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The Lieb-Liniger model describes one-dimensional bosons interacting through a repulsive contact potential.
In this work, we introduce an extended version of this model by replacing the contact potential with a decaying
exponential. Using the recently developed continuous matrix product states techniques, we explore the ground-
state phase diagram of this model by examining the superfluid and density correlation functions. At weak
coupling superfluidity governs the ground state, in a similar way as in the Lieb-Liniger model. However, at strong
coupling quasicrystal and super–Tonks-Girardeau regimes are also found, which are not present in the original
Lieb-Liniger case. Therefore the presence of the exponentially decaying potential leads to a superfluid/super–
Tonks-Girardeau/quasicrystal crossover, when tuning the coupling strength from weak to strong interactions.
This corresponds to a Luttinger liquid parameter in the range K ∈ (0,∞), in contrast with the Lieb-Liniger
model, where K ∈ [1,∞), and the screened long-range potential, where K ∈ (0,1].
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I. INTRODUCTION

Outstanding developments in the field of cold atoms in
optical lattices have opened the path to the experimental design
and manipulation of many-body quantum states [1]. Specifi-
cally, there have been proposals to simulate quantum field
theories using cold atoms [2,3]. These proposals are of high
relevance, as they can access nonperturbative regimes of such
theories. Regarding the case of long-range interacting theories,
there have been exciting experimental realizations with polar
molecules [4] that have enabled the exploration of strongly
correlated phases not stable with local interaction potentials.

The theoretical description of such many-body physics
is, however, challenging. Remarkable techniques have been
proposed and applied to a variety of lattice models of strongly
correlated systems [5–17]. Within this variety of methods,
tensor networks are a set of ansatzes for many-body wave
functions proposed to tackle nonperturbative problems in
lattice models and have been successfully used to study
strongly correlated phenomena [18–20]. The continuous
counterpart of tensor networks has also been subject of
recent research. More concretely, continuous matrix product
states (CMPS) have been proposed as a variational ansatz
to describe quantum field theories in 1 + 1 dimensions
[21]. Another relevant proposal to study critical systems is
the generalization to the continuum [22] of the multiscale
entanglement renormalization ansatz [23].

Applications of CMPS to the study of many-body systems
directly in the continuum include ground-state properties [21]
and excitations [24] of the Lieb-Liniger (LL) model, free
massive Dirac fermions [25], the N -flavor Gross-Neveu model
[25], and two species of bosonic [26] and fermionic [27] sys-
tems. Particularly for the bosonic case, such applications have
been focused on continuous models with contact interactions.
Studies of the long-range case have been explored before,
using other techniques such as bosonization [5,6,8,10,13,17],
numerical computations [9,11,12,14–16], and perturbation
theory [7]. Although these approaches have certainly shed light
on the physics of long-range interacting bosons, most methods
have to be restricted to small values of coupling constants or

must resort to a discretization procedure. Indeed, interesting
phases such as superfluidity, Wigner crystal, charge-density
wave, and Tonks-Girardeau gas have been found and their
respective crossovers or transitions have been discussed.
However, to the best of our knowledge, there are no studies of
bosons with long-range interactions, directly in the continuum,
using approaches with no such restrictions on length scales.

In this work, we use CMPS to study a system of bosons with
exponentially decaying interactions. This system can be con-
sidered as an extension of the exactly solvable LL Hamiltonian
[28]. Inspired by lattice Hamiltonian models, we refer to this
bosonic system as the extended Lieb-Liniger (ELL) model.
We will see below that this extended Hamiltonian is a minimal
model that captures both the physics of the LL Hamiltonian
and that of bosons interacting through the screened Coulomb
potential. When described as a Luttinger liquid, we show
that the Luttinger parameter of the extended Hamiltonian
contains values taken by the corresponding parameter in the
cases mentioned above. This implies that our extended model
displays strongly correlated behavior of both fermionic and
bosonic character, depending on the values of its parameters.

The outline of this work is the following. In Sec. II we
define the ELL model and show its connection to the LL
Hamiltonian. Section III is devoted to a scaling analysis of
the ELL model and its connection to long-range interacting
bosons. The numerical results based on the variational CMPS
are presented and analyzed in Sec. IV. We summarize the main
results in Sec. V. Technical details of the CMPS are discussed
in the Appendix.

II. HAMILTONIAN MODEL

In this work we focus on a model of bosonic particles
interacting via an exponentially decaying density-density term
in 1 + 1 dimensions. Its Hamiltonian reads

H = 1

2m

∫
dx ∂xψ

†(x)∂xψ(x) − μ

∫
dx ψ†(x)ψ(x)

+ g

2

∫
dx dy

(η

2
e−η|x−y|

)
ψ†(x)ψ†(y)ψ(y)ψ(x), (1)
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where ψ(x) and ψ†(x) represent bosonic field operators that
annihilate and create a particle at point x, respectively. The
symbol ∂x stands for the partial derivate with respect to x,
∂/∂x. The parameter μ > 0 is the chemical potential, m is the
mass of the bosons that we set henceforth to 1/2, gη defines the
interaction strength of the potential, and η is a characteristic
length that controls the range of the interaction.

Hamiltonian (1) is a particular case of a broader class of
Hamiltonians that can be written as

H = 1

2m

∫
dx ∂xψ

†(x)∂xψ(x) − μ

∫
dx ψ†(x)ψ(x)

+ 1

2

∫
dx dy w(x − y)ψ†(x)ψ†(y)ψ(y)ψ(x), (2)

where the interaction potential has been written as an arbitrary
function w(x − y) of the distance between x and y. The
long-distance behavior of Hamiltonian (2) was studied in
Ref. [29] invoking Luttinger liquid theory [30–32]. A Luttinger
liquid is characterized by two independent parameters: the
velocity of the excitations and the Luttinger parameter K .
(Luttinger liquid theory is equivalent to a conformal field
theory of free compactified massless scalar bosons [33], with
a compactification radius that depends on K .) This parameter
controls the decay of the correlations and which particular
phase governs the ground state.

We define the density-density and superfluid correlations
as

C(x)
.= 〈ρ(x)ρ(0)〉

ρ2
0

− 1, S(x)
.= 〈ψ†(x)ψ(0)〉

ρ0
, (3)

where the density is defined as ρ(x)
.= ψ†(x)ψ(x) and

its expectation value by the ground state is given by
ρ0 = 〈ψ†(0)ψ(0)〉. In Luttinger liquid theory the asymptotic
expressions for these correlations at long distances, ρ0x � 1,
are given by [8,30]

C(ρ0x) ≈ − K

2π2

1

(ρ0x)2
+ A1

cos(2πρ0x)

(ρ0x)2K
,

S(ρ0x) ≈ 1

(ρ0x)1/2K

[
B0 + B1

cos(2πρ0x)

(ρ0x)2K

]
.

(4)

In these expressions A1, B0, and B1 are coefficients that
depend on the microscopic parameters in Hamiltonian (2).
Here we will follow the convention of calling the ground state
of model (1) superfluid when S(x) decays slower than C(x).
This will be satisfied if K > 1/2. Similarly, we will say that
the ground state has charge order if K < 1/2, i.e., whenever
C(x) decays slower than S(x). This convention stems from the
fact that in one dimension there is no breaking of continuous
symmetries; hence algebraically decaying correlations are the
closest behavior to long-range order.

Two other instances of Hamiltonian (2), previously
analyzed in the literature, will be relevant to our discussion.
The first one is the LL model [28], which describes a system
of bosons interacting through a contact potential weighted by
the factor g > 0:

wLL(x − y) = g δ(x − y). (5)

This model is exactly solvable by the Bethe ansatz [28] and
can be described by Luttinger liquid theory [7,8,30] in the
low-energy limit. By resorting to dimensional considerations,

it has been shown that the LL model only depends on
the dimensionless variable γ

.= g/ρ0, which determines the
weak (γ � 1) and strong (γ � 1) coupling limits [28]. The
Luttinger parameter as a function of such dimensionless
coupling γ has been shown to lie in the interval

K ∈ [1,∞) (6)

for all values of γ , resulting in a superfluid ground state.
The second example is the case of the screened Coulomb

potential [6,10]

wC(z) = C

(z2 + d2)α+1/2
, (7)

where α � 0, C defines the strength of the interaction, and d is
a characteristic screening length [6,10] or dimensional cutoff
[5]. Genuine long-range Coulomb interaction is obtained by
setting α = 0 and d → 0. By performing a bosonization
analysis, it has been shown [17] that for α > 0 and as a function
of C and μ, the Luttinger parameter falls in the region

K ∈ (0,1]. (8)

Moreover, the existence of a crossover from a Luttinger liquid
to a Wigner crystal as α → 0 has been shown [5,6].

Hamiltonian (1) corresponds to the choice of potential

wexp(x − y) = g
(η

2
e−η|x−y|

)
(9)

in Hamiltonian (2). This Hamiltonian is completely specified
by defining the parameter set (g,η,μ). In addition to the
value of the effective interaction strength γ , potential (9)
introduces the dimensionless parameter η/ρ0, which controls
its effective range (see Sec. III). In the spirit of lattice models of
strongly correlated systems, we have dubbed this exponentially
decaying interacting system of bosons the extended Lieb-
Liniger model. We show in this paper that by changing the
values of (g,η,μ), we can obtain a Luttinger parameter that
covers the interval

K ∈ (0,∞). (10)

Therefore, the ELL model is a minimal model that contains
the physics described by both contact potential and screened
long-range interactions. This is the main finding of our work.
A pictorial representation of this quantity and its relation to
Eqs. (5) and (7) is shown in Fig. 1. In particular, we will see
that the LL model results from our extended Hamiltonian on
the limit η → ∞, and that it also reproduces the long-distance
physics of the long-range potential for finite η.

III. ANALYTICAL CONSIDERATIONS

Let us start with a discussion of the physics of the
exponentially decaying interactions that will allow us to
predict and interpret the numerical results presented in Sec. IV.
We begin by noticing that the integrated strength of the
potential (9) gives

∫ ∞
−∞ dz wexp(z) = g. In particular, using

the limit representation δ(z) = limη→∞ η

2 e−η|z| of the Dirac δ

function, we see that indeed Hamiltonian (1) reduces to the
LL model in the η → ∞ limit:

wLL(z) = lim
η→∞ wexp(z). (11)
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FIG. 1. (Color online) Values of the Luttinger parameter K dis-
criminated by the different interactions discussed in the text. For the
LL model K ∈ [1,∞). In the case of screened Coulomb interactions
K ∈ (0,1], and for the ELL model K ∈ (0,∞). The possible phases
are quasicrystal, super–Tonks-Girardeau, and superfluid. The Tonks-
Girardeau gas corresponds to K = 1.

It is also enlightening to compare the potential wexp(z)
of Hamiltonian (1) to the screened Coulomb case shown in
Eq. (7). For that, let us Fourier transform wexp(z),

wexp(q) = 1√
2π

g

1 + (q/η)2
, (12)

where q stands for the momentum. We can then see that a
quadratic term wexp/g ∼ 1 − (q/η)2 will be the leading order
in the long-wavelength limit (q/η � 1).

On the other hand, a Fourier analysis shows that the
screened Coulomb potential can also be written as a quadratic
function in the long-distance limit, provided that α � 1 [6,10].
To leading order in q, the interaction potentials of Eqs. (7)
and (9) are related through g ∼ C/d2α and η ∼ 1/d. Then
both potentials reproduce the same leading behavior at long
distance for α > 1. In addition, we notice that exponentially
decaying interactions cannot stabilize a Wigner crystal. This
can be seen by noticing that Eq. (12) cannot produce the
leading order log q, which is a term necessary to stabilize such
a state [5,34]. We notice as well that numerical calculations
have shown that exponential potentials can mimic the general
behavior of Eq. (7) [35].

To explore some further properties of Hamiltonian (1),
we introduce the scaling transformation: x → x̃ = λx, for
the space coordinate x. This change of scale will induce a
transformation on the field operators, as well, if we want to
maintain canonical commutation relations: [ψ†(x̃),ψ(ỹ)] =
δ(x̃ − ỹ). Explicitly, this transformation is ψ(x) → ψ̃(x) =
λ−�ψ(λx), with � = −1/2. We call � the canonical scaling
dimension of the field ψ(x). Next, we require that Hamiltonian
(1) remain invariant under the scaling transformation. In other
words, if H depends on the field ψ and a set of coupling
constants labeled by α, then Hα[ψ(x̃)] = Hα̃[ψ̃(x)], where α̃

is a new set of couplings that generally depend on λ.
Applying the scaling transformation to Eq. (1), we obtain a

new transformed Hamiltonian, which we write down as

λ2H = 1

2m0

∫
dx ∂xψ

†(x)∂xψ(x) − μ(λ)
∫

dx ψ†(x)ψ(x)

+ g(λ)

2

∫
dx

∫
dy

(
η(λ)

2
e−η(λ)|x−y|

)

×ψ†(x)ψ†(y)ψ(y)ψ(x), (13)

where we have defined the rescaled couplings as

g(λ) = g0λ, η(λ) = η0λ, μ(λ) = μ0λ
2, (14)

and have redefined the “bare” parameters by attaching a
subscript to them. We have conveniently written down H

as λ2H so we can fix m0 without changing the ground-state
wave function. Notice that if we choose λ = ρ−1

0 , then the
dimensionless quantity η/ρ0 defines the effective range of
the interaction potential (9). From these scaling equations we
can deduce that for any given H0, defined by the parameter
set (g0,η0,μ0), we can obtain a Hamiltonian Hλ, defined by
[g(λ),η(λ),μ(λ)], by rescaling the couplings as prescribed
by the relations above. In particular, this implies that if we
calculate the correlation functions from the ground state of
H0, we can obtain those for the mapped Hλ by rescaling
the coordinates of the original correlations [33]. The scaling
transformation also shows that Hamiltonian (1) has actually
not three but two independent parameters, since they can be
related by the scaling factor λ. For instance, we can eliminate
η’s equation and write down

g(λ) = g0

η0
η(λ), μ(λ) = μ0

η2
0

η(λ)2. (15)

As discussed at the beginning of this section, the LL
Hamiltonian is contained as a limiting case of the ELL model.
This limit corresponds to η(λ) → ∞, which in turn implies for
the bare couplings that η0 → ∞, or g0 → 0 and μ0 → 0, such
that g(λ) and μ(λ) remain finite. In the space of parameters
defined by (g,η,μ), the LL case is constrained to the plane
η(λ) = ∞, where g(λ) and μ(λ) can take arbitrary values. As
we shall see below, our numerical results indicate that for large,
albeit finite values of η(λ), the ground state of Hamiltonian (1)
behaves in a similar way to that of the LL model for the
same values of [g(λ),μ(λ)]. In the opposite limit, for values of
η(λ) ∼ 1, the physics of the ELL model is not related to that
of the standard LL Hamiltonian.

Similar conclusions on the scaling properties of Hamil-
tonian (1) can be drawn by exploring the scaling of the
dimensionless couplings γ = g0/ρ0, μ0/ρ

2
0 , and η0/ρ0. By

introducing the transformation under change of scale of
the density ρ(λ) = ρ0/λ, the rescaled couplings in this
case transform as γ (λ) = γ0λ

2, η(λ)/ρ(λ) = (η0/ρ0)λ2, and
μ(λ)/ρ(λ)2 = (μ0/ρ

2
0 )λ4. The resulting set of independent

equations now read

γ (λ) = γ0

η0/ρ0

(
η(λ)

ρ(λ)

)
,

μ(λ)

ρ(λ)2
= μ0

η2
0

(
η(λ)

ρ(λ)

)2

. (16)

The ELL model now defined by the couplings (γ,η/ρ,μ/ρ2)
will correspond to the LL model when η(λ)/ρ(λ) → ∞. And
as before, for η(λ)/ρ(λ) ∼ 1, the ELL Hamiltonian will give
rise to different phenomena than that of the LL model.

IV. NUMERICAL RESULTS

We now discuss the numerical results obtained for the ELL
model using the CMPS by Verstraete and Cirac [21,36], along
with the time-dependent variational principle proposed by
Haegeman et al. [25,36,37] as a minimization method. The
CMPS method produces an approximation to the ground-state
wave function. From this approximation we can compute
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FIG. 2. (Color online) Entanglement entropy as a function of the
bond dimension D for γ = 0.83 and η/ρ0 = 3.29. We have fitted
the data to the scaling relation Sρ = ζ ln D + O(1/ ln D), where
ζ = (

√
12/c + 1)−1 and c is the central charge [38].

quantities such as the ground-state energy and particle
densities, as well as correlation [21,25,36] and spectral
[24] functions. For our translationally invariant system, this
variational ansatz is parametrized by two D × D matrices
Q and R (see Appendix for details). These matrices contain
the variational parameters of the ground-state wave function.
The bond dimension D is a refining parameter that permits
one to control the accuracy of the resulting wave function
(including expectation values and correlation functions). The
computational cost grows as O(D3).

We have studied ground states for values of the bond
dimension in the range D = 4–32. As a first check of the
accuracy of the CMPS wave function in describing the ELL
model, we have calculated the entanglement entropy in order
to extract the value of the central charge. A typical result
for the entanglement entropy as a function of D is shown in
Fig. 2. Using the finite-scaling entanglement formula for the
entanglement entropy, proposed in Ref. [38], it is possible
to extract an estimated value of the central charge of the
conformal field theory underlying the ELL model. Such theory
corresponds to the Luttinger liquid which possesses a central
charge c = 1. The extracted value from the numerics c ≈ 0.95
gives rise to an error of 5% and compares fairly well with the
expected result. We interpret this result as a confirmation that
the CMPS gives an accurate approximation to the ground-state
wave function of the ELL model. In particular, this statement
implies that the CMPS is capable of describing critical theories
such as the Luttinger liquid, which is the low-energy effective
theory of the ELL model (see Sec. II).

Within the range of values of D studied, we have observed
convergence of the quantities calculated in this paper, includ-
ing the Luttinger parameter K . Figure 3 shows an example that
correlation functions converge up to distances around 50 times
the interparticle spacing, x ∼ 50ρ0. This plot also exhibits an
increasingly large power-law region as D increases. Likewise,
K versus D shows a systematic convergence. K has been
extracted by fitting our numerical results of the correlation
functions to Eq. (4). The fitting variables are K , A1, B0, and
B1 [39]. The extrapolation of K(D) to D → ∞ produces an
estimate of the error of K for a given D. In the example of
Fig. 3, assuming that K(D) is quadratic in 1/D, this error

0.01 0.1 1 10 100
ρ0x

0.6

0.7

0.8

0.9

1

S

D = 2
D = 8
D = 12
D = 16
D = 24
D = 32

0 0.1 0.2 0.3 0.4 0.5
1/D

4
4.4
4.8
5.2
5.6

K

FIG. 3. (Color online) Superfluid correlation function as a func-
tion of distance for the LL model (η → ∞) with γ = 0.75, and
several values of D. Inset: Corresponding finite-entanglement scaling
of the extracted K .

is 5% for D = 24. Similar errors are obtained in the rest of
the results discussed in this paper. These results have been
calculated with D = 24 unless otherwise stated.

In the following, we will see that exponentially decaying
interactions lead to Luttinger parameters in the range of
Eq. (10), thus containing the cases of screened Coulomb
[Eq. (8)] and contact [Eq. (6)] interactions. Having K spanning
such a range will lead to crossovers from superfluid to super–
Tonks-Girardeau to quasicrystal states. Here we will refer to
the super–Tonks-Girardeau regime as a state of suppressed
superfluidity, which can be described as spinless fermions (the
Tonks-Girardeau gas) interacting repulsively [7,14].

We will focus on two relevant regimes: weak coupling,
where γ � 1, and the strong-coupling limit, for which γ � 1.
We have fixed the chemical potential to μ = 0.5 throughout.
Results for other values of the couplings are connected via
a scaling transformation, as discussed in Sec. III. For each
limiting case, we have varied the value of the characteristic
length of the potential η and follow the evolution of the
correlation functions.

A. Weak coupling

Let us start by analyzing the weak-coupling limit for
γ = 0.75. Figure 4 shows the results for the density C(x)
and superfluid S(x) correlation functions as a function of the
distance scaled to the density ρ0. As can be seen, the superfluid
correlations closely resemble those of the the LL case (shown
as the dash-dotted black line). This suggests that the values of
the Luttinger parameter of the extended model will be presum-
ably similar to the LL model, and only differences will appear
at short distances, ρ0x � 1. The density correlations confirm
these findings. Indeed, for ρ0x � 1 the long-distance behavior
of the extended and standard LL models is closely related.
Again, differences are found at short distances, ρ0x ∼ 1, i.e.,
at energies not reachable with the theory of Luttinger liquid.

The resulting values of K at weak coupling for the data
of Fig. 4 are shown in Fig. 5. Our results for the LL case
(η → ∞) compare fairly well to the values of K predicted
using bosonization, giving an error of ∼5%. As was discussed
for Fig. 4, we observe an overall superfluid state in the ELL
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ρ0x

0

0.2

0.4

0.6

0.8

1
S,

 C

LL
η/ρ0 = 0.9
η/ρ0 = 1.72
η/ρ0 = 3.29
η/ρ0 = 6.34

+0.5

γ = 0.75

S

C

FIG. 4. (Color online) Weak-coupling limit: γ = 0.75. Super-
fluid S = S(ρ0x) (full) and density C = C(ρ0x) (dashed) correlations
as a function of distance for several values of η/ρ0. The dash-dotted
lines are results for the LL case, see Eq. (5). The continuous and
dashed lines correspond to the ELL Hamiltonian (1). A superfluid
ground state is found in this regime.

Hamiltonian at weak coupling, meaning K > 1 according to
Eq. (4). Figure 5 shows that K > 1 for the ELL Hamiltonian,
leading to S(x) decaying the slowest and hence to a superfluid
ground state. As η/ρ0 grows, the value of K is closely related
to that of the LL model, as expected.

It is possible to show what the possible values of K are
for the ELL model in the weak-coupling limit, see Eq. (10).
Starting at η → ∞, we know that the exponentially decaying
interactions (9) contain the LL model. On the other hand,
for finite but large η/ρ0 we have observed as well superfluid
behavior (K > 1), and as η/ρ0 decreases the prefactor gη in
Hamiltonian (1) will be small, leading to quasifree bosons,
which imply K → ∞. Consequently, we can expect that, at
least in the weak-coupling limit, the ELL model will have a
Luttinger parameter in the region K ∈ [1,∞). Notice that this
interval is the same for K in the LL model shown in Eq. (6)
(see also Fig. 1).

0 2 4 6
η/ρ0

2

2.5

3

3.5

4

4.5

K LL
SF
CC

8

FIG. 5. (Color online) Luttinger parameter K as a function of
the potential effective range η/ρ0 at weak coupling. The values of
K extracted from the fittings to the data in Fig. 4 for the superfluid
(charge density) correlations are labeled as SF (CC). For the LL model
(η → ∞) the label LL corresponds to the values of K extracted from
bosonization formulas (4) [8].

B. Strong coupling

The strong-coupling limit results of the correlations are
shown in Fig. 6. Firstly, for the LL case where η → ∞ (dash-
dotted line), the dominant correlations are those of a superfluid
ground state, similarly to weak coupling. The only remarkable
difference is that for γ � 1 the charge correlations display
Friedel oscillations characteristic of the Tonks-Girardeau
regime [9,40], where the bosonic system maps to free spinless
fermions [7,14]. Secondly, for the extended model at large
η/ρ0, superfluidity is suppressed although still remains as
the dominant fluctuation at long distances. However, charge
correlations become increasingly large in the short distance.
Notice that for large but finite η/ρ0, superfluidity is greatly
suppressed compared to the LL model. An overall increase of
Friedel oscillations is also observed in the charge sector.

Further decreasing of η/ρ0 leads to an almost complete
suppression of superfluid correlations, and charge fluctuations
thus govern at short and long distances. In the range where
charge correlations decay slower than superfluid ones, we
observe the appearance of a definite wave vector Q that
modulates the density fluctuations. As expected from the
correlation functions (4), this wave vector is set by ρ0.
The average density sets a length scale a = 1/ρ0, and we
can associate a wave vector to it as Q = 2π/a = 2πρ0.
The appearance of this wave vector in C(x) signals the
establishment of charge order.

Figure 7 displays the results of the Luttinger parameter at
strong coupling. As can be seen, the value of K is restricted
to K < 1, which indicates that the ensuing physics is not
related to the LL model. As η/ρ0 in varied, K increases
and presumably when η → ∞ the results of the LL model
are recovered. The estimated error of K for the LL model
is around 3%. By inspecting Eq. (4), a crossover from a
state with suppressed superfluidity to a quasicrystal state is
obtained when K = 1/2. Accordingly, we expect that upon
decreasing η/ρ0 (i.e., away from the LL limit) the tail of
the exponential interaction will dominate, leading to the
formation of the ordered state for K < 1/2. For K > 1/2

0 1 2 3 4 5 6
ρ0x

-1

-0.5

0

0.5

1

S,
 C

LL
η/ρ0 = 6
η/ρ0 = 8.23
η/ρ0 = 12.29
η/ρ0 = 20.94γ = 184

C

S

FIG. 6. (Color online) Strong-coupling limit: γ = 184. The
notation is the same as in Fig. 4. In this limit the superfluid correlations
are strongly suppressed, whereas the charge correlation function
displays an increase indicating a crossover from the super–Tonks-
Girardeau to a quasicrystal state.
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FIG. 7. (Color online) Luttinger parameter K as a function of the
potential effective range η/ρ0 at strong coupling. The values of K are
extracted from the fittings to the data in Fig. 6. The rest of the notation
is the same as in Fig. 5. The crossover value at K = 1/2 from the
super–Tonks-Girardeau limit to the quasicrystal state is shown as a
dashed line. See text for details.

the bosonic system is described by strongly interacting
repulsive spinless fermions; this is a suppressed superfluid
state or the super–Tonks-Girardeau regime.

The overall picture is then that, for a fixed value of γ and
by varying η/ρ0, a crossover from a super–Tonks-Girardeau
to a charge-ordered state is observed. This ordered state is in
fact a quasicrystal, which is the closest state that resembles a
Wigner crystal within Luttinger liquid theory. The presence of
the super–Tonks-Girardeau and quasicrystal states, which are
not present in the LL Hamiltonian, is directly related to the
exponentially decaying potential (9).

We have performed similar calculations for larger values
of γ (not shown here). The general tendency is similar to
that shown in Fig. 6. However, the range of values of K is
even smaller than the values reported in Fig. 7. This suggests
that in the strong-coupling limit of the ELL Hamiltonian, the
Luttinger parameter can range in the interval K ∈ (0,1]. This
assumption is supported by the discussion of Sec. III. There
we have shown that Hamiltonian (1), with specific values of
(g,η), can describe screened Coulomb interactions in the long-
wavelength limit (see Fig. 1). In addition, bosonization results
on systems interacting through potential (7) have shown that
the compactification radius lies in the same region as K in the
ELL model for γ � 1. Notice that such values of K at strong
coupling match those of Eq. (8).

C. Luttinger parameter

The analysis and conclusions drawn in Secs. IV A and
IV B can be further substantiated by calculating the Luttinger
parameter for arbitrary values of (g,η), with μ = 0.5. Results
for other coupling values are connected via the scaling
transformation discussed in Sec. III. In Fig. 8 we show
the Luttinger parameter, for the ELL model, versus γ for
several color-coded intervals of η/ρ0. The data confirms our
expectations that K ∈ (0,∞), showing that Hamiltonian (1)
contains as limiting cases the LL model and the screened
Coulomb potential.

10-1 100 101 102 103

γ
0.1

1

10

K

LL
η/ρ0 0.3-3
η/ρ0 3-4.5
η/ρ0 4.5-6
η/ρ0 6-9
η/ρ0 9-13
η/ρ0 13-23

FIG. 8. (Color online) Luttinger parameter K versus the dimen-
sionless interaction γ = g/ρ0 for color-coded intervals of η/ρ0 for
the ELL model. Full (open) symbols correspond to D = 18(24).
The values of the effective range of the potential span η/ρ0 ∈
[0.3,23]. The full line is the bosonization result for the standard
LL model, obtained with Luttinger liquid theory [8]. The dashed
lines correspond to the superfluid/super–Tonks-Girardeau and super–
Tonks-Girardeau/quasicrystal crossovers at K = 1 and K = 1/2,
respectively.

As discussed for the weak-coupling (γ � 1) case in
Sec. IV A, the behavior of K for the ELL model matches
that of the weak-coupling regime of the standard LL (full line
in Fig. 8) model. This indicates that the effect of the potential
range does not greatly affect the physics of the extended model
for γ � 1. In this regime, superfluid correlations govern the
ground state, i.e., K > 1.

At intermediate coupling, γ � 1, the exponentially decay-
ing potential starts changing the level of correlations, and a
departure from the LL result is observed, depending on the
value of η/ρ0. Indeed, for large η/ρ0 an LL-like trend is still
seen, in accordance with the results discussed in Sec. IV A.
On the other hand, for smaller η/ρ0 the Luttinger parameter
crosses the Tonks-Girardeau point K = 1 into the super–
Tonks-Girardeau state, where superfluidity is suppressed (see
Sec. IV B).

Finally, for strong interactions, where γ � 1, a crossover
from the super–Tonks-Girardeau regime to the quasicrystal
state is seen as a function of both fixed η/ρ0 and increas-
ing γ and fixed γ and decreasing η/ρ0. The crossover
line is defined by K = 1/2 (see Sec. IV B). Figure 8
shows that for large η/ρ0 the strong-coupling limit of the
extended model tends to closely follow that of the LL
model. As η/ρ0 decreases, an overall superfluid/super–Tonks-
Girardeau/quasicrystal crossover is observed.

Based on the previous discussions, we conclude that for
arbitrary values (g,η,μ) the low-energy physics of the ELL
Hamiltonian is described by Luttinger liquid theory with a
Luttinger parameter lying in the range (10). This result is
in high contrast with the cases of contact [Eq. (6)] and of
power-law [Eq. (8)] interactions (see Fig. 1). This entails that
by tuning (g,η,μ) the decaying exponential can be short ranged
enough to describe LL physics or power-lawed enough to
obtain an analog behavior to that observed for the screened
Coulomb interaction.
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V. CONCLUSIONS

Let us summarize the main results presented in this paper.
First, we have introduced a model for bosons in 1 + 1
dimensions interacting through an exponentially decaying
potential. Second, by employing well-established scaling
transformations we have shown that this ELL model contains,
in some limiting cases, both the standard LL model and the
long-wavelength limit of the screened Coulomb potential. This
discussion allowed us to make some predictions on the phases
of exponentially decaying interacting bosons, such as the
presence of quasicrystal and super–Tonks-Girardeau states.
Such states are not present in the original LL model, for which
the ground state is always superfluid. Third, making use of
the recently developed CMPS techniques, we have explored
the ground-state phase diagram of our system of exponentially
interacting bosons.

By calculating the superfluid and density correlation func-
tions, we have shown that at weak coupling superfluidity
governs the ground state in much the same way as in the LL
model. At strong coupling, however, superfluidity is strongly
suppressed with a simultaneous increase of density correla-
tions, signaling the emergence of the super–Tonks-Girardeau
state. Upon increasing the interaction density correlations
dominate the ground state and a quasicrystal state is stabilized.
As noticed above, these additional phases are not present in
the original LL Hamiltonian. Hence the decaying exponential
potential induces a crossover from superfluid to super–Tonks-
Girardeau to quasicrystal states, when the interaction strength
is varied from weak to strong coupling. Finally, resorting to
Luttinger liquid theory, we have shown that the value of the
Luttinger parameter ranges in the interval K ∈ (0,∞), thus
differing from the values taken by the corresponding quantity
of both the LL model, where K ∈ (1,∞), and the screened
Coulomb case, for which K ∈ (0,1).
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APPENDIX: UNIFORM CONTINUOUS MATRIX
PRODUCT STATES FOR EXPONENTIAL INTERACTIONS

In this paper we numerically investigate translationally
invariant field theories of interacting bosons in 1 + 1 di-
mensions using the technique of continuous matrix product
states (CMPS) of Verstraete and Cirac [21]. In this Appendix
we give a more detailed discussion of the formalism and its
implementation.

Similar to the case of matrix product states (MPS) [18,20]
on a lattice, the method makes an ansatz for a ground-

state wave function |〉 in terms of a set of continuous,
matrix-valued functions Q(x) and R(x) on an interval x ∈
[−L/2,L/2]:

|〉 = v
†
l Pe

∫ L/2
−L/2 dx Q(x)⊗1+R(x)⊗ψ†(x)

vr |0〉. (A1)

Here, Q(x) and R(x) are D × D matrices for every point x

(comprising the variational space), vl and vr are boundary
vectors at x = ±L/2 which incorporate boundary conditions,
Pe is the path-ordered exponential, 1 and ψ†(x) are identity
and creation operators acting at position x in space, and |0〉
is the vacuum defined by ψ(x)|0〉 = 0. D is called the bond
dimension of the CMPS. When going to the thermodynamic
limit L → ∞ (see below), vl and vr will drop out of any
equations and can be neglected. For later reference we
define

U (x,y) = P exp
∫ y

x

dx Q(x) ⊗ 1 + R(x) ⊗ ψ†(x). (A2)

The CMPS, Eq. (A1), can be considered to be the limit of
a certain type of lattice MPS. Consider a discretization of the
interval [−L/2,L/2] into N equidistant points xn, separated
by ε. One can show [21] that when expanding the path-ordered
exponential, defining c

†
n ≡ √

εψ†(xn) and collecting orders of
ε, the resulting expression is equivalent to the one obtained
from an MPS,

|φ〉 =
∑
{in}

Ai1Ai2 . . . AiN (c†1)i1 (c†2)i2 . . . (c†N )iN |0〉, (A3)

with matrices Ain restricted to the form

Ain=0 = 1 + ε Q(xn), Ain=k>0 =
√

εk

k!
Rk(xn). (A4)

Like for lattice MPS, the goal is to approximate the
ground-state wave function of a Hamiltonian H = ∫

dx h(x)
in terms of a CMPS. Time evolution is done using the
time-dependent variational principle, proposed by Haegeman
et al., for CMPS [37]. In this method, time evolution is carried
out by constructing d

dτ
|(τ )〉 = −H |(τ )〉 and using it to

update the wave function |〉:
|(τ + dτ )〉 = |(τ )〉 − dτH |〉. (A5)

The time-dependent variational principle teaches us that the
best optimal approximation to H |〉 is given by a tangent
vector (see below) belonging to the tangent space to variational
manifold of the CMPS. This implies a projection of H |〉
onto the tangent space, at which point the procedure becomes
approximate (see Ref. [37] for details).

The goal is thus to find a tangent vector |�〉 of given fixed
bond dimension D, which optimally approximates H |〉, such
that |〉 − dτ |�〉 is again a CMPS of bond dimension D.
Usually H is a sum of local operators and thus a reasonable
ansatz for |�〉 is given by locally varying Q(x) and R(x), and
taking a superposition of all these variations [37],

|�〉 =
∫ L/2

−L/2
dx U (−L/2,x)

× [V (x) ⊗ 1 + W (x) ⊗ ψ†]U (x,L/2)|0〉, (A6)

where V (x) and W (x) are the variations of Q(x) and R(x),
respectively. When added to |〉, the resulting state is again a
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CMPS of bond dimension D. Such vectors are also referred to
as tangent vectors [36,37]. The optimal V ∗(x) and W ∗(x) are
determined by minimization:

{V ∗,W ∗} = arg min{V,W }‖ |�〉 − H |〉‖2. (A7)

For translationally invariant systems in the thermodynamic
limit (L→∞), which is what we consider in the following,

Q(x), R(x),W (x), and V (x) can be chosen to be independent
of x.

A gauge transformation [18,20,36] for a CMPS is a trans-
formation on (Q,R) which leaves |〉 invariant. It induces a
redundancy in the tangent space, because it implies [36,37,41]
the existence of certain choices of nonzero V0 and W0 such
that the resulting tangent vector |�〉 to the state |〉 is zero:
|�[V0,W0]〉 ≡ 0. Such undesirable variations of |〉 can be
excluded by choosing a particular parametrization of V and
W (other choices are possible [36]):

V = −l−1R†l1/2Yr−1/2, W = l−1/2Yr−1/2, (A8)

where l and r are the left and right reduced density matrices [36], obtained from solving the equations

d(l|
dx

= (l|T = (l|(Q ⊗ 1 + 1 ⊗ Q̄ + R ⊗ R̄) = lQ + Q†l + R†lR = 0,

−d|r)

dx
= T |r) = (Q ⊗ 1 + 1 ⊗ Q̄ + R ⊗ R̄)|r) = Qr + rQ† + RrR† = 0.

(A9)

T is called the transfer operator, and acts as a superoperator on the vectors (l| and |r). l is in this respect a reordering of the vector
(l| into a matrix. We use the convention (l|A ⊗ B̄ ≡ B†lA and A ⊗ B̄|r) ≡ ArB†. To order ε, the operator eεT equals the MPS
transfer matrix E = ∑

in
Ain ⊗ Āin [19].

For our simulations we use the gauge freedom [21] to fix the gauge of |〉 such that l = 1. Equation (A8) enforces 〈�|〉 = 0;
furthermore, we have

〈�|�〉 = δ(0) tr(YY †). (A10)

We will consider the Hamiltonian (1). Using parametrization (A8), 〈�|H |〉 can be evaluated to [24,41]

〈�|H |〉 = δ(0)

[
(l|

(
1

2m
[Q,R] ⊗ [Q̄,R̄] − μR ⊗ R̄ + R ⊗ R̄L[w](−T )R ⊗ R̄

)
(−T )−1

P (1 ⊗ V̄ + R ⊗ W̄ )|r)

+ (l|(R ⊗ R̄)L[w](−T )(1 ⊗ V̄ + R ⊗ W̄ )L[w](−T )(R ⊗ R̄)|r) + (l|
(

1

2m
[Q,R] ⊗ ([Q̄,W̄ ] + [V̄ ,R̄])

−μR ⊗ W̄ + (R ⊗ W̄ )L[w](−T )(R ⊗ R̄) + (R ⊗ R̄)L[w](−T )(R ⊗ W̄ )

)
|r)

]
, (A11)

whereL[w](−T ) = ∫ ∞
0 dz w(z) e−(−T )z corresponds to the Laplace transform of the interaction potential w(z) of Hamiltonian (2)

[41]. For our exponentially decaying interaction potential (9), we haveL[wexp](−T ) = gη

2 (η − T )−1. In the LL limit,L[w](−T ) =
g

21, and the term proportional to L[wexp](−T )2 in Eq. (A11) is zero. Taking the derivative of Eq. (A7), now with respect to Y †,
yields the equation for the optimal Y ∗,

2πδ(0) Y ∗ = δ

δY † 〈�|H |〉, (A12)

and hence W ∗ and V ∗. From these, Q and R are evolved forward in time by a step dτ .
As mentioned above, we fix the gauge of |〉 such that l = 1. This is achieved by choosing an arbitrary R and an anti-Hermitian

K , and setting Q = K − 1
2R†R. It is then possible to construct an update for Q and R that preserves this gauge exactly:

R(τ + dτ ) = R(τ ) − dτ W ∗(τ ), K(τ + dτ ) = K(τ ) + dτ

2
(R(τ )†W ∗(τ ) − W ∗(τ )†R(τ )). (A13)

Indeed, one can check that Q(τ + dτ ) = K(τ + dτ ) − 1
2R(τ + dτ )†R(τ + dτ ). To first order in dτ equals the update R(τ +

dτ ) = R(τ ) − dτW ∗(τ ) and Q(τ + dτ ) = Q(τ ) − dτV ∗(τ ) (remember l = 1).
For the homogeneous case, it is also possible to manually regauge the matrices Q,R after each update step. Suppose Q,R

are ungauged CMPS matrices. Regauging them such that l = 1 is done by first calculating the left eigenvector (l| of T to the
eigenvalue α with largest real part. The state |〉 is then renormalized by Q → Q̃ = Q − α

2 1. R and Q̃ are then transformed
according to Ql = l1/2Q̃ l−1/2 and Rl = l1/2R l−1/2. It is easy to check that for these matrices, the left eigenvector l with
eigenvalue 0 is indeed the identity matrix.

The inverse (−T )−1
P in Eq. (A11) is to be understood as a pseudoinverse acting on the vector space orthogonal to |r)(l|. This

regularizes the infinite energy content coming from summing up all local energy contributions to the left of a particular position x.
The action (k|(−T )−1

P ≡ (k̃| on an arbitrary given vector (k| is computed from solving the inhomogeneous linear equation system
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(k|[1 − |r)(l|] = −(k̃|[T − |r)(l|] for (k̃| using a sparse solver [42] for a non-Hermitian equation system. A similar approach
without any pseudoinverse is used to calculate (η − T )−1. To get a stable update we have used an implicit Euler scheme to update
Q and R. The overall operational cost of the procedure explained above is O(D3). Depending on the parameters η and g, time
steps dτ have to be chosen as small as dτ = 10−3.
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[11] H. P. Büchler, E. Demler, M. Lukin, A. Micheli, N. Prokof’ev,

G. Pupillo, and P. Zoller, Phys. Rev. Lett. 98, 060404 (2007).
[12] G. E. Astrakharchik, J. Boronat, I. L. Kurbakov, and Yu. E.

Lozovik, Phys. Rev. Lett. 98, 060405 (2007).
[13] R. Citro, E. Orignac, S. De Palo, and M. L. Chiofalo, Phys. Rev.

A 75, 051602(R) (2007).
[14] G. E. Astrakharchik and Yu. E. Lozovik, Phys. Rev. A 77,

013404 (2008).
[15] R. Citro, S. De Palo, E. Orignac, P. Pedri, and M. Chiofalo, New

J. Phys. 10, 045011 (2008).
[16] T. Roscilde and M. Boninsegni, New J. Phys. 12, 033032 (2010).
[17] M. Dalmonte, G. Pupillo, and P. Zoller, Phys. Rev. Lett. 105,

140401 (2010).
[18] F. Verstraete, V. Murg, and J. Cirac, Adv. Phys. 57, 143

(2008).
[19] I. P. McCulloch, J. Stat. Mech. (2007) P10014.
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