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Mott physics and spin fluctuations: A unified framework
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We present a formalism for strongly correlated electron systems which consists in a local approximation of
the dynamical three-leg interaction vertex. This vertex is self-consistently computed using a quantum impurity
model with dynamical interactions in the charge and spin channels, similar to dynamical mean field theory
approaches. The electronic self-energy and the polarization are both frequency and momentum dependent. The
method interpolates between the spin-fluctuation or GW approximations at weak coupling and the atomic limit
at strong coupling. We apply the formalism to the Hubbard model on a two-dimensional square lattice and show
that as interactions are increased towards the Mott insulating state, the local vertex acquires a strong frequency
dependence, driving the system to a Mott transition, while at low enough temperatures the momentum dependence
of the self-energy is enhanced due to large spin fluctuations. Upon doping, we find a Fermi arc in the one-particle
spectral function, which is one signature of the pseudogap state.
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Strongly correlated electronic systems such as high-
temperature cuprate superconductors are a major challenge
in condensed-matter physics. One theoretical approach to
cuprates emphasizes the effect of long-range bosonic fluc-
tuations on the electronic fluid, for example, long-range
antiferromagnetic (AF) fluctuations due to a quantum critical
point [1–6]. These bosonic fluctuations are also central to
approaches such as the two-particle self-consistent approxi-
mation (TPSC [7–11]), the GW approximation [12], and the
fluctuation-exchange approximation (FLEX [13]).

Another approach focuses, following Anderson [14], on
describing the Mott transition and the doped Mott insulator. In
recent years, dynamical mean field theory (DMFT) [15] and its
cluster extensions such as cellular DMFT (CDMFT) [16,17]
or the dynamical cluster approximation (DCA) [18–20] have
allowed for tremendous theoretical progress on the Mott tran-
sition both for models and realistic computations of strongly
correlated materials [21]. In particular, numerous works have
been devoted to the one-band Hubbard model, mapping out
its phase diagram, studying the d-wave superconducting order
and the pseudogap [22–45]. Cluster DMFT is one of the few
methods designed for the strong-interaction regime to have a
simple control parameter, namely, the size Nc of the cluster or
the momentum resolution of the electronic self-energy. It in-
terpolates between the DMFT solution (Nc = 1) and the exact
solution of the Hubbard model (Nc = ∞). Despite its success,
this method nonetheless suffers from severe limitations:
(i) It does not include the effect of long-range bosonic modes
of wavelengths larger than the cluster size; (ii) the negative
sign problem of continuous-time quantum Monte Carlo has
so far precluded the convergence of the cluster solutions
with respect to Nc in the most important regimes, such as
the pseudogap; and (iii) the k resolution of the self-energy
is still quite coarse in DCA (typically eight or 16 patches
in the Brillouin zone—see, e.g., Refs. [31,33,45,46]), or it
relies on uncontrolled a posteriori “periodization” techniques
in CDMFT [17].
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Several directions beyond cluster DMFT methods are
currently under investigation to address these issues, such
as GW+DMFT [47–53], the combination of DMFT with
functional renormalization group methods [54], the dynamical
vertex approximation (D�A) [55–58], and the dual fermion
(DF) or boson methods [59–61]. D�A and DF require the
manipulation of four-leg vertices and, in their ladder version,
require the summation of selected classes of ladder diagrams.
Simpler yet controlled methods are needed: Except for one-
dimensional chains [62], neither D�A nor DF has been applied
to multiorbital systems to date.

In this Rapid Communication, we discuss a simple for-
malism that unifies the two points of view mentioned above
while remaining comparatively lightweight. It is designed
to encompass both Mott physics in the manner of DMFT
and the effect of medium- and long-range bosonic modes.
It interpolates between the atomic and the “fluctuation-
exchange” limits upon going from strong to weak interactions.
It consists in decoupling the electron-electron interaction by
Hubbard-Stratonovich bosonic fields and making a local and
self-consistent approximation of the lattice’s electron-boson
one-particle irreducible three-leg vertex, using a quantum
impurity model similar to the one used in DMFT. Since this
method approximates three-leg objects with a local expansion,
we will call it TRILEX. Already at the single-site level, it
produces, in some parameter regimes, a momentum-dependent
self-energy and polarization, at a small computational cost,
similar to solving extended DMFT (EDMFT) [63–65]. In
the following, we introduce the method and then present
the solution of its single-site version for the two-dimensional
Hubbard model.

We focus on the Hubbard model defined by the following
Hamiltonian:

H =
∑
ij,σ

tij c
†
iσ cjσ + U

∑
i

ni↑ni↓. (1)

The indices i,j denote lattice sites, σ =↑ , ↓, c
†
iσ (ciσ ) is a

fermionic creation (annihilation) operator, and niσ ≡ c
†
iσ ciσ .

tij is the tight-binding hopping matrix [tij = t(t ′) for (next-)
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nearest neighbors], while U is the on-site Coulomb interaction.
We rewrite the operators of the interaction term as

Uni↑ni↓ = 1

2

∑
I

UInI
i n

I
i , (2)

where UI is the bare interaction in channel I , and nI
i ≡∑

σσ ′ c
∗
iσ σ I

σσ ′ciσ ′ , where σ 0 = 1 and σx,y,z are the Pauli
matrices. Here, we consider one possible decoupling1 which
preserves the rotation symmetry of the action: The index
I runs on 0,x,y,z, Ux = Uy = Uz ≡ U sp, and U 0 ≡ U ch,
and U sp and U ch satisfy U = U ch − 3U sp. We have two
channels, denoted as η = ch,sp. We fix the ratio to U ch = U/2
and U sp = −U/6.2 We now decouple (2) using real bosonic
Hubbard-Stratonovich fields φI

i (τ ) in each channel and at each
lattice site, so that the action now describes a lattice problem
with a local electron-boson coupling:

Slatt =
∫ β

0
dτ

∑
ij

c∗
iσ τ {∂τ + tij }cjστ

+
∑
i,I

[
1

2
(−UI )−1φI

iτ φ
I
iτ + λIφI

iτ n
I
iτ

]
. (3)

c∗
iσ τ and ciστ are conjugate β-antiperiodic Grassmann

fields, and λI = 1. The lattice Green’s functions G(k,iω)
and Wη(q,i�) (the Fourier transforms of −〈ciστ c

∗
jσ0〉 and

−〈φη

iστφ
η

jσ0〉, respectively) are given by Dyson equations,

G(k,iω) = [iω + μ − ε(k) − (k,iω)]−1, (4a)

Wη(q,i�) = Uη[1 − UηP η(q,i�)]−1. (4b)

k and q are momentum variables, iω (i�) stands for a
fermionic (bosonic) Matsubara frequency, ε(k) is the Fourier
transform of tij , and μ is the chemical potential. The fermionic
and bosonic self-energies  and P η are given by the exact
expressions (in the paramagnetic, normal phase) (see, e.g.,
Ref. [67])

(k,iω) = −
∑
q,i�,

η=ch,sp

mηλ
ηG q+k,

iω+i�
W

η

q,i��
η

k,q,

iω,i�

, (5a)

P η(q,i�) = 2
∑
k,iω

ληG q+k,

iω+i�
Gk,iω�

η
k,q,

iω,i�

. (5b)

Here, mch = 1 and msp = 3. �η(k,q,iω,i�) is the exact one-
particle irreducible electron-boson coupling (or Hedin) vertex,
namely, the effective interaction between electrons and bosons
renormalized by electronic interactions.

The main point of this Rapid Communication consists
in approximating the vertex �η(k,q,iω,i�) by the local,
but two-frequency-dependent, �

η
imp(iω,i�) computed from a

1Other decouplings are possible, for instance, index I can run only
on 0,z (charge and longitudinal spin channel only). In this case, U ch

and U sp obey the relation U = U ch − U sp. This decoupling breaks
the rotation symmetry of the action.

2The influence of this choice is investigated in Supplemental
Material D [66].

self-consistent quantum impurity problem:

�η(k,q,iω,i�) ≈ �η
imp(iω,i�). (6)

This strategy differs radically from DMFT, EDMFT, and
GW+DMFT which approximate the self-energy  (and P ),
and D�A, which approximates four-leg vertices, not �. It
implies that our  and P [computed from Eqs. (5a) and (5b)]
are, in some parameter regimes, strongly momentum dependent
while containing local vertex corrections essential to capture
the Mott physics [50].

The action of the impurity model reads

Simp = −
∫∫ β

0
dτdτ ′ ∑

σ

c∗
στG−1(τ − τ ′)cστ ′

+ 1

2

∑
I=0,x,y,z

∫∫ β

0
dτdτ ′nI

τU I (τ − τ ′)nI
τ ′ . (7)

This is an Anderson impurity with retarded charge-charge (I =
0) and spin-spin (I = x,y,z) interactions. The bosonic fields
φI have been integrated out to obtain a fermionic action with
retarded interactions amenable to numerical computations.
We compute the fermionic three-point correlation functions
to reconstruct the electron-boson vertex �

η
imp (as shown in

Supplemental Material B [66]). Finally, G and Uη derive from
the self-consistency conditions as follows,

G−1(iω) = G−1
loc(iω) + loc(iω), (8a)

[Uη]−1(i�) = [
W

η

loc

]−1
(i�) + P

η

loc(i�), (8b)

where, for any X, Xloc(iω) ≡ ∑
k X(k,iω). At convergence,

this ensures that Gloc = Gimp and W
η

loc = W
η
imp. Wη and the

susceptibility χη are related by

Wη(q,i�) = Uη − Uηχη(q,i�)Uη. (9)

The computational scheme is illustrated in Fig. 1. From
�

η
imp(iω,i�), we compute (k,iω) and P η(q,i�), which are

then used to computeG andUη for (7). We solve Eq. (7) exactly
by a continuous-time quantum Monte Carlo algorithm [69] in
the hybridization expansion [70] with retarded density-density
[71] and vector spin-spin interactions [72]. The computation of
the three-point functions is implemented following Ref. [73].
We iterate until convergence is reached. Our implementation
is based on the TRIQS library [74]. Equation (7) could also be
solved by an interaction-expansion solver.

This construction makes TRILEX exact in two limits: (i) At
small interaction strengths, the local vertex reduces to the bare,
frequency-independent vertex λη so that  is given by one-
loop diagrams, as in spin-fluctuation theory in its simplest form
(spin channel only), the GW approximation (charge channel
only), or in FLEX limited to particle-hole diagrams; similarly,
P η turns into the “bubble” diagram; (ii) in the atomic limit
(t = 0), the effective local action turns into an atomic problem,
�

η
imp into the atomic vertex �

η
at [Eq. (A1)], and  and P η

become local, atomic self-energies.
Let us now apply the TRILEX method to the Hubbard

model on a square lattice. All energies are given in units of
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Simp[G(iω),Uη(iΩ)]

Σ(k, iω) =

P η(q, iΩ) =

G

W η

lattice quantities

Eq (8)

G(k, iω)
W η(q, iΩ)

Dyson
equations consistency

condition

self-

Eq (4)

Λη
imp(iω, iΩ)

impurity
vertex

G

G solve

self-energies
k-dependent

Eq (5,6) Eq (7)

impurity
model

quantum

FIG. 1. (Color online) The TRILEX self-consistency loop.

the half bandwidth D = 4|t |. The Brillouin zone is discretized
on a 64 × 64 momentum mesh.3 We restrict ourselves to the
paramagnetic normal phase.

3We have checked that the 64 × 64 discretization yields the same
results as the 32 × 32 discretization.

FIG. 2. (Color online) (T ,U ) phase diagram (half filling, t ′ = 0).
The green squares denote converged TRILEX solutions. A, B, and C
are defined as (A) βD = 96, U/D = 0.5, (B) βD = 24, U/D = 2,
and (C) βD = 48, U/D = 4. The red dotted line denotes T DMFT

Néel

for the square lattice (from Ref. [68]). The black squares denote T

(temperature below which one cannot obtain stable solutions, hatched
region); the black dashed line is a guide to the eye.

FIG. 3. (Color online) Left: Evolution of the local vertex
Re �η

imp(iωn,i�m) as a function of ωn (half filling, t ′ = 0). A, B,
and C are defined in Fig. 2. The dashed lines denote the atomic
vertex �

η
at [Eq. (A1)]. Right: Im loc(iωn) for TRILEX and DMFT

(paramagnetic phase).

In Fig. 2, we present the phase diagram in the (T ,U ) plane at
half filling. We obtain converged solutions until a temperature
T (see below). The evolution of the local vertex and self-energy
(respectively lattice self-energy and polarizations) is presented
in Fig. 3 (respectively Fig. 4) for the points A, B, and C of Fig.
2. At weak coupling (point A), the local vertex �

η
imp(iω,i�)

reduces to the bare vertex λ = 1 at large frequencies, up to
numerical noise [Fig. 3(a), upper panels]. The spin polarization

FIG. 4. (Color online) Momentum dependence of the self-energy
and polarization (half filling, t ′ = 0). A, B, and C are defined
in Fig. 2. Left: Re P ch(q,ω = 0). Middle: Re P sp(q,ω = 0). Right:
Im (k,iω0).
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FIG. 5. (Color online) From left to right: A(k,ω = 0), χ (q,i� =
0), and Im (k,iω0) in the doped case: U/D = 1.8, t ′ = −0.4t ,
βD = 96, δ = 10%.

[hence the spin susceptibility—see Eq. (9)] becomes sharply
peaked at the AF wave vector Q = (π,π ) (Fig. 4, upper
panels), reflecting the nesting features of the Fermi surface.
As a result, the self-energy acquires a strong k dependence
at (π,0) (Fig. 4), but its local part is the same as the
DMFT self-energy [Fig. 3(b)]. At strong coupling (point C),
the vertex becomes similar to the atomic vertex [Fig. 3(a),
lower panels]. Furthermore, the self-energy and polarization
are weakly momentum dependent (Fig. 4, lower panels), in
agreement with cluster DMFT calculations; the self-energy
of TRILEX is very close to the DMFT self-energy [Fig.
3(b)]. Finally, at intermediate coupling (point B), �η

imp(iω,i�)
acquires frequency structures which interpolate between A and
C [Fig. 3(a), middle panels], while  is strongly momentum
dependent and its local part departs from the DMFT self-
energy [Fig. 3(b), middle panels]. Interestingly, the TRILEX
self-energy is more coherent than the DMFT self-energy,
contrary to the trend observed in cluster DMFT [75]. This
may be due to the absence of short-range singlet physics
in TRILEX which may be investigated using a small cluster
extension.

Contrary to DMFT, the convergence of metastable param-
agnetic solutions below a long-range ordering temperature is
not possible, since the susceptibilities are not by-products of
the calculation, but directly feed back into the self-consistency
loop through Wη [see Eq. (9)]. We obtain stable paramagnetic
solutions at much lower temperatures compared to the Néel
temperature computed in DMFT [68] until T , as a result of
nonlocal fluctuations beyond DMFT. The temperature T is
determined by extrapolating the inverse static AF susceptibility
(see Fig. A1 in the Supplemental Material [66]). Below and
in the vicinity of T , we obtain unstable solutions because of
very small denominators in W sp. Whether we have, within
our approximate scheme, finite but very large correlation
lengths (as seen, e.g., in Ref. [57]) or an actual AF transition
(thus violating the Mermin-Wagner theorem), is left for future
studies.

Let us now turn to the effect of doping. In Fig. 5, we
present results for t ′ = −0.4t , βD = 96, and an intermediate
interaction strength (U = 1.8, close to point B). The spectral
function displays Fermi arcs (Fig. 5, left panel), as observed in
experiments [76] and in cluster DMFT [35,37,38,42–44,77].
Let us emphasize that this is obtained by solving a single-
site quantum impurity problem, a far easier task than solving
cluster impurities. The Fermi arc is a consequence of the large
static spin susceptibility at the AF wave vector (Fig. 5, middle
panel), which translates into a large imaginary part of the self-
energy (Fig. 5, right panel). The corresponding variation of the
spectral weight on the Fermi surface is rather mild compared to
the experimental results due to the moderate correlation length
(ξAF ∼ 2 unit spacings) for these parameters. This variation is
also smaller than cluster DMFT results, which may indicate
that improving the description of short-range correlations will
yield closer agreement to experiments.

Finally, we examine the influence of the ratio between the
interaction in the charge and the spin channel. We observe
that it does not impact either the fact that one can obtain
stable solutions much below the DMFT Néel temperature (T
mildly depends on the ratio), or the fulfillment of sum rules on
the charge and spin susceptibility (see Supplemental Material
D [66]). We have also tried alternative self-consistency
conditions, e.g., χ

η

loc = χ
η
imp instead of W

η

loc = W
η
imp. This,

however, leads to a positive U sp(τ ) and hence to a severe sign
problem in the quantum Monte Carlo at low temperatures.

In conclusion, we have presented the TRILEX formalism,
which encompasses long-range spin-fluctuation effects and
Mott physics. Because the competition between spin fluc-
tuations and Mott physics can be described already at the
single-site level, this computationally lightweight method may
be a good starting point for studying correlated multiorbital
systems where spin fluctuations play an important role, such
as pnictide superconductors. Future investigations will include
the extension to cluster schemes that interpolate between the
single-site approximation and the exact solution of the model.
With this extension, TRILEX will capture both long-range
and short-range fluctuations. Moreover, the convergence of
the method with cluster size may depend on the decoupling
channel and, when done in the physically relevant channel,
may be faster than cluster DMFT methods.
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[57] T. Schäfer, F. Geles, D. Rost, G. Rohringer, E. Arrigoni, K.
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