the
typical mode time tq = q−zγ z/2, but the relative time is small
t − t ′ � tq , this leads to

GK
r (q,t,t ′) =GK

eq(q,t − t ′) − 2r

(
t + t ′

2

)
CK (q,t − t ′),

(103)

GR
r (q,t,t ′) = GR

eq(q,t − t ′)

− 4iθ (t − t ′)r
(

t + t ′

2

)
CR(q,t − t ′), (104)

where we have defined the functions

CK (q,t) =
∫

dω

2π
Re

[
GR

eq(q,ω)
]
GK

eq(q,ω)e−iωt , (105)

CR(q,t) =
∫

dω

2π
Re

[
GR

eq(q,ω)
]
Im

[
GR

eq(q,ω)
]
e−iωt . (106)

By performing a Wigner transformation of Eqs. (103)
and (104) and by using the fluctuation-dissipation the-
orem for the equilibrium Keldysh function GK

eq =
2i coth[ω/(2T )]ImGR

eq, one can express GK
r after a few

steps as

GK
r (q,ta,ω) = 2i coth

(
ω

2T

)[
1 + 2r(ta)ReGR

eq(q,ω)
]

×ImGR
r (q,ta,ω), (107)

where ta = (t + t ′)/2. This result shows that we are in the limit
of adiabatic relaxation, since GK

r can be written as

GK
r (q,ta,ω) = coth

(
ω

2T

)

× 2iImη(ω)

[q2 + r(ta) + Reη(ω)]2 + [Imη(ω)]2
.

(108)

Further, the similarity between GR
r and GK

r suggests con-
necting them via the fluctuation-dissipation theorem and
introducing a distribution function n(ta,ω) via

GK
r (q,ta,ω) = 2i[2n(ta,ω) + 1]ImGR

r (q,ta,ω). (109)

With n(ta,ω) = nB(ω) + δn(ta,ω), where nB(ω) is the Bose-
distribution function, this yields for the correction

δn(ta,ω) = coth

(
ω

2T

)
r(ta)Re GR

eq(q,ω). (110)
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This expression is only valid for large frequencies, which
corresponds to small relative times |t − t ′| � tq . For ta → ∞
the system relaxes to the thermal equilibrium state. Aging
effects, however, lead to a significant slowing down of
thermalization. Explicitly, one finds

δn = coth

(
ω

2T

)
θ
(2/z)

(|ω|ta)2/z

(
cos

π

z
+ q2

γ |ω|2/z
sin

π

z

)
,

(111)

where both q2|ω|−2/z/γ = (|ω|tq)−2/z � 1 as well as
(|ω|ta)−2/z � 1, since ta � tq � |t − t ′|.

The correction to the Bose distribution is proportional to
the short-time exponent θ and exhibits a (dominant) algebraic
frequency dependence δn ∝ |ω|−2/z for z �= 2 and δn ∝ |ω|−2

in the Ohmic case. This slow decay at large frequencies
clearly shows that the system is not thermal and cannot be
characterized by a temperature as the decay would then be
exponential in ω. The sign of δn is positive for a (sub-)Ohmic
bath z � 2, showing that even long after the quench there are
an increased number of excitations at large frequencies present
in the system as compared to equilibrium. For super-Ohmic
bath spectral densities, however, the sign of δn can change
depending on the product of θ , which becomes negative for z �
1.8, and the last term in Eq. (111). This term stems from Re GR

eq
and is positive (negative) for z � 2 (z < 2), except slightly
below z = 2 where the sign depends on the interplay of the
cos(π/z) < 0 and (|ω|tq)−2/z sin(π/z) > 0 with (|ω|tq)−2/z �
1. More importantly, a negative sign of δn implies that the
density matrix of the system is not diagonal in the energy
basis. The off-diagonal terms describe the presence of quantum
coherence and thus make a straightforward interpretation of δn

in terms of a distribution function impossible.
In Fig. 5 we illustrate this result for 2n(ta,ω) + 1 in the

Ohmic case, both for θ > 0 as well as for θ < 0 (although θ =
ε/4 > 0 for z = 2). We include θ < 0 in the plot to illustrate
the behavior in cases where θ < 0 which is qualitatively the
same. Above the upper critical dimension, one finds θ = 0 and
thus δn = 0.

FIG. 5. (Color online) Visualization of the correction to the dis-
tribution function δn(ta,ω) as a function of dimensionless variable
ωγ/q2 [see Eq. (110)]. Plot shows 2n(ta,ω) + 1 = coth( ω

2T
)[1 +

2r(ta)ReGR
eq] [see Eq. (107)] as a function of the dimensionless

variable x = γω/q2 for z = 2, γ T /q2 = 1.7, and |θ |γ /(q2t2/z
a ) = 1.

E. Upper critical dimension

From the bare Green’s function gR in Eq. (41) it follows
immediately that the mean-field value of the exponent θ is
zero. Therefore, θ vanishes above the upper critical dimension
duc = 4 − z. In this section, we investigate the postquench
behavior if the system is exactly at the upper critical dimension
d = duc. We can straightforwardly extend our previous result
to this case. The large-N equation for the mass reads

ruc(t) = uKd

2

∫
dqq3−z

[
iGK

ruc
(q,t,t) − iGK

eq(q)
]
, (112)

where we used that d = duc. In a next step we expand GK
ruc

in
ruc(t). The important slowly decaying correction comes from
terms going with GK

1 (q,t,t) ∝ q−4+z, generating logarithmic
divergences after the q integration. In Sec. V B we calculated
this correction, without making any assumption about the
dimensionality of the system or the concrete decay of the time-
dependent mass r(t). Therefore, one can directly use the result
of Eq. (92). Again, the condition t > tq = γ z/2q−z translates
into a lower cutoff in the q integral. For q < q0 = γ 1/2/t1/z

the Keldysh function GK
ruc

is again local in space, independent
of the dimensionality, and cannot generate logarithmic terms.
Focusing on the contribution of momenta q > q0 it holds that∫ �

q0

dqq3−ziGK
1 (q,t,t)

= − 2ruc(t)

cKγ z/2
ln

(
�t1/z

γ 1/2

)

= 2ruc(t)

zcKγ z/2

[
ln

(
γ z/2

�ztγ

)
− ln

(
t

tγ

)]
. (113)

Compared to the case d < duc where ε > 0, the slowly
decaying correction is now logarithmically divergent both
in the cutoff � and at the lower boundary q0. This is not
surprising, because the same behavior occurs in equilibrium.
The q integration of higher order terms in the expansion in
r(t) does not generate logarithmically divergent contributions
and can therefore be neglected. Inserting the expansion GK

ruc
=

GK
eq + GK

1 into Eq. (112) and keeping only the logarithmically
divergent corrections, we obtain

1 = uγKdC0

2zγ z/2t2/zruc(t)
+ uKd

zcKγ z/2

[
ln

(
γ z/2

�ztγ

)
− ln

(
t

tγ

)]
.

(114)

This equation holds for all times t > tγ if contributions with
and without t dependence cancel separately. This gives rise
to two conditions, one for the time-dependent mass ruc(t) and
one for the deep-quench fixed point value of u:

ruc(t) = γ cKC0

2t2/z ln(t/tγ )
, (115)

u = u∗
uc = zcKγ z/2

Kd ln[γ z/2/(�ztγ )]
. (116)

Compared to the result below duc in Eqs. (100), (101), ε is
replaced by z/ ln(t/tγ ) in the effective mass. Since t � tγ ,
ruc(t) is indeed small, justifying the earlier expansion of GK

ruc
in

ruc(t). This additional logarithm in the self-energy correction
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δGR
ruc

(t,t ′) at intermediate times tγ � t ′ � t � tq = γ z/2q−z

implies that

δGR
ruc

(t,t ′) =
∫

dsgR(t,s)
aγ

s2/z ln(s/tγ )
gR(s,t ′)

≈ θuc

{
ln

[
ln

(
t

tγ

)]
− ln

[
ln

(
t ′

tγ

)]}
, (117)

with

θuc = −cKC0 sin(π/z)

2
(2/z)
. (118)

Since the logarithmic corrections are small, we can exponen-
tiate θuc. This yields, instead of an algebraic divergence as in
Eq. (67), a logarithmic divergence in the scaling function

GR
uc(q,t,t ′) = 1

q2−zγ z/2

(
ln t

tγ

ln t ′
tγ

)θuc

F R
uc

(
qzt

γ z/2
,
t

t ′

)
. (119)

The same behavior can be extended for the Keldysh function
and its scaling form at the upper critical dimension.

VI. QUENCH STARTING IN THE ORDERED PHASE

In this section we will consider a quench with a finite initial
order parameter φ(t < 0) = φi . A finite order parameter can be
achieved either by (i) a finite initial field hi , which is switched
off at t = 0 (path B ′ → C in Fig. 2) or by (ii) a quench in
the mass parameter with r̄0,i < r̄0,c (path B → C in Fig. 2).
Both quench protocols yield the same exponent θ for the
retarded and the Keldysh Green’s functions. Furthermore, the
exponent θ determines the short-time dynamics of φ(t) and the
magnitude of the typical crossover time t∗ from prethermalized
dynamics φ ∝ t θ to relaxation φ ∝ t−β/(νz).

Starting in the symmetry-broken phase, the postquench
1/N equations for a quench to the quantum critical point
rf = 0 read

r(t) = uf

2
φ2(t) + uf

2

∫
q

[
iGK

r (q,t,t) − iGK
eq(q)

]
, (120)

φi

∫ 0

−∞
dt ′δη(t − t ′) = r(t)φ(t) −

∫ t

0
dsδη(t − s)φ(s).

(121)

In the last line we dropped the ∂2
t φ term, since we concentrate

on times t � tγ , where the dynamics of the system is domi-
nated by the bath. We also assume a spatially homogeneous
order parameter φ(t).

In analogy to the quench starting in the disordered phase,
we expand GK in GK

eq + GK
1 for small r(t) at long times, where

GK
1 is given in Eq. (92). This yields

r(t) =uf

2
φ2(t) + uf KdC0

2zγ 2/z−1t2/z

(
t

γ z/2

)ε/z

+ uf

u∗ r(t)

[
1 −

( �zt

γ z/2

)ε/z
]
. (122)

This equation is only fulfilled for all times t � tγ if

uf =u∗, (123)

r(t) = γ a

t2/z
+ cKεγ z/2φ(t)2

2Kd

(
γ z/2

t

)ε/z

, (124)

with u∗ and a given by Eq. (100) and Eq. (101). The first
equation determines the deep-quench fixed point of u. The
value of u∗ is not affected by the quench direction and is
identical for A,B,B ′ → C. The second equation determines
the effective, time-dependent mass. The first term in r(t) is
exactly the same as for the quench starting in the symmetric
phase. However, the mass is now modified by an additional
term proportional to φ2. This time-dependent mass can be
inserted into the equation of motion (121) of φ leading to a
nonlinear, inhomogeneous differential equation.

In the following two subsection we present a solution for
φ(t) in the prethermalized regime and in the long-time limit.
The special case where the system is at the upper critical
dimension d = duc will be treated in Sec. VI C.

A. Order parameter coarsening in the prethermalized regime
and crossover time scale t∗

At intermediate times, one can assume that the order
parameter φ is small due to the collapse of the correlations
after the quench. This collapse follows a posteriori from our
solutions which also predict a collapse of the correlation length
to a microscopic length scale right after the quench. For a fast
quench, the collapse occurs on microscopic time scales. In this
regime, according to Eq. (124) the dominant contribution to
r(t) is given by

r(t � t∗) ≈ γ a

t2/z
, (125)

where t∗ denotes the boundary of the prethermalization regime
and will be defined below. This yields in the equation of
motion (121)

γ a

t2/z
φ(t) −

∫ t

0
dsδη(t − s)φ(s) = φi

∫ 0

−∞
dsδη(t − s).

(126)

One can solve this equation with the retarded Green’s function
GR introduced above or via Laplace transformation. Let us
solve it here via Laplace transformation. We expand φ(t) =
φ0 + φ1 in small a and obtain after a few steps

φ0(t) = φ0(tγ ), (127)

φ1(t) =
∫ t

tγ

dsgR(t,s)
γ a

s2/z
φ0(s − tγ ). (128)

The dominant contribution to the integral in the limit t � tγ
is logarithmically divergent, yielding

φ(t) ≈ φ0(tγ )

(
1 + θ ln

t

tγ

)
, (129)
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FIG. 6. (Color online) Time evolution of the order parameter φ(t)
following a quench from an initial state φi �= 0. The two panels show
the cases of (a) θ > 0, and (b) θ < 0. First, the order parameter
collapses due to the quench. After a microscopic time scale tγ (see also
Appendix A), the order parameter recovers for a while tγ < t < t∗

according to φ(t) ∝ t θ for θ > 0, before it eventually relaxes to zero
for t > t∗ via a power law described by equilibrium exponents. For
θ < 0 the order parameter always decays in a power-law fashion but
exhibits two different exponents for t < t∗ and t > t∗. The inset in (b)
shows the time dependence of the correlation length which diverges
after an initial collapse in a light-cone fashion ξ (t) ∝ t1/z.

with the same θ as in Eq. (78). For small θ the logarithm can
again be exponentiated such that

φ(t) = φ0(tγ )

(
t

tγ

)θ

. (130)

For positive θ the order increases after a quench, while for
negative θ it decays. Note that in both cases the order parameter
first collapses right after the quench on microscopic time
scales tγ to a nonuniversal value φ(tγ ) < φi . The two cases
are schematically shown in Fig. 6.

In both cases the order parameter varies slowly in time
compared to the algebraic decay of γ a/t2/z. Therefore,
independent of the sign of θ there exists a time t∗ where
the underlying assumption of Eq. (125) that the second term
in Eq. (124) may be neglected compared to the first is
no longer valid. This yields the crossover time t∗ between
prethermalization and quasiadiabatic relaxation

t∗ =
(

2|a|Kdt
2θ
γ

cKγ 2/z−1+ε/2

)z/(2+2zθ−ε)

φ0(tγ )−νz/(β+θνz). (131)

By performing a quench with a small amplitude such that
the system was initially located close to the quantum critical
point and φ0(tγ ) is small, the duration of the prethermalization
regime can be tuned to large time scales. Note that for z � 2 a
large damping γ increases t∗, while for z < 2 a large damping
shortens the prethermalized regime.

B. Quasiadiabatic relaxation to equilibrium at long times t � t∗

At long times the system thermalizes due to the external
bath. For a quench right to the critical point, we expect the
order parameter to eventually relax to zero. Thus, for t � t∗,
where t∗ is the crossover time defined in Eq. (131), the order
parameter φ(t) varies slowly in time such that one can neglect
the time derivatives of φ(t) as well as the convolution term:∫

dt ′δη(t − t ′)φ(t ′) ≈ φ(t)
∫ ∞

0
dt ′δη(t − t ′) = 0. (132)

The inhomogeneous term in Eq. (84) quickly decays to zero at
long times, such that the equation of motion (121) reduces to

r(t � t∗)φ(t) = 0. (133)

A nontrivial solution of this equation requires that r(t � t∗) =
0. Inserting this solution into Eq. (124) yields for the dynamics
of the order parameter

φ(t � t∗) =
(

2aKd

εγ 2/z−1+ε/2cK

) 1
2

t−(2−ε)/(2z)

=
(

2γ a�ε

u∗γ ε/2

)β

t−β/(νz), (134)

where we used the large-N values of the exponents ν and
β. The time dependence of φ in the long-time limit is the
usual adiabatic decay and is fully determined by equilibrium
exponents. This result confirms the scaling analysis in Sec. IV.
Like in the long-time behavior of the Keldysh function, the
light-cone amplitude a enters as a universal prefactor.

C. Dynamics of φ at d = duc

We can extend the previous discussion to the case of a
system at the upper critical dimension d = duc. For ε = 0 the
self-consistent solution of the large-N equations is given by
[cf. Eqs. (115) and (116)]

u = u∗
uc, (135)

ruc(t) = zcK

2 ln(t/tγ )

(
γC0

ztγ
+ γ 2/zφ2(t)

Kd

)
. (136)

In the adiabatic regime, the dynamics of φ is determined by
the condition in Eq. (133), i.e., r(t � t∗) = 0, which yields

φ(t) =
(

KdC0γ
1−z/2

z

)β

tβ/(νz), (137)

where ν and β now take their mean-field values βMF = νMF =
1/2. As expected, at d = duc the long-time quasiadiabatic
dynamics is given by the mean-field values of the equilibrium
exponents.

To obtain the crossover time scale t∗, we again compare
the size of the two terms in Eq. (136). In the prethermalized
regime t < t∗, the φ2 contribution in ruc is much smaller than
(γ cKC0)/[2t2/z ln(t/tγ )] and can thus be neglected. In this
limit, the effective mass ruc(t) takes the form of Eq. (115) and
it follows in analogy to the calculation in Sec. VI A for the
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dynamics of the order parameter:

φuc(t) ≈ φ0

(
1 + θuc ln

(
ln

t

tγ

))

≈ φ0

(
ln

t

tγ

)θuc

. (138)

Like in the Green’s function, the additional logarithm in the
effective mass leads to a even slower increase (decrease) of
order parameter after the quench. The typical crossover time
t∗ is now given by

t∗ =
( |C0|Kd

γ 2/z−1

)z/2

φ0(tγ )−νz/β . (139)

Here, we have neglected the logarithmic contribution
ln(t∗/tγ )2θuc . The typical crossover time for ε = 0 is now given
by the mean-field values of νMF = βMF = 1/2 and θMF = 0 in
the exponent of φ0(tγ ).

VII. CONCLUSIONS

In this article we have provided a detailed analysis of
the postquench dynamics of a ϕ4 model coupled to an
environment, that is suddenly moved from an equilibrium
state near a quantum critical point towards the quantum
critical point. We have employed nonequilibrium quantum
field theory in the limit of large N , where N is the number
of field components of ϕ. We considered different values of
the dynamic exponent z, which at large N is determined by
the bath spectral function that we assume to be of Ohmic,
sub-Ohmic, or super-Ohmic form. We investigate quenches to
the quantum critical point starting from both the symmetric
and the symmetry-broken phases.

After the quench, the system is characterized by an
effective, time-dependent mass r(t) = γ a/t2/z with universal
amplitude a. The retarded and Keldysh Green’s functions obey
scaling GR(K) = (t/t ′)θFR(K)(qzt/γ z/2,t/t ′)/(q2−zγ z/2).
Away from equilibrium, GR and GK depend on both time
arguments t,t ′ separately, implying interaction-induced aging
behavior. The singular part of the time dependence in the short-
time limit is characterized by a new, universal critical exponent
θ , which is independent of the equilibrium exponents. This
can be understood as a consequence of the fact that the
scaling dimension of the initial magnetization reads κβ/ν

which is different from the equilibrium scaling dimension of
the magnetization β/ν (we note that this can be different in
other models such as for a conserved order parameter). We
have explicitly shown that one obtains the same value for θ ,
independent of the quench direction and the initial parameters.
In the long-time limit the algebraic decay of r(t) leads to a
significant slowing down of thermalization. Here the value of
θ enters a universal prefactor, while the aging behavior of GR

and GK can be expressed by equilibrium exponents.
For a quench with a finite initial order parameter φi , we

have identified three different time regimes in the dynamics of
the order parameter: (i) a nonuniversal regime at short times
t < tγ , (ii) a prethermalized universal regime at intermediate
times tγ < t < t∗, and (iii) a regime at long times t > t∗ that
is characterized by quasiadiabatic relaxation to equilibrium.
In the prethermalized regime the order parameter fulfills

φ(t) ∝ t θ , where θ can be positive or negative, depending on
the dynamic critical exponent z, which is determined by the
bath spectral function. In the long-time limit the dynamics of
φ is given by equilibrium exponents. The typical time scale
t∗ separating the prethermalization from the quasiadiabatic
regime depends explicitly of the initial value of the order
parameter φi . It diverges in the limit of a weak quench φi → 0.
This permits tuning the prethermalization regime to extend to
long time scales, however, at the cost of a small value of the
order parameter.

We also analyzed the dynamics of the order parameter
φ(t) and of the retarded and correlation function GR/K at
the upper critical dimension d = duc = 4 − z. Compared to
the dynamics below duc the power-law growth (or decay)
of φ(t) ∝ t θ in the prethermalization regime is now slowed
down by the occurrence of an additional logarithm φuc(t) ∝
[ln(t/tγ )]θuc . In the long-time limit, the dynamics of φ is
given by the mean-field values of equilibrium exponents. The
special [ln(t/tγ )]θuc behavior arises because at the mean-field
level the exponent θ vanishes. Above the upper critical
dimension d > duc, one cannot use a scaling ansatz for
GK . We expect that the order parameter remains constant
during the prethermalization regime, which is followed
by an adiabatic decay with mean-field exponents at long
times.

The unique universal dynamical behavior we report is
ultimately a consequence of the collapse of the correlation
function ξ immediately after the quench and its recovery by
critical coarsening according to ξ (t) ∝ t1/z. Due to the fast
quench the system quickly falls out of equilibrium and is left
in a highly exited state after the quench. Relaxation occurs
due to interaction and via coupling to the external bath, which
is we assume to remain at zero temperature. We observe
substantial influences of quantum fluctuations and quantum
coarsening on the postquench dynamics and relaxation. Quan-
tum fluctuations are especially important for memory effects
that the system exhibits which lead to a completely different
z dependence of the exponent θ and of the aging prefactor
of GK compared to the classical result. Quantum fluctuations
can even result in negative exponents θ < 0 for super-Ohmic
baths.

In the long-time limit, we show that it is possible to
connect the response function to the correlation function,
like in the equilibrium fluctuation-dissipation theorem. This
allows us to introduce a nonthermal and time-dependent
distribution function n(ta,ω) which exhibits aging effects; i.e.,
it depends on the total time ta passed since the quench. At
a given time, we find n(ta,ω) = nB(ω) + δn(ta,ω) with δn ∝
θ (|ω|ta)−2/z[cos(π/z) + |ω|−2/zq2γ −1 sin(π/z)]. The correc-
tion δn exhibits an algebraic frequency dependence at large
frequencies which clearly distinguishes it from a thermal
distribution, which shows an exponential behavior for T > ω.
The amplitude of the correction δn is proportional to the
short-time exponent θ . The sign of δn can either be positive
or negative: δn > 0 can be interpreted as an increased number
of excitations being present compared to equilibrium. The fact
that δn can become negative implies that the density matrix
of the system is not diagonal in the energy basis and quantum
coherence is present even on long time scales.
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APPENDIX A: SHORT TIME SCALES

Our problem is governed by several short time scales
determined by the momentum cut off � of the ϕ4 theory,
the strength of the damping coefficient γ , and the upper cutoff
of the bath spectrum ωc. Here we briefly discuss the hierarchy
of these scales.

The large-N analysis clearly shows that we will only have
a solution r(t) ∝ t−2/z if t � t0 with

t0 = γ z/2/�z. (A1)

Otherwise the long-time expansion of the upper cutoff of the
momentum integration is not allowed. t0 obeys �2 = γ t

−2/z

0 ;
i.e., it is the scale where the damping γ t

−2/z

0 is comparable
to the largest possible value of k2 with momentum k. Clearly,
this comparison is only sensible if in fact t0 > tc with

tc = 1/ωc (A2)

determined by the bath cutoff. For time scales smaller than
tc, the damping is very small and it cannot be estimated any
longer via γ t−2/z. The condition t0 > tc translates into

γω2/z
c > �2; (A3)

i.e., even the largest possible q2 value is still smaller than the
largest possible damping term in the propagator.

Another assumption of our analysis is that we ignore the
ω2 term relative to the damping term. This is only correct
for sufficiently low energies or, equivalently, long time scales
t � tγ with

tγ = γ −z/[2(z−1)]. (A4)

This result follows from t−2
γ = γ t

−2/z
γ . For z > 1 discussed

here, tγ can be made small if the damping coefficient takes
large values. However, comparing the ballistic and damping
term makes sense only if tγ > tc, which corresponds to

γω2/z
c < ω2

c . (A5)

The conditions Eqs. (A3) and (A5) imply that it must hold

ωc > �. (A6)

One can also introduce the time scale

t� = 1/�, (A7)

which is always larger than tc. Thus, the shortest scale is always
tc.

Our prethermalized regime can only start after
max(t0,tγ ,t�). One finds that no matter what the ratio of t0
and tγ , t� is always between these two time scales and can
therefore never be the largest. As for the ratio between t0 and
tγ , it seems plausible to request tγ � t� since tγ is the only
scale that does not depend on a cutoff. In this case we have the

hierarchy of scales

ωc � �z/γ z/2 � � � t−1
γ (A8)

and universal prethermalized behavior will set in after tγ . Thus,
an important condition for our analysis is that the damping due
to the bath is sufficiently large such that there is a wide regime
t � tγ , where damping dominates the dynamics of the system.

APPENDIX B: LARGE-N EXPANSION AFTER
A QUANTUM QUENCH

In this Appendix we summarize the derivation of the
large-N equations for the out-of-equilibrium dynamics after
a sudden quench. After having integrated out the bath degrees
of freedom the action of the collective order parameter field
in Eq. (27) is given in terms of the Matsubara, quantum, and
classical field variables as

S[ϕ] = SM [ϕM ] + SK [ϕc,ϕq] + SC[ϕM,ϕq]. (B1)

The first term is up to a trivial factor i the usual Matsubara
action in equilibrium

SM [ϕM ] = i

2

∫
x,ττ ′

ϕM (τ )
(
gM

i

)−1
(τ − τ ′)ϕ(Mτ ′)

+ i
ui

4N

∫
x,τ

[ϕM (τ ) · ϕM (τ )]2, (B2)

where gM
i (τ − τ ′) follows from Eq. (32) after Fourier trans-

formation. We use the notation
∫
τ

≡ ∫ β

0 dτ with the usual
imaginary time τ defined via t = iτ . For the time integrals
along the real part we use

∫
t
≡ ∫ ∞

0 dt . The two segments on
the real axis are given as

SK [ϕc,ϕq] = 1

2

∫
x,t,t ′

(
ϕc(t)

ϕq(t)

)T

G−1
0 (t,t ′)

(
ϕc(t ′)

ϕq(t ′)

)

− uf

2N

∫
x,t

[
ϕ2

c(t) + ϕ2
q(t)

]
ϕc(t) · ϕq(t) (B3)

with matrix propagator

G0 =
(

gK
f gR

f

gA
f 0

)
. (B4)

The inverse is given as

G−1
0 =

(
0

(
gA

f

)−1

(
gR

f

)−1
M0

)
, (B5)

where M0 ≡ (G−1
0 )

K = −(gR
f )−1gK

f (gA
f )−1. Since we inte-

grated out the bath degrees of freedom the retarded Green’s
function is determined by Eq. (41) while

M0(t,t ′) = −ν(t − t ′). (B6)

The fluctuation-dissipation theorem of the bath can be ex-
pressed by the Fourier transforms

ν(ω) = coth

(
ω

2T

)
[η(ω) − η∗(ω)]. (B7)
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The coupling between the two parts of the contour is

SC[ϕM,ϕq] = i

∫
t,τ

ϕM (τ )η̃(iτ,t)ϕq(t), (B8)

where η̃(t) = √
2[η<(t) − η<(−t)] and η≷ = 1

2 (ν ± η ∓ η∗).
Since η0 ≡ η(ω = 0) is finite, we have η(t − t ′) =

η0δ(t − t ′) + δη(t − t ′), where δη(t − t ′) is purely nonlocal.
This yields with r̄0,f = r0,f − η0 that(

gR
f

)−1
(t,t ′) = −(

∂2
t + r̄0,f − ∇2)δ(t − t ′) + δη(t − t ′).

(B9)

Since ν(0) = 0, ν(t − t ′) is purely nonlocal in time. Using
η(ω = 0) = ηM (iωn = 0) we can absorb the same zero-
frequency part on the imaginary axis: r̄0,i = r0,i − η0, such
that(

gM
f

)−1
(τ,τ ′) = (

∂2
τ − r̄0,i + ∇2)δ(τ − τ ′) + δηM (τ − τ ′).

(B10)

Next we perform the large-N expansion and follow closely
the procedure in chapter 30 of Ref. [111]. Important degrees
of freedom are obviously ρ± = 1

N
ϕ2

± and ρM = 1
N

ϕ2
M which

yields in the case of the round trip segment

ρc = 1√
2

(ρ+ + ρ−) = 1√
2N

(
ϕ2

c + ϕ2
q

)
,

(B11)

ρq = 1√
2

(ρ+ − ρ−) =
√

2

N
ϕc · ϕq .

The interaction term of the action along the real-axis part of
the contour is then given by

SK,int = − uf

2N

∫
x,t

[
ϕ2

c(t) + ϕ2
q(t)

]
ϕc(t) · ϕq(t)

= −uf N

2

∫
x,t

ρc(t)ρq(t). (B12)

In order to enforce the above constraints, we introduce

1 =
∫

Dρ
∏
x,t

δ

(
1√
2N

(
ϕ2

c + ϕ2
q

) − ρc

)

×
∏
x,t

δ

(√
2

N
ϕc · ϕq − ρq

)∏
x,τ

δ

(
1

N
ϕ2

M − ρM

)

∝
∫

DρDre− i
2

∫
x,t

rc(t)(2ϕc ·ϕq−√
2Nρq )

×e− i
2

∫
x,t

rq (t)(ϕ2
c+ϕ2

q−√
2Nρc)

×e− 1
2

∫
x,τ

rM (t)(ϕ2
M−NρM ), (B13)

where
∫

Dρ is the shorthand for
∫

Dρc

∫
Dρq

∫
DρM and

similar for other degrees of freedom. The integration contour
for the rc,q integrations is along the real axis, while the rM

integral is performed along the imaginary axis. It follows for
the generating functional

Z =
∫

DϕDρDrei(SM+SK+SC )

with unchanged coupling term SC and

SM = i

2

∫
x,ττ ′

ϕM (τ )
(
GM

r

)−1
(τ,τ ′)ϕM (τ ′)

+ i
N

2

∫
x,τ

(
ui

2
ρ2

M (τ ) + [r̄0,i − rM (τ )]ρM (τ )

)
as well as

SK = 1

2

∫
x,t,t ′

(
ϕc(t)

ϕq(t)

)T

G−1
r (t,t ′)

(
ϕc(t ′)

ϕq(t ′)

)

− N

2

∫
x,t

(
√

2[r̄0,f − rc(t)]ρq(t) + uf ρq(t)ρc(t))

−N

2

∫
x,t

√
2rq(t)ρc(t). (B14)

The modified propagators are given as(
GM

r

)−1
(τ,τ ′) = [ − ∂2

τ + rM (τ ) − ∇2
]
δ(τ − τ ′)

+ δηM (τ − τ ′) (B15)

on the imaginary axis and

G−1
r (t,t ′) =

(
0

(
GA

r

)−1

(
GR

r

)−1
M0

)
t,t ′

− rq(t)δ(t − t ′)1

(B16)
with modified retarded function(

GR
r

)−1
(t,t ′) = −[

∂2
t + rc(t) − ∇2]δ(t − t ′) + δη(t − t ′)

(B17)

on the real axis and 2 × 2 unit matrix 1. Thus, the bare masses
have been replaced by in general time-dependent terms that
correspond to become the usual self-energy corrections of the
large-N theory.

We express the vectors ϕc,q,M in terms of the component
φc,q,M along the direction of the field hi,m = (hi,m,0, . . . ,0)
and the N − 1 components π c,q,M orthogonal to it:

ϕc,q,M = (
√

Nφc,q,M,π c,q,M ). (B18)

We first integrate over the transverse fields πM along the
imaginary contour and obtain

S = SK + iN

2

∫
x,ττ ′

φM (τ )
(
GM

r

)−1
(τ,τ ′)φM (τ ′)

+ iN

∫
x,τ t

φM (τ )η̃(iτ,t)φq(t)

+ i

2
(N − 1)tr ln

(
GM

r

)−1 − i

2

∫
x,tt ′

πq(t)μ(t,t ′)πq(t ′)

+ i
N

2

∫
x,τ

(
ui

2
ρ2

M (τ ) + r̄0,iρM (τ ) − rM (τ )ρM (τ )

)
,

where

μ(t,t ′) =
∫

ττ ′
η̃(t,iτ )GM

r (τ,τ ′)η̃(iτ ′,t ′). (B19)

The term
∫

πqμπq can be absorbed into a redefinition of the
bare inverse Keldysh function

M0(t,t ′) → M(t,t ′) = −ν(t − t ′) − μ(t,t ′). (B20)

115121-18



UNIVERSAL POSTQUENCH COARSENING AND AGING . . . PHYSICAL REVIEW B 92, 115121 (2015)

This is a crucial aspect of the theory demonstrating that the bare
postquench correlation function is affected by the prequench
behavior due to memory effects of the bath.

Next, we integrate over the transverse fields π c,q and obtain

S = N

2

∫
x,t

(
φc(t)

φq(t)

)T

G−1
r (t,t ′)

(
φc(t ′)

φq(t ′)

)

+ iN

2

∫
x,ττ ′

φM (τ )
(
GM

r

)−1
(τ,τ ′)φM (τ ′)

+ iN

∫
x,τ t

φM (τ )η̃(iτ,t)φq(t)

− N

2

∫
x,t

(
√

2(r̄0,f − rc(t))ρq(t) + uf ρq(t)ρc(t))

+ N

2

∫
x,t

√
2rq(t)ρc(t)

+ i
N

2

∫
x,τ

(
r̄0,iρM (τ ) + ui

2
ρ2

M (τ ) − rM (τ )ρM (τ )

)

+ i

2
(N − 1)tr lnG−1

r + i

2
(N − 1)tr ln

(
GM

r

)−1
.

(B21)

The action is of order N , allowing us to perform a saddle-
point analysis. Minimizing the action with respect to φ, ρ,
and r yields the nine saddle-point equations. Minimizing with
respect to the fields on the Matsubara segment of the contour
yields

hM (τ ) =
∫

τ ′

(
GM

r

)−1
(τ,τ ′)φM (τ ′) +

∫
t

η̃(iτ,t)φq(t),

ρM (τ ) = φ2
M (τ ) + i

2

δtr lnG−1
r

δrM (τ )
+ δtr ln

(
GM

r

)−1

δrM (τ )
, (B22)

rM (τ ) = r̄0,i + uiρM (t).

The minimization with respect to the quantum field on the
Keldysh contour yields

hc(t) = −rq(t)φq(t) +
∫

dt ′
(
GR

r

)−1
(t,t ′)φc(t ′)

+
∫

dt ′
(
G−1

r

)K
(t,t ′)φq(t ′) +

∫
τ

φM (τ )η̃(iτ,t),

ρc(t) = 1√
2

[
φ2

c (t) + φ2
q(t)

] − i√
2

δtr lnG−1
r

δrq(t)
, (B23)

rc(t) = r̄0,f + uf√
2
ρc(t).

Finally, from the minimization with respect to the classical
fields on the Keldysh contour follows that

hq(t) = −rq(t)φc(t) +
∫

t ′

(
GA

r

)−1
(t,t ′)φq(t ′),

ρq(t) = 1√
2
φc(t)φq(t) − i√

2

δtr lnG−1
r

δrc(t)
, (B24)

rq(t) = u√
2
ρq(t).

The natural saddle-point solution for the quantum components
respecting causality is rq = ρq = φq = 0 for hq = 0. We
checked that this trivial solution is the only solution by
an explicit analysis of the Heisenberg equation of motion
of the order parameter and the propagators. Performing
the functional derivatives and evaluating them at vanishing
quantum fields yields

δtr lnG−1
r

δrc(t)
= tr

(
Gr

δG−1
r

δrc(t)

)

= −GR
r (t,t) − GA

r (t,t) = 0,

δtr lnG−1
r

δrq(t)
= tr

(
Gr

δG−1
r

δrq(t)

)
= −GK

r (t,t), (B25)

δtr ln
(
GM

r

)−1

δrM (τ )
= (

GM
r

)
(τ,τ ),

δtr lnG−1
r

δrM (τ )
= 0.

We consider time-independent fields hM (τ ) = hi and hc(t) =
hf before and after the quench, respectively. Since the
imaginary-time evolution prior to the quench is in equilibrium
we obtain time-independent solutions for rM = ri and φM =
φi , yielding the usual equilibrium version of the large-N
equations. Eliminating ρM yields

hM = rMφM,

rM = r̄0,i + ui

2
φ2

M + uiG
M
r (x,τ ; x,τ ). (B26)

In the last step we reintroduced spatial coordinates. The
nonequilibrium large-N equations of the classical components
rc, ρc, and φc are nontrivial and time dependent. We obtain,
after the elimination of ρ,

hc =
∫

dt ′
(
GR

r

)−1
(t,t ′)φc(t ′) + φM

∫
τ

η̃(iτ,t),

r(t) = r̄0,f + uf

2
φ2

c (t) + u

2
iGK

r (x,t ; x,t). (B27)

These are the self-consistent large-N equations given in the
main part of the paper. There we only used the more physically
motivated notation hi = hM , φi = φM, and ri = rM to indicate
that the variables on the Matsubara branch refer to the initial
field, order parameter, and renormalized mass, respectively.
Similarly we have hf = hc,φ(t) = φc(t), and r(t) = rc(t) for
the corresponding variables after the quench.

APPENDIX C: THE FIXED-MASS POSTQUENCH BARE
GREEN’S FUNCTIONS

In this subsection we summarize the main steps in the
derivation of the postquench retarded and Keldysh function
of the noninteracting system with constant masses r0,i and
r0,f . The knowledge of this propagator is essential for any
development of a perturbative approach to include interactions.

In order to determine the bare propagators, we start from
the Heisenberg equation of motion of the field operator after
the quench:

(
∂2
t + r0,f + q2

)
ϕ(q,t) =

∫ ∞

0
dsη(t − s)ϕ(q,s)

+�(q,t) + h(q,t) (C1)
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with external field h(q,t) that is coupled to the order parameter.
The source operator �(q,t) is given by

�(q,t) = −
∫ 0

−∞
dsη(t − s)ϕ(q,s). (C2)

It is useful to express �(t) in terms of the initial bath operators
X0

j = Xj (q,t = 0) and P0
j = Pj (q,t = 0):

�(q,t) = −
∑

j

cj

(
X0

j (q) cos(j t) + 1

j

P0
j (q) sin(j t)

)
.

We solve the Heisenberg equation of motion via Laplace
transform

ϕ(q,ω) =
∫ ∞

0
dtei(ω+i0+)tϕ(q,t) (C3)

with boundary condition ϕ(q,t = 0) = ϕ0(q) and
∂tϕ(q,t = 0) = π0(q). It follows that

ϕ(q,ω) = F(q,ω)gR
f (q,ω) (C4)

with force-operator

F(q,ω) = π0(q) − iωϕ0(q) + �(q,ω) + h(q,ω) (C5)

and bare retarded postquench Green’s function

gR
f (q,ω) = 1

ω2 − r0,f − q2 + η(ω)
. (C6)

To check that this is indeed the correct result for the bare
retarded Green’s function one expresses the back transform
ϕ(q,t) of ϕ(q,ω) in terms of gR

f (k,ω):

ϕ(q,t) = [π0(q) + ϕ0(q)∂t ]g
R
f (q,t)

+
∫ ∞

0
[�(q,s) + h(q,s)]gR

f (k,t − s)ds. (C7)

Inserting this result into the definition Eq. (38) of the retarded
function does indeed yield Eq. (C6) for zero external field
h(q,t). Thus, for the bare retarded postquench Green’s function
follows the same result as in equilibrium, which only depends
on the difference between the two time arguments. As we have
shown in Eq. (77), this behavior of the retarded function will
not carry over to the case where we include interactions.

Next we consider the bare postquench Keldysh function
gK

f (q,t,t ′). This function will depend on both time scales
already for a noninteracting system. We determine gK

f (q,t,t ′)
using the same approach as for the retarded function, i.e., insert
the solution Eq. (C7) into the definition Eq. (39) of the Keldysh
function. Here, it is convenient to consider the double Laplace
transform:

gK
f (q,ω,ω′) =

∫ ∞

0
dtdt ′gK

f (q,t,t ′)ei(ω+t+ω′
+t ′), (C8)

with ω+ = ω + i0+. From our solution Eq. (C4) follows

gK
f (q,ω,ω′) = M(q,ω,ω′)gR

f (q,ω)gR
f (q,ω′), (C9)

with memory function

M(q,ω,ω′) = −i〈[Fa(q,ω),Fa(−q,ω′)]+〉, (C10)

given by the force-force correlation function. M(q,ω,ω′) can
be obtained from the expectation values of F(q,ω) as given in

Eq. (C5). To proceed we note that the operators that enter
the memory function are ϕ0(q), X0

j (q), etc.; i.e., they are
for system and bath variables at t = 0. Thus, all relevant
expectation values can be evaluated in equilibrium prior to the
quench. The direct evaluation of these expectation values is
straightforward but somewhat tedious. In particular one finds
that numerous expectation values diverge in the limit of an
infinite cutoff ωc, divergences that cancel if one combines all
terms that contribute to the memory function. To avoid these
complications we present a significantly easier approach to
this problem. We explicitly checked that both approaches lead
to the same result. We stress again that all expectation values
that enter the memory function can equally be determined
prior to the quench when the system is still in equilibrium. We
therefore consider a system without quench and with initial
Hamiltonian Hi for all times. The Keldysh function of this
equilibrium system should of course have the same formal
structure as Eq. (C9); i.e.,

gK
i (q,ω,ω′) = M(q,ω,ω′)gR

i (q,ω)gR
i (q,ω′). (C11)

The subscript i indicates that we are considering a system
in equilibrium that is governed by the Hamiltonian Hi with
bare mass r0,i . The key insight is that the memory function
M(q,ω,ω′) must be the same function as in Eq. (C9) as we
have to determine the expectation value of the same operators
F(q,ω) with respect to the same state.

In equilibrium, the Keldysh function only depends on the
difference of the time arguments. For the double Laplace
transform this implies

gK
i (q,ω,ω′) = i

gK
i (q,ω) + gK

i (q,ω′)
ω + ω′ + i0+ , (C12)

where gK
i (q,ω) is the Laplace transform of the bare Keldysh

function of the initial state in equilibrium:

gK
i (q,ω) =

∫ ∞

0
dtei(ω+i0+)t gK

i (q,t). (C13)

In equilibrium we can then use the fluctuation-dissipation
relation

gK
i (q,t) = i

∫ ∞

−∞

dε

π
e−iεt coth

(
ε

2T

)
ImgR

i (q,ε) (C14)

to determine this function. Thus, we obtain for the memory
function

M(q,ω,ω′) = i
gK

i (q,ω) + gK
i (q,ω′)

ω + ω′ + i0+ gR
i (q,ω)−1gR

i (q,ω′)−1.

(C15)

As mentioned, we obtained the same result using a straight-
forward evaluation of the definition of the Keldysh function,
inserting the solution Eq. (C7), and evaluating all expectation
values explicitly. As limiting cases, Eq. (C15) includes the
solution of Ref. [12] for a classical system with Ohmic bath and
Ref. [85] for a classical system with colored noise. In addition
it reproduces the findings of Ref. [92] for a noninteracting
quantum system without bath.

As discussed in the context of the scaling behavior, the limit
where we consider large distances δr0,i from the critical point
prior to the quench is of particular interest. In this deep-quench
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limit follows

M(q,ω,ω′) = i
coth

(
ω

2T

)
δη(ω) + coth

(
ω′
2T

)
δη(ω′)

ω + ω′ + i0+ . (C16)

For times t,t ′ > ti = (γ /δri)z/2 the memory function is always
governed by this deep-quench limit, even if δri is nominally not
large. This enables us to introduce a scaling form for GK and
to expect universal behavior after the quench. The justification
to use the deep-quench limit in this paper is however not that
we concentrate on time scales larger than ti , but rather that
even for a small quench the spatial correlation length collapses
and the bare Green’s function become completely local in
space, corresponding to a large effective mass at time t = 0+,
i.e., right after the quench on universal time scales (t ≈ tγ ),
independent of the precise quench protocol.

APPENDIX D: LONG-TIME LIMIT OF THE
GREEN’S FUNCTIONS

We can extend the analysis for the equal-time Keldysh
function to different time arguments t,t ′, but still in the limit

qzt/γ z/2 � qzt ′/γ z/2 � 1 and qz(t − t ′)/γ z/2 � 1. (D1)

We use the long-time expansion for φ � φeq − ∫ t

tγ
dsGR

eq(t −
s)r(s)φeq(s) to obtain

GK
r (q,t,t ′) = −i〈[φ(t),φ(t ′)]+〉

= GK
eq(q,t − t ′) −

∫ t

tγ

dsGR
eq(t − s)r(s)GK

eq(s,t ′)

−
∫ t ′

tγ

dsGR
eq(t ′ − s)r(s)GK

eq(s − t). (D2)

To evaluate the s integration we express GR by its Laplace
transformation and GK by its Fourier transformation:

−
∫ t

dsGR
eq(t − s)r(s)GK

eq(s,t ′)

= −i

∫
dωdω′

2π2
ImGR

eq(ω)GK
eq(ω′)

×
∫ t

dsr(s)e−iω(t−s)−iω′(s−t ′). (D3)

Here, ω and ω′ are of order of the typical mode frequency
q−zγ z/2. In the limit where the time difference t − t ′ is small,
but t,t ′ are both large compared to the mode-frequency, the s

integral can be approximated by∫ t

tγ

dsr(s)e−iω(t−s)−iω′(s−t ′) � r(t)
e−iω′(t−t ′)

i(ω − ω′)
. (D4)

In a next step, we use the Kramers-Kronig relation to preform
one frequency integration. This finally yields

−
∫ t

dsGR
eq(t − s)r(s)GK

eq(s,t ′)

= −r(t)
∫

dω′

2π
ReGR

eq(ω′)GK
eq(ω′)e−iω′(t−t ′). (D5)

The same procedure leads for the second integral in Eq. (D2)
to

−
∫ t ′

dsGR
eq(t ′ − s)r(s)GK

eq(s − t)

� −r(t ′)
∫

dω′

2π
ReGR

eq(ω′)GK
eq(ω′)e−iω′(t−t ′). (D6)

For r(t) ≈ r(t ′) ≈ r(ta) with ta = (t + t ′)/2 this yields the
result given in Eq. (103) in the main text. In analogy to the
long-time limit of GK

r (q,t,t) we can derive a similar behavior
for the retarded Green’s function GR

r (q,t,t ′). It follows with
the long-time expansion for φ and the definition of GR

r in
Eq. (38) that

GR
r (t,t ′) = −iθ (t − t ′)〈[ϕ(t),ϕ(t ′)]−〉

� GR
eq(t − t ′)

+ iθ (t − t ′)
(∫ t

0
dsGR

eq(t − s)r(s)〈[ϕ(s),ϕ(t ′)]−〉

+
∫ t ′

0
ds〈[ϕ(t),ϕ(s)]−〉r(s)GR

eq(t ′ − s)

)

= GR
eq(t − t ′) −

∫ t

t ′
dsGR

eq(t − s)r(s)GR
eq(s − t ′).

(D7)

We express the equilibrium GR
r by its Laplace transformation

and obtain

δGR
r (t,t ′) = −

∫ t

t ′
dsGR

eq(t − s)r(s)GR
eq(s − t ′)

=
∫

dωdω′

π2
ImGR

eq(ω)ImGR
eq(ω′)

×
∫ t

t ′
ds

aγ

s2/z
e−iω(t−s)−iω′(s−t ′). (D8)

ω and ω′ are of order of the typical mode frequency q−zγ z/2.
In the limit where the time difference t − t ′ is small, but t,t ′
are both large compared to the mode frequency, the s integral
can be approximated by∫ t

t ′
dsr(s)e−iω(t−s)−iω′(s−t ′)

� r

(
t + t ′

2

)
1

i(ω − ω′)
(e−iω′(t−t ′) − e−iω(t−t ′)). (D9)

This yields the result given in Eq. (104):

δGR
r (t,t ′) � −ir

(
t + t ′

2

) ∫
dωdω′

π2

ImGR
eq(ω)ImGR

eq(ω′)

ω − ω′

×(e−iω′(t−t ′) − e−iω(t−t ′))

= −2ir

(
t + t ′

2

)∫
dω′

π
ReGR

eq(ω′)ImGR
eq(ω′)

× e−iω′(t−t ′)

= −4ir

(
t + t ′

2

)
CR(t − t ′). (D10)
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[23] M. C. Bañuls, J. I. Cirac, and M. B. Hastings, Phys. Rev. Lett.

106, 050405 (2011).
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