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We study the interplay of interactions and disorder in a one-dimensional fermion lattice coupled adiabatically
to infinite reservoirs. We employ both the functional renormalization group (FRG) as well as matrix product state
techniques, which serve as an accurate benchmark for small systems. Using the FRG, we compute the length-
and temperature-dependence of the conductance averaged over 104 samples for lattices as large as 105 sites. We
identify regimes in which non-Ohmic power law behavior can be observed and demonstrate that the corresponding
exponents can be understood by adapting earlier predictions obtained perturbatively for disordered Luttinger
liquids. In the presence of both disorder and isolated impurities, the conductance has a universal single-parameter
scaling form. This lays the groundwork for an application of the functional renormalization group to the realm
of many-body localization.
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I. INTRODUCTION

It has been known since Anderson’s work in 1958 that
disorder can localize the eigenstates of a noninteracting system
[1]. This single-particle localization physics is now well
understood theoretically and was observed experimentally (for
reviews see Refs. [2–4]). In one or two spatial dimensions, an
arbitrarily small amount of disorder will localize any eigenstate
in the spectrum, but in 3d a so-called mobility edge can
exist which separates localized states at the lower end of the
spectrum from extended states at high energies. The transition,
which can, e.g., be triggered by varying the disorder strength,
is the so-called Anderson transition.

The notion of localization heavily relies on a single-
particle picture. One might generally expect that upon adding
interactions (i.e., collisions), every state gets delocalized.
However, in 2006, Basko, Aleiner, and Altshuler suggested
[5] that the localized phase can exist even in the presence
of interactions and that a finite-temperature phase transition
can occur between phases with zero and finite conductivity.
This phase transition is not a thermodynamic (equilibrium)
transition but a dynamical quantum phase transition which
takes place on the level of the many-body eigenstates and
is beyond standard Mermin-Wagner arguments. For one-
dimensional lattice systems, the stability of localized states
towards adding interactions—i.e., the existence of a “many-
body localized” phase—has subsequently been established
fairly convincingly by a number of numerical [6–12] and
analytical [13–15] studies. Moreover, there is evidence that a
transition into a delocalized phase occurs if the ratio between
the interaction and the disorder strength is increased [9,11,12].
Physical properties have been investigated partially [16–21].

To date, the world of many-body localization (MBL) has
primarily been explored numerically by exact diagonalization,
because many more advanced tools have difficulty in resolving
excited-state properties and transport. Techniques such as
density matrix renormalization group [22] often increase
the accessible system size only slightly. In order to deepen
our understanding of MBL physics, it would be desirable

to employ different methods which are complementary in
their strengths and shortcomings. In this paper, we propose
the functional renormalization group (FRG) [23], which
formulates an a priori exact RG flow on the level of Green’s
functions, as one such method. The FRG is capable of studying
large systems but is approximate since in practice, the infinite
hierarchy of FRG equations has to be truncated. This raises
the question of how well FRG calculations describe transport
in systems with both interactions and disorder. It is one goal
of our work to investigate this issue.

In the realm of MBL, the starting point to understand the
interplay of disorder and correlations is the conventional (non-
interacting) Anderson insulator. In one dimension, however,
this problem was first tackled in the opposite limit of weak
disorder being added to a clean correlated system. In the
absence of disorder, interacting 1d systems generically feature
low-energy excitations which are not fermionic quasiparticles
but collective (bosonic) modes; as a consequence, their
correlation functions exhibit anomalous power laws in space
and time with interaction-dependent exponents [24–26]. This
so-called Luttinger liquid (LL) physics is often described using
the exactly solvable Tomonaga-Luttinger (TL) model [27,28],
which is then argued to be the fixed-point model governing the
physics of a large class of 1d systems at low energies [29].

The physics of Luttinger liquids in the presence of isolated
impurities [30–32] or weak disorder [33–38] was studied
extensively using field-theoretical versions of the TL model.
Power-law behavior of physical quantities can be understood,
e.g., from scaling dimensions computed perturbatively around
the Luttinger liquid fixed point. However, important questions
remained: (1) Can one justify some of the approximations (e.g.,
about the way disorder is treated) made in these calculations by
employing a different methodology—i.e., by making different
approximations? (2) Can one verify the power laws directly
for a microscopic lattice without having to resort to the usual
arguments necessary to show that the field theory indeed
describes its low-energy physics? (3) What is the temperature-
or length-scale (such as the localization length) below/above
which these power laws can be observed for a given model?
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(4) What is the physics on all scales? These questions were
addressed in detail in the case of isolated impurities (see,
e.g., the discussion in Refs. [39–42]) but in comparison only
sparsely in the presence of disorder [43–51].

We propose the functional renormalization group (FRG)
[23,52–54] as an alternative method to study transport in
interacting, disordered systems. The key drawback of the FRG
is that in practice its flow equation hierarchy needs to be
truncated via an expansion with respect to the two-particle
interaction on the right-hand side. Hence, it is imperative to
benchmark the capabilities of low-order approximations; we
resort to the density matrix renormalization group (DMRG),
which yields accurate results but is limited to small systems, as
a frame of reference. On the upside, (a) the FRG flow incorpo-
rates single-particle disorder exactly, makes no assumptions
about the existence or absence of intermediate fixed points
between high and low energies, and can often be continued to
zero cutoff, (b) the FRG can be used on the Matsubara axis
(equilibrium) or in real-time Keldysh space [55,56] and it is
not a low-entanglement approximation, (c) one can treat both
open and closed systems that are generically much larger than
those accessible via exact diagonalization, and (d) one can
describe the physics on all scales.

We start by analyzing a size-L lattice of spinless fermions
with repulsive interactions U in the presence of weak disorder
η � 1. The field-theoretical studies of disordered Luttinger
liquids predict power laws whose exponents contain the
interaction U to linear order; hence, a first-order FRG ap-
proximation is a reasonable starting point to study the physics
in this limit. We adiabatically couple the system to reservoirs
and compute the length- and temperature-dependence of the
conductance on all scales. First, the FRG results are compared
with DMRG data for lattices of O(10) sites. For larger L, we
observe non-Ohmic power laws and eventually exponential
decays. This is consistent with the system being localized.
The interaction- and disorder-dependence of the localization
length is documented. We demonstrate that in the presence
of both isolated impurities V as well as weak disorder, the
conductance G(L) shows a crossover between two power laws,
and its values for different L, V , and η can be collapsed on a
single universal curve.

We find that even for quite strong interactions our FRG
calculations are in very good agreement with the DMRG
data as well as with the theoretical predictions based on
disordered Luttinger liquids. Many-body localization with
zero conductivity at nonzero temperature is expected to appear
as a conductance that, at fixed temperature, decreases expo-
nentially with the length of the disordered region—similarly
to the zero-temperature behavior of a standard localized
system, albeit with a possibly different localization length. At
intermediate disorder strengths, there is a regime at nonzero
temperature where the exponential scaling of conductance
persists consistent with MBL; i.e., FRG can effectively give
an upper bound on the conductivity in the thermodynamic
limit, while not proving it is strictly zero. We find evidence for
a crossover into a metallic phase for attractive interactions. A
more systematic study of the limit of strong disorder and many-
body localization, which is a strong-coupling phenomenon,
requires a full second-order truncation scheme. Our present
work lays the groundwork for this calculation (which itself is

beyond the scope of this paper) and for a description of the
full crossover between the limits of weak and strong disorder.
While it is not guaranteed that a second-order scheme would
succeed in describing MBL quantitatively, one would expect
that the MBL phase can be detected and that some of its
features can be analyzed qualitatively from the second-order
flow to strong coupling.

II. MODEL

We consider one-dimensional spinless fermions living on a
lattice of size L̃ = L + 2Lc:

HLL =
L̃−1∑
l=1

(−tlc
†
l cl+1 + H.c. + Vlnl + Ulñl ñl+1), (1)

where nl = c
†
l cl , ñl = nl − 1/2, and tl denote the nearest-

neighbor hopping amplitudes. We will mainly set tl = t

and model disorder via random potentials Vl . In order to
adiabatically connect the system to reservoirs, we switch on the
Coulomb interaction smoothly over a few lattice sites Lc � L

(we will comment on the values Lc and s below):

Ul�L̃/2 = U

{
π
2 + arctan[s(l − 1 − Lc/2)], l � Lc,

1, l > Lc,
(2)

and UL̃−l = Ul . Finally, the coupling to left (L) and right (R)
Fermi liquid leads is described by

Hlead =
∑

k

[εkf
†
L,kfL,k + εkf

†
R,kfR,k

+ τ (f †
L,kc1 + f

†
R,kcL̃ + H.c.)]. (3)

Prominent choices for the dispersion εk are (i) tight-binding
leads governed by the Hamiltonian of Eq. (1) with Vl = Ul =
0, and (ii) the wide-band limit of structureless reservoirs
described by a single hybridization energy � = πρlead(0)τ 2,
where ρlead(ω) is the local density of states at the chemical
potential. We have checked explicitly that both yield the same
results in the low-energy limit.

III. METHOD

A. Functional renormalization group

The functional renormalization group is one implementa-
tion of Wilson’s general RG idea for interacting many-particle
systems [23,54]. It starts with introducing an energy cutoff
	 into the noninteracting Matsubara Green’s function G0 of
the system under consideration (note that the method can also
be set up on the Keldysh axis). We choose a multiplicative
infrared cutoff in Matsubara frequency space, which at zero
temperature takes the simple form 
(|iω| − 	); the finite-T
analog can be found in Ref. [42]. We consider the flow of
many-particle vertex functions, the lowest of which are the
self-energy and the effective two-particle scattering. By virtue
of the replacement

G0(iω) → G0,	(iω) = 
(|iω| − 	)G0(iω), (4)

every such vertex function acquires a 	 dependence. If one
takes the derivative with respect to 	 (which can, e.g., be
accomplished using generating functionals), one obtains an
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FIG. 1. Schematic representation of the flow equations for the
self-energy and the effective two-particle scattering (an n-particle
vertex has 2n external legs).

infinite hierarchy of flow equations that can be represented
diagrammatically (see Fig. 1); a detailed derivation can be
found in Ref. [23]. Subsequent integration from 	 = ∞ down
to the cutoff-free system 	 = 0 leads to an in principle
exact solution of the many-particle problem. In practice, the
infinite hierarchy needs to be truncated, rendering the FRG
an approximate method. The most simple truncation scheme
is to neglect the flow of the two-particle vertex by setting
it to its initial value (the bare Coulomb interaction U ) in
the self-energy flow equation. This approximation is strictly
correct only to leading order in U but contains an infinite
resummation of Feynman diagrams (since the self-energy
feeds back into its own flow). Similarly, the second-order
truncation scheme is obtained by setting the three-particle
vertex to its initial value (zero), which yields a closed set
of flow equations for both the two-particle vertex and the
self-energy.

In this paper, we consider the flow of the self-energy
and partially incorporate second-order contributions by
parametrizing the two-particle vertex as purely local and
energy independent, i.e., as effective on-site interactions U	

l

[57]. It turns out that accounting for the flow of U	
l renders

the higher-order contributions to Luttinger liquid exponents
associated with isolated impurities more accurate (the expo-
nents associated with disorder do not improve significantly).
We emphasize that this is a purely pragmatic approach; the
resulting approximation is still exact only to first order. The
flow of the self-energy can be expressed in terms of effective
hoppings t	l and on-site energies V 	

l ; the flow equations
explicitly read

∂λV
	
l = − 1

π
Re

[
U	

l−1G̃
	
l−1,l−1

(
iω	

n

) + U	
l G̃	

l+1,l+1

(
iω	

n

)]
,

∂λt
	
l = − 1

π
Re

[
U	

l G̃	
l,l+1

(
iω	

n

)]
,

∂λU
	
l = U	

l

π

{
2U	

l

[
Re G̃	

l,l

(
iω	

n

)
Re G̃	

l+1,l+1

(
iω	

n

)
(5)

− Re G̃	
l,l+1

(
iω	

n

)
Re G̃	

l,l+1

(
iω	

n

)]
−U	

l−1Re G̃	
l−1,l

(
iω	

n

)2 − U	
l+1Re G̃	

l,l+1

(
iω	

n

)2}
.

The initial conditions are given by V 	→∞
l = Vl , t	→∞

l = tl ,
and U	→∞

l = Ul . Boundary conditions are formally imposed
by setting U	

−1 = U	
L̃

= 0. G̃	(iω) denotes the flowing
single-particle Matsubara Green’s function, and ω	

n is the
Matsubara frequency closest to 	. The noninteracting leads
can be “projected out” analytically via equation-of-motion
techniques, and the calculation of G̃	(iω) then reduces to

the inversion of a L̃ × L̃ matrix defined by

[G̃	(iω)−1]l,l = iω − V 	
l − τ 2glead(iω)(δl,1 + δl,L̃),

(6)
[G̃	(iω)−1]l,l+1 = [G̃	(iω)−1]l+1,l = t	l ,

where glead(iω) is the local Green’s function of an isolated lead
[which in the wide-band limit is determined by τ 2glead(iω) =
−i� sgn(ω)]. Due to the tri-diagonal structure, this inver-
sion can be carried out with a computational effort scaling
linearly with L̃ [41]. The flow equations can be integrated
using standard Runge-Kutta routines. Finally, one obtains the
conductance (in units of e2/h = 1) from

G(L,T ) = −4π2τ 4
∫

dω
[
f ′(ω)ρlead(ω)2

×∣∣G̃	=0
1,L̃

(iω → ω + i0)
∣∣2]

, (7)

where ρlead(ω) = −Im glead(iω → ω + i0)/π , and f (ω) =
1/[1 + exp(ω/T )] is the Fermi function. At finite T , there
are additional vertex correction to G, which, however, vanish
within our truncation scheme.

B. Density matrix renormalization group

The density matrix renormalization group [22,58] is an
algorithm to variationally compute ground states or to simulate
the real-time evolution [59–64] in one-dimensional systems. It
can be implemented conveniently using matrix product states
[65–68]. Since the DMRG is a fairly standard tool, we only
describe briefly how the conductance is computed [69]; more
details can be found, e.g., in Ref. [62].

Within the DMRG, we model both the left and right
reservoirs in real space as noninteracting tight-binding chains
of size Lres = 200. Their hopping amplitudes t res

l are chosen
constant t res

l = t res close to the contacts with the wire HLL but
are decreased exponentially towards the ends in order to reduce
finite-size effects. We first apply a bias voltage ±Vb/2 to the
left and right chain and determine the ground state of the whole
system (limiting ourselves to zero temperature for the DMRG
results). Thereafter, we set Vb = 0 and calculate the real-time
evolution of the charge current. We extract the steady-state
value for 12 values of Vb < t res and obtain the conductance
from linear fits.

The computational effort of DMRG calculations scales with
the third power of the dimension of the matrix product state
used to approximate a given 1d state, which in turn scales
exponentially with the amount of encoded entanglement.
Generally speaking, the longer the size of the interacting
wire, the more entanglement builds up in the steady state.
This limits the DMRG calculations to small values of L̃. The
error is determined by the finite size of the leads, uncertainties
in the extracted steady-state current due to oscillations, and
finite-entanglement errors (truncation of the matrix product
state). We run the DMRG calculation for various parameters
(system size, discard weight) in order to roughly estimate
the error. For our purposes, it is sufficient that the DMRG
data are accurate to a few percent, and we can refrain from a
precise analysis of, e.g., finite-time oscillations as discussed
in Ref. [62]. Error bars are shown in cases where they are
larger than the symbol size; we also emphasize that the FRG
calculation is by construction exact at U = 0, implying that
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FIG. 2. (Color online) Zero-temperature conductance of a short
quantum wire of L = 8 sites featuring nearest-neighbor interac-
tions U , randomly distributed hoppings tl , and vanishing on-site
potentials Vl = 0. The system is contacted abruptly (Lc = 0) to
tight-binding leads. We compare FRG and DMRG results for the
clean case tl = t as well as for the disorder realization t1...8/t − 1 =
{−0.231,−0.153,0.093,−0.253,0.090,0.167,0.047}. Error bars for
the DMRG data are shown if they are larger than the symbol size (see
the main text for details).

this point serves as a benchmark for the DMRG result (see
Fig. 2).

IV. RESULTS

We first compare our approximate FRG data with the
DMRG reference for small systems at zero temperature. Dis-
order is modeled via random hopping amplitudes in the wire,
tl/t ∈ [1 − η,1 + η], which renders the DMRG calculations
simpler since one can trivially stay at half filling [62]. We set
the on-site potentials Vl to zero, consider nonadiabatic contacts
(Lc = 0), and choose equal hopping strengths t = τ = t res in
the tight-binding leads and in the wire. Results are shown
in Fig. 2 both for the clean system, where the conductance
deviates from the unitary values merely due to the abruptness
of the contacts, as well as for one disorder realization with
η = 0.3. Even though the FRG approximation is a priori
justified only to leading order, it agrees well with the DMRG
data up to large interactions U/t ∼ 1. We again point out that
the FRG calculation is exact at U = 0 so that this point in turn
serves as a nontrivial benchmark for the DMRG result.

We can now use the FRG to study systems as large as
O(105) sites. In the remainder of the paper, we employ uniform
hoppings tl = t and introduce disorder via random on-site
potentials drawn from a uniform distribution

Vl/t ∈ [−η,η]. (8)

Furthermore, we choose structureless wide-band limit leads
with a hybridization strength of � = t .

Figure 3 shows FRG results for the length dependence of
the conductance. For clean systems, G(L) is independent of L

and of unitary value if the contacts to the baths are perfectly
adiabatic [70–72]. For our purposes, it is sufficient to choose
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FIG. 3. (Color online) FRG data for the zero-temperature con-
ductance through large wires of up to L = 104 sites with U/t = 1,
uniform hoppings tl = t , and random on-site disorder potentials of
strength η. The latter are averaged over N different configurations.
The system is adiabatically connected to Fermi liquid leads; we take
the wide-band limit and choose the hybridization as � = t . Note that
only the data for η = 0 as well as for η = 0.005,N = 104 are shown
in the inset. The additional curve for attractive U will be discussed in
Sec. V.

Lc = 22, s = 2 in Eq. (2); this yields 1 − G(L = 10 000) ≈
3 × 10−8 at U/t = 0.2 and 1 − G(L = 10 000) ≈ 3 × 10−5

at U/t = 1 [see Fig. 3(a)]. In the presence of a finite η > 0,
G(L) is a nonmonotonic curve for any given choice of the
potentials Vl , reflective of randomly distributed transport
resonances within the wire. After numerically averaging over
N ∼ 104 different disorder realizations, we obtain a smooth
G(L) which decays monotonically for repulsive interactions
(for attractive interactions see Sec. V). We will now analyze
this quantitatively. We will discard all data for which the
deviations from the unitary conductance are not at least one
order of magnitude larger than the above-mentioned deviations
attributed to imperfect contacts.

A. Localization length

We define the localization length Lloc as the scale on which
the zero-temperature conductance starts to deviate from the
unitary value [see Fig. 3(a)]. Results are shown in Fig. 4,
where we have used the precise definition G(Lloc) = 0.99
in the main panel and G(Lloc) = 0.75 in inset (a). The
localization length decreases monotonically with the strength
η of the disorder. For η ∼ 0.1, Lloc becomes of the order of
a few lattice sites. In the limit η → 0, we observe a power
law, Lloc ∼ η−α , which is consistent with previous works
[37,38,43]. For spinless fermions, an RG analysis within
the Tomonaga-Luttinger model [25] predicts an exponent
α = 2/(3 − 2K), where K is the Luttinger liquid parameter,
which in our case is known analytically from the Bethe ansatz:
K = π/{2 arccos[−U/(2t)]} [73]. Despite the fact that our
FRG data are strictly correct only to leading order in the
interaction, they reproduce this result even for large U/t = 1.5
[see Fig. 4(b)].
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FIG. 4. (Color online) Localization length Lloc as a function of
the disorder strength η for various interactions U . We defined Lloc as
the length scale where the averaged conductance shown in Fig. 3 is
suppressed to G(L = Lloc) = 0.99 (main panel), or G(L = Lloc) =
0.75 [inset (a)]. The solid lines show power-law fits to Lloc ∼ η−α for
Lloc � 50. Inset (b): Exponent α in comparison with the prediction
α = 2/(3 − 2K).

B. Length and temperature dependence

We now analyze the functional form of the disorder-
averaged conductance in more detail. We start at zero temper-
ature. If L is of the order of a few lattice sites, G(L) decays in
a nonuniversal way. For L 	 1, however, the data for different
values of η can be collapsed onto a single curve if L is rescaled
with respect to the localization length; the conductance has a
universal form G(L/Lloc). This is illustrated in Fig. 5, where
we have used Lloc ∼ η−α .

For lengths scales 1 � L � Lloc, G decays with a power
law, 1 − G(L) ∼ Lβ . An analytical guess for the exponent β

can be obtained from the low-energy analysis of a spinful,
homogeneous Luttinger liquid [35], suggesting β = 3–2K

in our case. We find β ≈ 1.28 at U/t = 0.5 and β ≈ 1.54
at U/t = 1 (Fig. 5), which agrees decently with 3 − 2K ≈
1.277,1.5. On larger length scales L 	 Lloc, the conductance
G(L) shows an exponential decay, which is still observable
at small, finite temperatures [see Fig. 5(a)]. This is consistent
with the system being localized for repulsive interactions at
small η (see also the discussion in Sec. V) [34–38,43].

Finally, we study the behavior of G if the temperature is
increased for a fixed value of the system size. Results are
shown in Fig. 5(b). While at small T , the conductance is
exponentially suppressed, we observe a power-law increase
1 − G(T ) ∼ T −γ at intermediate temperatures (larger than
the “localization temperature” but smaller than the bandwidth).
The exponent is in good agreement with the analytic prediction
[25] γ = 2 − 2K obtained for a spinless LL (we find γ ≈
0.29, 2 − 2K ≈ 0.28 at U/t = 0.5 and γ ≈ 0.56, 2 − 2K =
0.5 at U/t = 1).

C. Disorder and isolated impurities

One of the hallmarks of Luttinger liquid physics is the
influence of isolated impurities [30–32,35,38]. An arbitrarily
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FIG. 5. (Color online) FRG results for the length- and
temperature-dependence of the conductance. Main panel: G(L) at
T = 0, U/t = 1, 200 < L < 10 000, and various η. The data were
averaged over N = 104 samples. For L � Lloc, we observe power-
law behavior 1 − G ∼ Lβ with an exponent β ≈ 3 − 2K (dashed
line). Inset (a): G(L) on a log-linear scale for fixed η = 0.1 and
different temperatures. The data at T = 0 and T > 0 were averaged
over N = 104 and N = 103 samples, respectively. Inset (b): G(T ) for
fixed L = 12 000, various η, and averaged over N = 102 samples. At
intermediate T , we again observe a power law 1 − G ∼ T −γ , where
γ ≈ β − 1.

small barrier

Himp = V nL̃/2 (9)

effectively cuts a LL in half at low energies, and the
conductance vanishes with a power law G(E → 0) ∼ E2/K−2,
where E is an energy scale such as temperature or inverse
length. At larger E and small V , G approaches the value G0

of the impurity-free Luttinger liquid via G0 − G(E) ∼ E2−2K .
The crossover between those two limits of “weak” and “strong”
impurities follows a universal scaling form G(E/Eimp), where
Eimp(V ) is a V -dependent, nonuniversal scale. This whole
picture was first established for homogeneous systems using
the local Sine-Gordon model, e.g., by means of perturbative
RG or the Bethe ansatz [32,74–76]. Subsequently, the FRG
was used to extensively study impurities in microscopic lattice
models [39], illustrating that the conductance in the presence
of leads features the same power laws and single-parameter
scaling if and only if the contacts to the leads are adiabatic
[40–42].

If the system features both weak impurities V as well
as weak disorder η, one expects a crossover between the
respective power laws 1 − G(L) ∼ Lδ=2−2K and 1 − G(L) ∼
Lβ=3−2K . However, it is a priori unclear whether or not the
data for different L, V , and η can be collapsed on a universal
curve. In order to test this, we make a single-parameter scaling
ansatz

1 − G(L) =
(

L

Limp

)δ

f

[
(L/Lloc)β

(L/Limp)δ

]
, (10)

where f should satisfy f (x → 0) ∼ 1 and f (x → ∞) ∼ x.
Lloc is the localization length, which for the parameters
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FIG. 6. (Color online) Scaling of the zero-temperature conduc-
tance in presence of on-site disorder η as well as a single impurity
V at U/t = 0.5 calculated via the FRG. One observes a crossover
between two different power laws; the data for all V and η can be
collapsed on a single curve. The raw data were obtained for length
scales 200 < L < 50 000 and averaged over N = 103 samples.

considered is simply taken as Lloc(η) ∼ η−α , and we determine
Limp(V ) as the length scale needed to collapse the data at η = 0
but various V onto a single curve. Results are shown in Fig. 6,
indicating that the conductance indeed has a scaling form.

V. OUTLOOK

We have studied the combined effect of disorder and
correlations in a system of 1d lattice fermions using a leading-
order functional renormalization group scheme. We computed
the conductance in the presence of adiabatic coupling to leads
on all length and temperature scales. At low energies and for
weak disorder, one observes several Luttinger liquid power
laws whose exponents are in good agreement with predictions
obtained via field theory. The interplay of isolated impurities

and disorder is governed by a universal single parameter
scaling form.

In this paper we focused on the limit of weak disorder
and repulsive interactions where the system is believed to
be localized. Prior works suggest that a crossover into a
metallic phase occurs at K = 3/2, which corresponds to
attractive U/t = −1 in our units. As illustrated by Fig. 3(a),
the conductance no longer decays to zero at U/t = −2 even
for large values of η, and one might be tempted to conclude
that our FRG scheme captures the metal-to-insulator transition.
Moreover, the persistence of exponentially decaying G(L) at
finite temperature for repulsive interactions and intermediate
disorder strengths is indicative of the existence of a many-body
localized phase. However, caution is in order: For the weak-
disorder limit addressed in this paper, previous works suggest
that the interaction gives rise to power laws whose exponents
are of first order, and employing a leading-order FRG scheme
is thus reasonable. Many-body localization, however, is a
strong-correlation phenomenon about which it is not known
whether or not it can be captured by leading-order perturbative
RG. Hence, it is imperative to implement a true second-order
FRG approximation as a frame of reference (which, e.g.,
accounts for the energy dependence of the two-particle vertex).
This is straightforward for one-dimensional, inhomogeneous
systems (see, e.g., Ref. [77]) and the subject of ongoing work.
It is certainly not guaranteed that a second-order scheme would
succeed in describing MBL quantitatively, but one would
expect that the MBL phase can be detected and that some of its
features can be analyzed qualitatively from the second-order
flow towards strong coupling.
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[19] O. S. Barišić and P. Prelovşek, Phys. Rev. B 82, 161106(R)

(2010).
[20] R. Nandkishore, S. Gopalakrishnan, and D. A. Huse, Phys. Rev.

B 90, 064203 (2014).
[21] S. Johri, R. Nandkishore, and R. N. Bhatt, Phys. Rev. Lett. 114,

117401 (2015).
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