
PHYSICAL REVIEW B 92, 115103 (2015)

Efficient evaluation of high-order moments and cumulants in tensor network states
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We present a numerical scheme for efficiently extracting the higher-order moments and cumulants of various
operators on spin systems represented as tensor product states, for both finite and infinite systems, and present
several applications for such quantities. For example, the second cumulant of the energy of a state, 〈�H 2〉,
gives a straightforward method to check the convergence of numerical ground-state approximation algorithms.
Additionally, we discuss the use of moments and cumulants in the study of phase transitions. Of particular interest
is the application of our method to calculate the so-called Binder cumulant, which we use to detect critical points
and study the critical exponent of the correlation length with only small finite numerical calculations. We apply
these methods to study the behavior of a family of one-dimensional models (the transverse Ising model, the
spin-1 Ising model, and the spin-1 Ising model in a crystal field), as well as the two-dimensional Ising model on a
square lattice. Our results show that in one dimension, cumulant-based methods can produce precise estimates of
the critical points at a low computational cost. The method shows promise for two-dimensional systems as well.
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I. INTRODUCTION

The understanding of quantum many-body systems is one
of the foremost goals of modern quantum physics. In addition
to various analytical approaches, a new set of numerical
tools has emerged for this purpose in recent years, based on
tensor network representations of such systems [1–4]. These
techniques take advantage of the so-called “area law” for
entanglement entropy, obeyed by the low-energy eigenstates of
gapped Hamiltonians with local interactions. Tensor networks
naturally embody this entanglement structure, dramatically
simplifying the degrees of freedom required to describe
such states. Initially introduced in the context of gapped
one-dimensional systems, where they are referred to as “matrix
product states” (MPS) [5–7], tensor network methods rose to
even greater prominence when it was realized that the cele-
brated “density matrix renormalization group” (DMRG) tech-
nique [8,9] could be reformulated in terms of an MPS [10–13].
Additional algorithms soon followed DMRG, such as “time
evolving block decimation” (TEBD) [14], as well as the
infinite-system analogs “iDMRG” and “iTEBD” [15,16].
Since then, tensor network methods have also been readily
applied to critical systems by means of the “multiscale entan-
glement renormalization ansatz” (MERA) [17,18], as well as to
higher-dimensional systems, where they are generally termed
“tensor network states,” or “projected-entangled pair states”
(PEPS) [2,19–24]. A principle goal of these algorithms is to
obtain precise approximations to ground-state wave functions,
which can be used for many purposes. For example, one
can compute various quantities and observables in an effort
to detect phase transitions, a central problem in many-body
physics [7,25–28].

In the Landau symmetry-breaking paradigm for phase
transitions, one first looks for an operator M whose expectation
value 〈M〉 can serve as the order parameter, i.e., a quantity
whose behavior changes sharply across a critical point. When
this order parameter is represented by a local operator, it can
be computed efficiently on a tensor network state [2]. But
while an expectation value is the most straightforward piece

of information associated with an operator and a state, there is
considerably more information available which one may want
to compute. For instance, one may wish to study the higher
moments of the operator μn = 〈Mn〉. A related set of quantities
called “cumulants,” typically labeled κn, is also frequently of
interest. An obvious example is the variance of the operator
〈�M2〉, which is simply the second cumulant κ2 = μ2 − μ2

1.
Even more important to the search for phase transitions is
the so-called “Binder cumulant,” first introduced by Binder
in 1981 in a study of the classical Ising model [29]. In many
settings, such as thermal or disordered systems, it is considered
to be one of the most accurate and reliable means of detecting
a critical point [30–32], and it has since been applied to a wide
variety of models [33–41].

Computing these higher-order moments and cumulants,
however, is less straightforward. Direct calculation quickly
becomes impractical for large n, since the number of terms to
evaluate can be exponential in n. In a classical system with
a Hamiltonian H0, one might define H (λ) = H0 + λM , and
relate the higher moments of M to the derivatives of an as-
sociated partition function, using 〈Mn〉 = (β ∂

∂λ
)nTr(e−βH (λ)).

In quantum systems, however, this equation only holds
when [H0,M] = 0, which is not true for a wide variety of
physically interesting cases. Because of these barriers to direct
calculation, usage of techniques such as the powerful Binder
cumulant has in the past been generally confined to studies
based on quantum Monte Carlo [33].

The question naturally arises whether these quantities can
be efficiently and systematically evaluated using the elegant
structure of a tensor network state. Here we demonstrate that
the answer is yes. The feasibility of using matrix product
states for computing the variance of Hamiltonians has been
previously pointed out in the context of DMRG [13,42],
and is demonstrated by McCulloch in [43] and [44], via the
technique of so-called “matrix product operators” (MPO) [2].
In this work we propose an alternative technique, which
gives a simple and efficient method to evaluate all general
moments and cumulants for tensor network states, based on
moment-generating and cumulant-generating functions. We
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demonstrate the calculation of moments and cumulants for
finite one-dimensional states, and show that the method can
also be used for per-site cumulants in the case of an infinite
system. We also show how the techniques naturally generalize
to finite systems in higher dimensions. These methods have a
variety of useful applications which we demonstrate at length,
including the use of the Binder and other cumulants to detect
critical points to relatively high precision at a low numerical
cost (calculation of the Binder cumulants by MPO methods has
also been recently considered in [45] and [46]). We also apply
the second cumulant of the energy to examine the convergence
of numerical methods based on imaginary time evolution.

This paper is organized as follows: In Sec. II we review
moments and cumulants, in particular presenting the Binder
cumulant and some of its applications. In Sec. III we very
briefly review the MPS formalism and discuss how to compute
certain simple expectation values. Section IV demonstrates
how to use these expectation values to efficiently compute
the moments and cumulants of general operators on an MPS.
Section V contains examples of the method as applied to three
different spin-chain models (the transverse Ising model, the
spin-1 Ising model, and the spin-1 Ising model in a crystal
field), as well as a demonstration of the method as applied
to a two-dimensional system (the transverse Ising model on a
square lattice). Our results are summarized in Sec. VI.

II. MOMENTS, CUMULANTS, AND THE BINDER
CUMULANT

A state |ψ〉 and an operator M collectively imply a
probability distribution: the probability density function of ψ

in M space. The expectation value 〈M〉 specifies the central
value of the distribution, while the complete set of “Moments”
defines the entirety of the shape [47]. The nth moment of the
distribution is defined to be μn = 〈Mn〉; the first moment μ1

is the expectation value 〈M〉 itself.
The cumulants of the distribution κn form an alternative

but equivalent way of specifying its shape. These cumulants
contain, in total, the same information as the moments; a
complete set of either moments or cumulants completely
specifies the distribution. Indeed, the nth cumulant can always
be expressed as a polynomial combination of the first n

moments, and vice versa [48]. For example, as we have
noted above, the second cumulant of the distribution is the
distribution’s variance defined by

κ2 = μ2 − μ2
1. (1)

The third cumulant κ3 gives the distribution’s skewness,
and is related to the first three moments by

κ3 = μ3 − 3μ2μ1 + 2μ3
1. (2)

Similarly, the fourth cumulant κ4 is related to the kurtosis,
and is given by

κ4 = μ4 − 4μ3μ1 − 3μ2
2 + 12μ2μ

2
1 − 6μ4

1. (3)

Although moments and cumulants are properly defined with
respect to a distribution and hence depend on both M and |ψ〉,
when |ψ〉 is general or clear from context we shall refer to μn

(κn) as the “nth moment (cumulant) of M .”

The aforementioned Binder cumulant is a particularly
useful quantity in the study of critical points and phase
transitions. For some system with some known order parameter
M , for example a total magnetization

∑
j σj or a staggered

magnetization
∑

j (−1)j σj , Binder’s cumulant represents a
modified version of that parameter’s fourth cumulant. Though
some slight variations exist in the definition, generally it is
given by

U4 = 1 − 〈M4〉
3〈M2〉2

. (4)

The utility of the Binder cumulant arises from the special
features of its length dependence. The behavior of the Binder
cumulant at a critical point depends only weakly on the size
of the system, and elsewhere its behavior with respect to the
system size differs depending upon the phase. For example, be-
low the critical point in a symmetry-breaking magnetic phase
the cumulant will increase with the length of the system, but
above the critical point, with symmetry unbroken, it decreases
instead. The result is that when curves of the Binder cumulant
vs temperature are plotted for various lengths, the critical point
is indicated by a simultaneous crossing. Typically, because
the behavior at the critical point is already approximately
universal, only a set of relatively small system sizes need be
considered, eliminating the need for complicated extrapola-
tions of very large systems to the thermodynamic limit.

The Binder cumulant also gives access to the critical
exponent of the correlation length by means of traditional finite
size scaling techniques in which one seeks to “collapse” the
data [29,49]. Up to some small finite size corrections (which
become increasingly suppressed as the system size increases),
the cumulants show a standard functional form [49],

U4(L,B) = Ũ [L1/ν(B − Bc)], (5)

where ν is the usual critical exponent. A plot of U4 vs
L1/ν(B − Bc) should therefore appear essentially independent
of L, since all of the length dependence has been absorbed
into the independent variable of the plot. Hence, Bc and ν

can be treated as free parameters, and varied until this length
independence is optimized; for example, one could seek to
minimize the total absolute square distance between the curves
for a variety of lengths L.

III. MATRIX PRODUCT STATES AND EXPECTATION
VALUES

A. Finite-length chains

To demonstrate how to efficiently compute quantities such
as the Binder cumulant for a system represented by an MPS,
we must first review the nature of the MPS representation
itself. Consider first a simple one-dimensional spin chain of
length L with periodic boundary conditions. As an MPS, this
state will be expressed as

|ψ〉 =
∑

s

Tr
(
A

(s1)
1 A

(s2)
2 · · · A(sL)

L

)|s1s2 · · · sL〉. (6)

In other words, a rank-three tensor “Aj ” has been associated
with each site “j .” One index of this tensor, denoted sj

above, remains free and represents the physical degrees of
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freedom at site j . The other two indices, typically termed the
“virtual indices,” are contracted with the virtual indices of the
neighboring tensors Aj−1 and Aj+1. The dimension of these
virtual indices, often labeled χ , is called the “bond dimension”
of the MPS. The choice of χ represents a numerical parameter
which can be adjusted to suit the requirements of the context:
smaller values are of course less numerically expensive, but
larger values can allow the MPS to more accurately represent
the features of the state, particularly in systems with long
correlation lengths.

In the one-dimensional case, since A is rank-three, for any
fixed value of sj the two remaining virtual indices simply
represent a matrix. For this reason, the labels of the virtual
indices are often suppressed, as in Eq. (6), with the contraction
represented by the expression A

(sj−1)
j−1 A

(sj )
j A

(sj+1)
j+1 in the same

manner that one would write an ordinary product of matrices.
Let us now consider how to calculate the expectation value

of an operator with respect to a matrix product state. Consider
first the case of a simple operator which is given by a tensor
product of on-site operations. For such an operator, of the form

Q =
⊗

j

Qj , (7)

the expectation value 〈Q〉 is given by

〈ψ |Q|ψ〉 =
∑
sj ,s

′
j

⎡
⎣Tr

⎛
⎝ L∏

j=1

A
(sj )
j ⊗ A

∗(s ′
j )

j

⎞
⎠ L∏

j=1

〈s ′
j |Qj |sj 〉

⎤
⎦,

(8)
or equivalently,

= Tr

⎡
⎣ L∏

j=1

∑
sj ,s

′
j

(
A

(sj )
j ⊗ A

∗(s ′
j )

j

)〈s ′
j |Qj |sj 〉

⎤
⎦. (9)

From this expression, it is clear that, up to normalization,
the expectation value is simply a trace over a set of L “transfer
matrices,” i.e.,

〈Q〉 = 1

〈ψ |ψ〉Tr

⎛
⎝ L∏

j=1

Tj

⎞
⎠, (10)

where the T ’s are defined as

Tj ≡
∑
sj ,s

′
j

(
A

(sj )
j ⊗ A

∗(s ′
j )

j

)〈s ′
j |Qj |sj 〉. (11)

This procedure is also demonstrated in graphical notation
in Fig. 1. The norm of the state can be fixed in a similar
fashion, by evaluating a transfer matrix for the special case
where Qj = 1.

Tensor products of few-body operators can be handled in
a similar fashion by grouping the relevant sites. More general
operators are simply evaluated by decomposing them into
a sum of tensor products. Considerably more detail on the
general process of taking expectation values can be found
in the now-extensive body of literature on matrix product
states [2,4,50]. For our purposes, however, it will be sufficient
to be able to evaluate operators of the simple form in Eq. (7).

= Ψ
s1 s2 sL 

= T1

= Tr(T1T2...TL )

= Q

A2 A1 AL 

A1 
* A2 AL 

Q1

* * 

Q2 QL

s1 s2 sL 

s'1 s'2 s'L 

A2 A1 AL 

(a) 

(b) 

FIG. 1. (Color online) Graphical notation demonstrating the
structures of matrix product states. In this notation, a shape represents
a tensor, and a line represents an index. Connected lines between
shapes represent contracted indices between tensors. (a) A finite spin
chain state |ψ〉 represented as a matrix product state. The state is
specified by the set of rank-three tensors {Aj }, with the physical
degrees of freedom sj left open. (b) The expectation value of a product
operator Q = ⊗jQj with respect to |ψ〉. Each Qj acts locally on only
one site. The total expectation value can be thought of as a trace over
a product of transfer matrices Tj , defined in Eq. (11). An example of
an individual transfer matrix T1 is highlighted.

B. Infinite-length chains

One significant advantage of tensor network algorithms is
how easily they allow one to directly study certain infinite
systems. This can be done for systems with some form of
translation invariance, which can be completely represented
by their unit cells. For example, consider an one-dimensional
infinite system possessing translation invariance with respect
to a unit cell of length �. Represented as a matrix product, the
state is of the form given by Eq. (6), but with the further
restriction that not all tensors Ai are distinct, and instead
repeat every � sites. A state with only a one-site unit cell
(full translation invariance) can therefore be specified by only
a single tensor A,

|ψ〉 =
∑

s

Tr(A(s1)A(s2) · · · )|s1s2 · · · 〉. (12)

Similarly, a state with two-site translation invariance
(� = 2) specified by two tensors A1,A2 and has the form

|ψ〉 =
∑

s

Tr
(
A

(s1)
1 A

(s2)
2 A

(s3)
1 A

(s4)
2 · · · )|s1s2s3s4 · · · 〉. (13)

Of course, because the sums in Eqs. (12) and (13) run over
an infinite number of sites, in general there is no way to specify
or compute the coefficients. Certain expectation values, on the
other hand, may still be expressed as the limit of an infinite
product of transfer matrices. It is quite common, for example,
to consider the expectation value of an operator with the same
translational invariance as the state in question, by looking
at the per-site behavior. For our purposes, we will again be
concerned with product operators of the form given in Eq. (7).
However, we will now restrict ourselves further by imposing
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translation invariance on Q. For an infinite system with a unit
cell of length �, we shall consider only Q with Qj = Qj+�.

In this situation, one can still sensibly define the expectation
value as

〈Q〉 = 1

〈ψ |ψ〉Tr

⎛
⎝ ∞∏

j=1

T�

⎞
⎠. (14)

Here the transfer matrix T� is now “enlarged” to represent
an entire unit cell of the chain

T� ≡
l∏

j=1

Tj . (15)

In order to approach the infinite case, we shall first examine
the case of a finite but very long chain of length L, so that the
product in Eq. (14) is limited to L/� terms, i.e.,

〈Q〉L = 1

〈ψ |ψ〉Tr

⎛
⎝L/�∏

j=1

T�

⎞
⎠. (16)

For L sufficiently large, the product can then be approx-
imated by considering an eigenvalue decomposition of the
transfer matrix T� = U�U−1 and inserting it into Eq. (16)
[note that, by construction, the transfer matrix as defined by
Eqs. (11) and (15) is Hermitian and hence diagonalizable].
By applying the cyclic property of the trace operation, all U

matrices can be made to cancel, leaving us only

〈Q〉L = 1

〈ψ |ψ〉Tr(�L/�) (17)

or

〈Q〉L = 1

〈ψ |ψ〉
χ2∑

j=1

λ
L/�

j , (18)

where λj are the diagonal elements of �, i.e., the eigenvalues
of the matrix. At this point, it can be observed that in the
infinite limit, only the largest eigenvalue λ1 will contribute to
the sum. In other words, we have simply

〈Q〉L = 1

〈ψ |ψ〉 (λ1)L/�. (19)

To fix the norm, we consider a particular transfer matrix
T̃�, defined as usual by Eq. (11) for the special case where
Q = ⊗

j 1j . Then we calculate λ̃1, the largest eigenvalue of
T̃�, which satisfies

〈ψ |ψ〉 = (λ̃1)L/�. (20)

Substituting, we have

〈Q〉L =
(

λ1

λ̃1

)L/�

. (21)

We then gain access to the per-site behavior by means of a
logarithm, which gives

1

L
log〈Q〉L = log

(
λ1

λ̃1

1/�
)

. (22)

= ψ inf
(a) 

A2 A1 A2 A1 

A2 A1 

A1 
* A2 

Q1 Q2

* 

= T(c) 

A2 A1 

A1 
* A2 

* 

= T
~

d) 

unit cell   ( = 2)

(b) Q2 Q1 
= Q

 T R = λmax R   T
~

R' = λ
~

max R'

Q2 Q1 

FIG. 2. (Color online) (a) An infinite spin chain state |ψinf〉,
possessing translation invariance with respect to a unit cell of length
� = 2, represented as a matrix product state. (b) A product operator
Q = ⊗jQj which possesses the same translation symmetry as |ψ〉,
i.e., Qj = Qj+�. (c) To compute the quantity of interest, we first
construct T�, the transfer matrix containing an entire unit cell of |ψ〉
and Q, and extract its dominant eigenvalue λ1. (d) To normalize the
result, we will also need T̃� (a transfer matrix which contains only
the identity operator) and its dominant eigenvalue λ̃1. The desired
quantity limL→∞ 1

L
log〈Q〉 is given by log(λ1/λ̃1)1/�.

Equation (22), however, does not depend on having a finite
L. Thus, even for our infinite system, we can consider the limit

lim
L→∞

1

L
log〈Q〉 = log

(
λ1

λ̃1

1/�
)

. (23)

Hence, with these procedures (illustrated graphically in
Fig. 2), we can extract information about product operators
in their infinite limit even though their expectation values
generally diverge. As we will show below, this information
will be sufficient to compute the cumulants of operators with
translation invariance even in the infinite case.

IV. EVALUATING HIGHER-ORDER MOMENTS
AND CUMULANTS

A. Moment and cumulant-generating functions

For a given operator M and a state |ψ〉, there is an
associated function F which contains all of the nonlocal
information about the higher moments 〈Mn〉, and yet, as
we shall subsequently demonstrate, can still be efficiently
evaluated within the framework of a tensor product state. In
particular, this function is given by F (a) ≡ 〈eaM〉.

In probability theory, F (a) is termed the “moment gen-
erating function” of the probability distribution. It is so
named because the information about every moment of the
distribution is not only contained, but readily accessible from
this single function. This can be made explicit by considering
a Taylor expansion of eaM about a = 0 and then computing
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the expectation value in F (a) term-by-term

F (a) = 1 + a〈M〉 + a2

2
〈M2〉 + · · · . (24)

From the result, it is clear that every (nonvanishing)
moment 〈Mn〉 will appear in the expansion. Furthermore, these
moments can be directly accessed by computing

F (n)(a) = μn + O(a), (25)

where F (n)(a) is as usual the nth derivative of F .
The moment-generating function F is closely related to

the so-called “characteristic function” of the distribution
G(a) ≡ 〈eiaM〉 [51]. For typical states with well-behaved wave
functions, these functions will be essentially interchangeable
(up to a factor of i). Hence in this work, both will be
used, sometimes in combination, depending on the particular
moment or operator being computed. It should be noted,
however, that for some “pathological” wave functions, such
as those specifying a Lorentzian probability distribution, the
function F (a) may fail to exist. The characteristic function
G(a), however, being the expectation value of a bounded
operator, does not suffer from this complication in any
situation [52].

While Eq. (25) gives a result for the desired moment which
is only accurate up to first order in the parameter a, the
precision can be improved by instead computing appropriate
combinations of the functions F (a), F (−a), G(a), and G(−a).
For example, when seeking to compute an even-ordered
moment, i.e., a moment of the form 〈M2n〉, we construct

F̃ (a) = F (a) + F (−a) = 2 + a2〈M2〉 + a4

12
〈M4〉 + · · · .

(26)
And hence obtain the desired moments from the relation

F̃ (n)(a) ∝ 〈M2n〉 + O(a2). (27)

Odd-ordered moments can of course be found to higher
precision from F (a) − F (−a). Even greater precision can also
be obtained by including the characteristic functions. The
combination F (a) + F (−a) − G(a) − G(−a), for instance,
determines 〈M2〉 up to O(a4).

We employ a similar technique to extract the cumulants
of the distribution. This is done by means of the “cumulant
generating function,” defined as

lF (a) ≡ log F (a). (28)

To see the utility of this function, observe that

lF (a) ≈ log

(
1 + a〈M〉 + a2

2
〈M2〉 + · · ·

)
. (29)

For small enough values of a, one can see from the
expansion log(1 + x) ≈ x − 1

2x2 + · · · that

lF (a) = a〈M〉 + a2

2
〈M2〉 − a2

2
〈M〉2 + O(a3). (30)

Grouping these terms by the powers of a, we find that in
fact

lF (a) = aκ1 + a2

2
κ2 + · · · . (31)

In other words, the derivatives of the function lF (a) give
us direct access to the cumulants in the same manner as the
moments in Eq. (25),

l
(n)
F (a) = κn + O(a). (32)

Of course, as with the moments, appropriate combinations
of lF (a), lF (−a), and the associated complex functions can
be used to suppress the higher-order terms and improve the
accuracy.

B. Evaluating generating functions on a finite
matrix product state

Evaluating all of these moments and cumulants thus boils
down to evaluating the expectation values of operators like
eaM . It remains to be shown that these operators, which we
term “moment generating operators,” can be applied in an
efficient manner. Fortunately, the exponential structure of the
operator guarantees that this is indeed the case.

We will consider these operators in two cases, depending
on the nature of the operator M . The first, special case is the
large class of operators where M can be written as

∑
j Oj ,

where j runs over all the sites in the system and for some
arbitrary set of on-site operators {Oj }. Most usefully, this set of
operators contains the traditional magnetization operators such
as Mx = ∑

j σ x
j , as well as staggered magnetizations, crystal

field magnetizations, etc. Subsequently, we will examine the
more general case where the terms within M act on more than
one site at a time.

1. Sums of single-body operators

In this case, since the operators Oj all act at separate sites,
the combined operator M is in fact simply a Kronecker sum
M = ⊕

j Oj . From this it follows that we can write [53]

eaM =
⊗

j

eaOj . (33)

In other words, the moment-generating operator can be
decomposed into a set of operators {eaOj }, each acting only at a
single site. The moment generating function, in turn, is just the
expectation value of all these operators applied simultaneously.

Since our moment-generating operator can be written in
this tensor product format, we can compute its expectation
value directly through Eqs. (10) and (11), with Qj = eaOj (see
Fig. 3). The calculation of our moment-generating function
F (a) has therefore been reduced to the calculation of L transfer
matrices and a single trace over their product. In practice, to
calculate a higher moment like 〈M2〉, we then need to repeat
this procedure and compute F for slightly different values of
a, so that it is possible to evaluate the necessary derivative
numerically. This can be done through any of the wide variety
of standard methods; in this work we have used primarily the
classic divided difference formulas [54]. In general, the more
values of a at which F (a) is computed, the higher the accuracy
of the derivative. However, since the initial a is already chosen
to be quite small, in practice it is often the case that only a very
small number of points needs to be computed (to check the
behavior and accuracy, the procedure can always be repeated
with a smaller value of a).
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A2 A1 AL 

A1 
* A2 AL 

eaO1

* * 

(a) 

(b)  

A2 A1 AL 

e(a / 2)Hodd

eaO2 eaOL

A1 
* A2 AL 

* * 

A4 A3 

A3 
* 

e(a / 2)Hodd

eaHeven eaHeveneaHeven

e(a / 2)Hodde(a / 2)Hodd

A4 
* 

FIG. 3. (Color online) (a) Graphical representation of the
moment-generating function F (a) = 〈eaO〉 for an operator M =∑

j Oj . Since each term in M acts at only one site, the moment-
generating operator possesses the same structure, even though
the moments Mn are fundamentally nonlocal. (b) The moment-
generating function for an operator which is the sum of two-body
terms and which possesses the form H = Hodd + Heven, such as the
transverse Ising Hamiltonian defined in Eq. (38). The operator is
approximated by the second-order Suzuki-Trotter formula in Eq. (43),
which produces three “layers” of operations. Each layer is a sum of
two-body terms.

Let us examine now the performance of the method for
the case of 〈M2〉. A second derivative is necessary, which
can be computed to second order in a from three values of
a, centered at a = 0 [54]. Noting that when a = 0 we have
trivially F (a) = 1, it follows that we only have to compute
two expectation values, each involving the construction of (at
most) L transfer matrices, which are then multiplied together
and traced over. By comparison, to compute 〈M2〉 directly, as
the sum of all correlators 〈OjOk〉, requires the construction
of the same number of transfer matrices (to cover the special
case of the correlator where j = k), but these matrices must be
multiplied and traced over up to L2 separate times. Since some
of these products of transfer matrices in these calculations will
appear more than once, the actual computational cost can be
reduced somewhat through use of a suitably “dynamically
programed” algorithm, where previously calculated products
are saved and recycled [2]. Even in this case, however, far more
than two solitary products would be required. Furthermore, as
the order of the desired moment μn increases, the advantage of
the moment-generating function method becomes increasingly
pronounced, as the numerical derivative will require only
approximately n expectation values, instead of Ln.

Simply put, the fact that the exponential nature of the
moment generating operator turns long Kronecker sums into
simple Kronecker products makes it ideally suited for use
with a matrix product state. In all cases, only a small number

of expectation values must be computed in order to allow the
calculation of a numerical derivative, with each expectation
value containing the operator eaOj at every site j . Moreover,
application of these local operators does not increase the bond
dimension of the state.

Such moments can in principle also be computed by means
of an MPO [43,44]. As a straightforward demonstration of
this, consider for example the MPO given by [55]

Ĉj =
(
1j 0

Oj 1j

)
, (34)

coupled with the boundary conditions

〈φL| = (0 1) (35)

and

|φR〉 =
(

1

0

)
. (36)

To evaluate the moments, one defines the total MPO W to be

W ≡ 〈φL|
L∏

j=1

Ĉj |φR〉

=
L∑

j=1

Oj .

so that

μn = 〈ψ |Wn|ψ〉. (37)

In this naive implementation, each application of W to |ψ〉
increases the bond dimension of the state by a factor of 2,
and thus, to calculate the nth moment in this way requires
a bond dimension exponential in n. This increase can be
overcome, if necessary, by means of a standard truncation
approximation, as done in the TEBD algorithm. Alternatively,
a more sophisticated MPO can be constructed [56] which
represents the operator Mn, but with a bond dimension of
just n + 1, resulting in a procedure which still scales linearly.

2. Sums of many-body operators

We now examine the case of calculating the higher-
order moments of a more general set of operators M =∑

j OjOj+1 · · · Oj+k . In other words, we consider operators
which are a sum of terms acting on at most k sites at a time. So
long as k is finite, it remains possible to evaluate the moment
generating functions with a single expectation value. This can
be done by appealing to the same TEBD technique [14,57]
widely used to simulate time evolution and imaginary time
evolution in tensor network states.

To begin, we partition the terms of the operator into classes
of mutually commuting operators. This will require at most
k classes. For example, consider as an operator the two-body
transverse Ising Hamiltonian

H = −
∑

j

σ x
j σ x

j+1 + Bσz
j . (38)
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For simplicity, let us write H in a manner which makes it
explicitly a sum of two-body operators

H = −
∑

j

σ x
j σ x

j+1 + B

2

(
σ z

j + σ z
j+1

)
. (39)

Then, the terms can be partitioned between the even and
odd pairs of sites, and H can be written as

H = Heven + Hodd, (40)

with

Heven = −
∑
j even

σx
j σ x

j+1 + B

2

(
σ z

j + σ z
j+1

)
(41)

and

Hodd = −
∑
j odd

σx
j σ x

j+1 + B

2

(
σ z

j + σ z
j+1

)
. (42)

The moment generating function therefore has the form
F (a) = eaHeven+aHodd , and admits a Suzuki-Trotter approxima-
tion [58]. To second order in a, this has the form

eaHeven+aHodd ≈ e
a
2 HeveneaHodde

a
2 Heven . (43)

Higher-order versions of the approximation have also been
well documented and can be easily substituted where greater
precision is required [59].

Because Heven and Hodd were explicitly constructed to be
sums of mutually commuting terms, each exponential on the
right-hand side of Eq. (43) is now in the same Kronecker sum
form as we had in the case of on-site operators, and each can
therefore be equivalently expressed as a single tensor product
of operations acting on the entire state at once, in the manner
of Eq. (33). This is graphically depicted in Fig. 3. Hence, by
applying the three exponentials from Eq. (43) in sequence, we
can easily calculate the expectation value that represents the
moment-generating function.

From this point, evaluating the expectation value is no
different than the case of on-site operators. The bulk of the
numerical costs are therefore essentially the same for both
the on-site and many-body operator, with only one difference:
applying these layers of exponential operators will increase the
bond dimension of the system, and the size of these bonds may
need to be “truncated” by some approximation scheme to keep
the system numerically tractable. This, however, is a common
practice in the field of MPS algorithms, and is easily done by
means of a Schmidt decomposition (see for example [16]).

While our example considered an operator with k = 2, that
is, two-body interactions which could be partitioned into two
internally commuting classes, the technique easily generalizes
to larger interactions. The Suzuki-Trotter approximations, for
example, can be iteratively applied to an operator eA+B+C by
first approximating eA+(B+C) in terms of eA and eB+C , and
then approximating eB+C .

The ability to calculate moments and cumulants for an
operator with many-body terms has a particularly useful
application in the world of numerical state estimation. A
common goal of tensor network algorithms is the calculation
of an approximate numerical ground state, from a given
Hamiltonian H . These algorithms are typically iterative in
nature, gradually refining the approximation as the energy

E tends towards E0. It is therefore often important to have
a means of actively checking this convergence during the
course of the algorithm. The variance (second cumulant) of
the Hamiltonian 〈�H 2〉 = 〈H 2〉 − 〈H 〉2 is well suited to this
task [2]. For ε =

√
〈�H 2〉, there will be an exact eigenvalue

Eex within ε of the approximate energy E. In other words

|E − Eex| � ε. (44)

In the case of finite systems, the quantity ε can be directly
computed from the methods above, and can therefore be
directly used as an error bound on the calculated energy of the
system. For the infinite case, there is a small subtlety: one does
not compute the total energy of the system, since this is infinite,
but rather the energy per site E/L. Consequently, a proper
“error bound” on the measurement would not be ε, but ε/L =√

〈�H 2〉/L. This quantity, unfortunately, is inaccessible using
the techniques above, since the cumulant generating function
on the infinite system gives only 〈�H 2〉/L. However, one
would still expect the latter number to be monotonically related
to the true error. Alternatively, as we will discuss in the next

section, the related quantity
√

〈�H 2
I 〉/� can be evaluated on

a finite interval of length �. Hence in either case, we can
derive something which gives a sufficient criterion for halting
a converging algorithm like TEBD or iTEBD. Although ε (in
the finite case) or 〈�H 2〉 (for the infinite) are not guaranteed
to be small as soon as the energy has converged, if we iterate
our algorithms until they are very small, we can be assured
that the approximate ground-state energy is very close to the
true value E0.

In [2] a dynamically programed algorithm was given for
computing 〈�H 2〉 in the context of a finite matrix product
state. The method presented here performs at least as efficiently
as that case, with the advantage that it can also be applied
to infinite (or indeed, higher-dimensional) systems. In [43],
the same quantity was presented and evaluated by means
of an MPO. As discussed above, the MPO technique can in
principle be used as an alternative method to compute other
moments and cumulants as well, at the cost of allowing the
bond dimension to increase. The MPO techniques will also
have an advantage in the case of an operator with nonlocal
characteristics or other properties that make Suzuki-Trotter
decomposition impractical.

For the case of the energy cumulant, our method is also
particularly well suited for use with the TEBD/iTEBD algo-
rithms. We have previously remarked that for a Hamiltonian H ,
the calculation of the associated moment-generating operator
eaH is essentially identical to an imaginary time-evolution
operator with a time step of δt = a. Each iteration of this
algorithm therefore amounts to calculating eaH |ψ〉, from
which the moment-generating function F (a) = 〈eaH 〉 can
easily be computed. If one also computes F (−a) = 〈e−aH 〉,
the error bound can therefore be computed very efficiently up
to order a2 in accordance with Eqs. (26) and (27).

Performing this check at regular intervals throughout the
evolution offers a halting condition to certify convergence of
the energy. In some respects, this convergence criterion is
superior to the typical methods, which often signal a halt
when δE, the change in the approximate energy between
two successive iteration steps, drops below some minimum
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value. Such a method can occasionally give a false sense
of convergence when the algorithm “stalls out” and begins
evolving only very slowly, despite remaining some distance
from the ground state. The variance of the energy provides
information not about the convergence of the algorithm but of
the energy itself, by identifying when the system is very close
to an exact eigenstate (however, in some cases care must be
taken that the nearby eigenstate is in fact the ground state, and
not some excitation). More details about convergence schemes
can be found in Appendix B.

C. Evaluating generating functions on an infinite matrix
product state

At first glance it may seem that moment-generating tech-
niques discussed above cannot be applied to infinite systems,
since the value of a quantity like M = ∑∞

j Oj is clearly
diverging, and only related limits like

〈M〉 = lim
L→∞

1

L

∞∑
j

〈Oj 〉 (45)

are well defined. In this situation, however, while the moment-
generating function F defined above may diverge, one can still
define and calculate the related quantity

F∞ = lim
L→∞

〈eaM〉1/L. (46)

As discussed in Sec. III, quantities of this form can in fact be
computed quite naturally. Using Eq. (21) (see Fig. 2), clearly
we have

F∞ = lim
L→∞

〈eaM〉1/L = λ1

λ̃1
. (47)

In other words, the desired quantity is simply the largest
eigenvalue of the transfer matrix associated with the state and
operator in question. Hence by defining

lF∞(a) = log F∞(a), (48)

we find that we have access to the per-site limits of the
cumulants even in the infinite case. In the same manner as
with finite systems, they are given by the derivatives of lF∞
with respect to a,

l
(n)
F∞(a) = lim

L→∞
1

L
κn + O(a). (49)

We shall comment briefly on some practical considerations
that are important when evaluating lF∞ for a real matrix product
state. First, algorithms for generating the states which are based
on the iTEBD principle are likely to require the use of a two-
site unit cell, even if the state is expected to possess only
one-site translation invariance, as a result of the two-body
nature of most parent Hamiltonians. In this case, of course, a
two-site transfer matrix is required (� = 2), and we must take
a square root of its largest eigenvalue in order to recover the
correct per-site limit.

Additionally, we observe that for the second cumulant in
particular, it can be particularly desirable to calculate using
the characteristic function G = 〈eiaM〉 instead of F . This is

because one can then take advantage of the fact that

lim
L→∞

1

L
κ2 = lG∞(a) + lG∞(−a) + O(a2)

= log G∞(a) + log G∞(−a).

Then, combining the two log terms and observing that
G∞(−a) = G∞(a)∗, we have

lim
L→∞

1

L
κ2 = log[|G∞(a)|2] + O(a2). (50)

In other words, we can calculate the per-site second
cumulant up to second order in a by evaluating G∞(a)
only once, and without directly computing any numerical
derivative.

Note that, although this method gives access to the per-site
limit of cumulants on an infinite system out to arbitrary order,
the typical definition of the Binder cumulant, as a rational
function of moments, cannot be computed in this way without
encountering a divergence. When the Binder cumulant is being
studied for its finite-size scaling properties, this difficulty is
often immaterial. In another case, however (such as when the
limiting value of the Binder cumulant itself is the quantity of
interest), we refer the reader to a recent and inventive MPO
technique which can be used to access the cumulant directly,
see [60,61].

It should be noted also that within a system the moment
and cumulant methods can also be applied to any finite subset
of spins, for example, SI ≡ ∑

i∈I Sz
i , where I is any set of

locations. In the infinite case, it can be applied to any subset
of spins in a finite interval. For example, one can apply gates
eiaSz

1 · · · eiaSz
L to only a segment of L sites in the infinite system.

The expectation value of this, which we denote by fL(a), can
be straightforwardly calculated by the transfer matrix method,
in a manner analogous to the case of a finite state:

fL(a) = 〈vl|T Sz

L |vr〉/λ̃L
1 , (51)

where as before λ̃1 is the largest eigenvalue of the transfer ma-
trix containing only the identity TL and T

Sz

L is the generalized
transfer matrix containing the operator Sz at each site.

Of particular interest in this case, for example, are the
moments given by〈(

L∑
i=1

Sz
i

)2〉
L

= −f (2)(0) (52)

and 〈(
L∑

i=1

Sz
i

)4〉
L

= f (4)(0), (53)

from which the L-dependent Binder cumulant U4(L) can be
computed as

U4(L) = 1 − f (4)(a = 0)/[3f (2)(0)]2. (54)

This is the Binder cumulant for a segment of L spins in an
infinite chain.

Although our example discussed an operator which was a
sum of single-body terms, the technique is not so limited. In a
similar fashion, one can compute the moments and cumulants
of some finite subset of the Hamiltonian HI = ∑

i∈I hi . In this
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case, one would split the chain into two disjoint segments, I

and its complement. Then, in the same manner by which a
single step of the iTEBD algorithm was used to apply required
operator eiaH in the infinite case, so too can the finite TEBD
algorithm be used to apply eiaHI to the finite interval. After
this, the interval is recombined with the infinite remainder of
the state, and standard finite and infinite MPS techniques can
be used to evaluate the requisite expectation value.

D. Higher-dimensional states

Although in this work we shall be applying these tech-
niques to one-dimensional systems, there is nothing about the
procedures above that cannot be immediately generalized to
finite-sized higher-dimensional states. Consider for example
a total magnetization-type operator on a two-dimensional,
L × L square lattice, given by

M =
∑

j

∑
k

Ojk, (55)

where Ojk represents a specific operator acting locally on
site (j,k) of the lattice. Of course by representing both
j and k by some composite index J (now running from
1 to L2) we can immediately see that M is no different
than the magnetizationlike operators we considered in the
one-dimensional case

M =
∑

J

OJ , (56)

and hence that our earlier analysis goes through: the moment
generating operator eaM can still be written as

eaM =
⊗

J

eaOJ . (57)

This object is still an operator that acts only locally and whose
expectation value can be evaluated all at once (graphically
depicted in Fig. 4).

If we consider instead an operator H which contains many-
body terms (but for whom each term acts nontrivially only
on a finite number of sites), one can play the same tricks as
in one dimension, first partitioning the terms into mutually
commuting sets of terms H1,H2 + H3 · · · , then expressing the
moment-generating operator as

eaH = ea(H1+H2+H3··· ), (58)

and finally applying some form of Suzuki-Trotter approx-
imation as described above to express the operator as a
product of exponentials, each of which can be applied to the
state all at once. For nearest-neighbor interaction terms on
a square lattice, the procedure is essentially identical to the
one-dimensional case, except that one must use four classes
instead of two: two for interactions in the horizontal direction,
and two for the vertical. For operators with more complicated
terms (such as a sum of “plaquettes”), the number of partitions
may be larger, but in general the costs do not grow rapidly
despite the increase in system dimension.

Hence, in either case, the associated moment-generating op-
erators can be disentangled into tensor products or sequences
of tensor products, even in higher dimensions. Simply put, the
essential “power” of the moment-generating function method

A1,1 A2,1 

A1,2 A2,2 

eaO1,1 eaO2,1

eaO2,2eaO1,2

FIG. 4. (Color online) The moment-generating operator eaM for
an operator of the form M = ∑

j

∑
k Ojk , applied to a two-

dimensional state on a square lattice. As in the one-dimensional case,
the locality of each term in M ensures the locality of the terms in eaM ,
and hence, the moment-generating operator can still be evaluated all
at once, by applying the appropriate on-site operator at each lattice
site.

is the fact that the moment-generating operator eaM of a local
operator M is itself a local operator, and this fact is unchanged
regardless of the dimensionality of the system.

Once the moment-generating operator has been expressed
as a tensor product and applied to the state, it still remains to nu-
merically contract the tensor network. It is at this stage where
things become more difficult than in the one-dimensional case,
since computing the expectation value of any operator on a
higher-dimensional tensor network state can be quite hard.
Exact calculation has been shown to be exponentially costly in
L (in particular, it is a #P-hard problem [62]). Nevertheless, a
wide variety of numerical techniques have been developed to
approximate these contractions efficiently with minimal errors,
the details of which are outside the scope of this paper (see
for example Refs. [20,63–67]). We do caution, however, that
in our experience, the higher the order of the moment, the
higher the sensitivity of the result to the errors introduced by
approximate contraction.

V. EXAMPLES

A. Spin-1/2 transverse Ising model

As has become almost customary, we begin by demon-
strating our technique in the context of the widely studied
transverse Ising model; a chain of spin-1/2 particles governed
by the Hamiltonian

H = −
L∑
j

σ x
j σ x

j+1 + Bσz
j . (59)

This model is a useful proving ground as it has been
extensively studied and admits a well-known analytical so-
lution [68,69], as well as possessing a straightforward order
parameter of Mx = ∑

j σ x
j , the total magnetization in the

x direction. We can therefore test our techniques by using
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FIG. 5. (Color online) A Binder cumulant study of the transverse
Ising model. The cumulants are computed for different system sizes
across a range of values for the transverse field B (some intermediate
system sizes have been suppressed for clarity of the figure). Crossing
points are interpolated for successive pairs of curves, i.e., L = 10
and L = 15. These crossing values can then be seen to approach the
known value of the critical field Bc = 1 (inset). The BST algorithm
is used to extrapolate these values to the infinite limit, which gives
Bc = 1.001(1).

them to study the phase transition known to occur exactly
at Bc = 1. To apply the Binder cumulant technique, we first
use a numerical method to find the ground state by solving
the generalized eigenvalue problem [2]. We consider system
lengths between L = 10 and L = 45 in steps of five, using a
bond dimension of χ = 10 (we verify that increasing the bond
dimension does not change the results of the methods up to
our working precision). For each system length, ground states
of the Hamiltonian in Eq. (59) are computed as we sweep over
a range of values for the field coefficient B. Then for each
value of L and B, we compute the Binder cumulant using the
methods described above, by first computing μ2 and μ4 by
means of the moment-generating function.

As shown in Fig. 5, the crossings of the Binder cumulants at
various lengths are already clustered very close to the transition
point, even though the lengths of the states are relatively short
compared to the thermodynamic limit. But the location of
the critical point can be computed to even greater accuracy
by considering the pattern of successive crossings. These
crossings show a clear trend towards a limiting value as the
system sizes increase. This limiting value can be estimated
by means of the BST algorithm [70], which has been found
to be a very powerful tool for estimating the infinite limit of
a series of data based on finite size corrections which obey
a power law, even from a relatively small number of data
points [71]. From this extrapolation, we estimate a critical
point of Bc = 1.001(1). Here and elsewhere, the reported
uncertainty in our extrapolation represents an estimate of the
typical uncertainties in the location of the crossing points,
propagated through the BST algorithm. Much more detail
about the BST technique can be found in Appendix A.

The critical point of the Ising model can be probed directly
through the higher-order cumulants of the order parameter, as
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FIG. 6. (Color online) Per-site value of the second cumulant of
the longitudinal magnetization 1

L
〈�M2

x 〉 = 1
L

(〈M2
x 〉 − 〈Mx〉2), for the

transverse Ising model. The cumulant is plotted for various finite
system sizes, plotted against a range of applied fields. As the system
length increases, the behavior tends towards the infinite limit (inset).
In the limit, the cumulant diverges at the critical point.

well. Through the techniques above, these can be calculated
from the finite systems at various system sizes. Alternatively,
we can calculate a ground state for the infinite system through
the iTEBD algorithm (in this case using a bond dimension of
χ = 20) and then calculating the second cumulant directly.
Both procedures are showcased in Fig. 6. The behavior in the
infinite case can be seen to agree with the limiting trend of the
finite systems as the length is increased. The cumulant can be
seen to become singular near the critical point, and can also
be used to detect the transition. Using this method we estimate
Bc = 1.00(1).

This technique can also be applied to the magnetization
in the transverse direction, Mz = ∑

j σ z
j . In this case, it is

the derivative of the cumulant which becomes singular in the
thermodynamic limit to signify the critical point. Again, the
results from the finite chains can be seen trending towards
the infinite limit. In this case, the expected behavior in the
thermodynamic limit can also be calculated analytically in
this case by using the known form of the Ising model wave
functions. The cumulant as a function of the applied field B is
found to be

〈
�M2

z

〉/
L =

{
1 : B � 1

1/B2 : B > 1
. (60)

This numerical data (see Fig. 7) are in agreement with this
expression to a very high degree of accuracy.

The critical exponent of the correlation length of the model
can also be studied by means of the Binder cumulant. Once
the critical point has been estimated, the curves of U4 can then
be plotted against L1/ν(B − Bc) for various values of ν. At the
true critical exponent, the data should “collapse” to a single
functional form independent of L, as seen in Fig. 8.

Additionally, we can use this model to consider the
scaling of the Binder cumulant with the correlation length, by
employing the procedure outlined above to compute moments
and cumulants on a finite subblock of an infinite state. From
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FIG. 7. (Color online) Second cumulant of the transverse mag-
netization 〈�M2

z 〉 = 〈M2
z 〉 − 〈Mz〉2, for the transverse Ising model

(computed per site). The cumulant is plotted for various finite system
sizes, plotted against a range of applied fields. As the system length
increases, the behavior tends towards the infinite limit (inset) where
the derivative of the cumulant shows a discontinuity at the critical
point. This behavior is in excellent agreement with the analytical
result for the thermodynamic limit, that 〈�M2

z 〉/L = 1 for B < 1
and 1/B2 for B > 1.

this, the so-called “critical Binder cumulant” U ∗
4 (the limiting

value of the cumulant at the critical point) can be extracted.
As suggested by McCulloch [72], we can evaluate U4(L)
close to the critical point with the choice that L ≈ 10ξ for
a number of bond dimensions χ . Choosing a subblock of this
size should allow us to see the desired scaling behavior while
suppressing the finite-χ corrections to the cumulant. This can
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FIG. 8. (Color online) The Binder cumulants for the transverse
Ising model, plotted for a variety of system sizes as a function of
L1/ν(B − Bc), for the known values ν = 1 and Bc = 1. As expected,
for these values the curves are seen to collapse to a functional form
essentially independent of the length scale. This property can be used
to estimate the values of the critical point and the critical exponent
by treating them as fit parameters and optimizing the collapse.
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FIG. 9. (Color online) The Binder cumulants for a finite subblock
of the infinite transverse Ising model, plotted for a variety of bond
dimensions χ . For each bond dimension, the apparent correlation
length of the ground-state ξ is used to set the size of the block. The
scaling behavior of these blocks as χ increases gives an alternative
method for identifying the critical point, as well as allowing an
estimate of the critical Binder cumulant (Bc = 0.998 and U ∗

4 = 0.57
for this data).

then be computed over a range of transverse field values B,
and the resulting Binder cumulant vs B curves for different
bond dimensions should cross approximately near the critical
point and at approximately the value of U ∗

4 [72].
A simple demonstration of this, using bond dimensions

from χ = 2 to χ = 8, can be seen in Fig. 9. Despite the
fact that the bond dimensions are so small, this alternative
scaling already gives a crossing of Bc ≈ 0.998. The value
of the cumulant at the crossing point (the so-called “critical
Binder cumulant”) is U ∗

4 ≈ 0.57.
Finally, we can use this model on a finite lattice to

demonstrate the utility of the energy variance 〈�H 2〉 in
assessing numerical convergence, as described above. Starting
from a random state with L = 10, we apply the TEBD
algorithm with the transverse Ising Hamiltonian and evolve
towards the ground state, over a range of field strengths B. As
shown in Fig. 10, the results are initially somewhat noisy when
compared to the analytical E vs B curve, which is reflected
by the large error bars computed from 〈�H 2〉. However, as
the algorithm continues, these error bars shrink and eventually
become essentially zero, signaling the complete convergence
of the energies.

B. Spin-1 transverse Ising model

We consider next the spin-1 generalization of the Ising
model, with Hamiltonian

H = −
L∑
j

Sx
j Sx

j+1 + BSz
j . (61)

Here we have simply replaced the spin-1/2 Pauli matrices
from Eq. (59) with their spin-1 counterparts. This model is
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FIG. 10. (Color online) The energy of the spin-1/2 transverse Ising model on a chain of length 10 is calculated using approximate ground
states generated by the TEBD algorithm (χ = 20). The numerical data (points) are plotted alongside the exact solution (line). Error bars are
calculated from ε =

√
〈�H 2〉, with 〈�H 2〉 the second cumulant of the energies. (a) After 10 steps, the energies are still noisy and the error

bars are quite large. (b) After 100 steps, the error bars have clearly decreased, and are largest for the points with the largest discrepancies from
the exact solution. (c) By 1000 steps, most error bars are within the size of the data points, and the approximate energies are very close to the
known analytical result.

of interest because unlike the spin-1/2 case, it has no exact
analytic solution. Nevertheless, in the thermodynamic limit
the magnetization is qualitatively similar to the spin-1/2 case.
Notably, it still displays a quantum phase transition at a critical
value of the transverse field, which has been studied by various
numerical methods [73,74]. The accepted value for this critical
field is Bc = 1.326 [73].

We study this transition point with the same techniques
as before, calculating the Binder cumulants from the second
and fourth moments of the x magnetization for various system
sizes (Fig. 11). The ground states are calculated using the same
finite MPS technique and with a bond dimension of χ = 20.
The successive crossings are then compared and a limiting
value extrapolated using BST. In this case, we compute an
estimate of the transition at Bc = 1.327(1).
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FIG. 11. (Color online) A Binder cumulant study of the spin-1
transverse Ising model. As above, the cumulants are computed for
different system sizes across a range of values for the transverse
field B (some intermediate system sizes have been suppressed for
clarity of the figure). Crossing points are interpolated for successive
pairs of curves, i.e., L = 10 and L = 15, and the BST algorithm
is used to extrapolate these values to the infinite limit, which gives
Bc = 1.327(1).

Once again it is also constructive to consider the second cu-
mulant on its own. Numerical calculations of the magnetization
for this model invariably show some finite size effects around
the transition, producing a finite “tail” near the transition point,
which makes an exact determination difficult using the order
parameter alone [75]. But the transition appears much more
sharply as a singularity when we consider the second cumulant,
as in Fig. 12 (higher cumulants such as κ4 can also be used for
this purpose). From this quantity we obtain Bc = 1.324(2), an
estimation which is to within less than 0.2%.

As before, we can also study the critical exponent ν, known
for this model to be the same as the spin-1/2 case, ν = 1. As a
proof of principle, the “data collapse” for the known values of
ν and Bc are shown in Fig. 13. As expected, for these values
the curves are seen to collapse to a functional form essentially
independent of the length scale. This property can be used to
estimate the values of the critical point and the critical exponent
by treating them as fit parameters and optimizing the collapse.
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FIG. 12. (Color online) Per-site value of the second cumulant
of the longitudinal magnetization 1

L
〈�M2

x 〉 = 1
L

(〈M2
x 〉 − 〈Mx〉2),

computed for the spin-1 Ising model. The cumulant is calculated
for an infinite system directly.
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FIG. 13. (Color online) The Binder cumulants for the spin-1
transverse Ising model, plotted for a variety of system sizes as a
function of L1/ν(B − Bc), for the known values ν = 1 and Bc =
1.326. The length independence of the curves allows this technique
to be used as a means to estimate both ν and Bc

C. Spin-1 Ising model in crystal field

For another application we consider also a variation on the
spin-1 Ising model, where the usual transverse field has been
replaced by a quadratic, crystal field term, to give the following
Hamiltonian:

H = −
L∑
j

Sx
j Sx

j+1 + B
(
Sz

j

)2
. (62)

This variation of the spin-1 model admits a mapping to
the spin-1/2 case (cf. [76]), from which the critical point
of Bc = 2 can be analytically obtained. To compare our
method, we perform the same numerical calculations as above:
first generating ground states at various finite lengths using
MPS methods with a bond dimension of χ = 10, and then
computing the Binder cumulants. From the Binder curves (see
Fig 14) we once again perform the BST extrapolation of the
successive crossings to arrive at an estimate of Bc = 1.999(1).

Direct examination of the second cumulant in the infinite
system is also still a viable method for estimating the
transition point. In this case, the location of the maximum
gives Bc = 1.996(1) (see Fig. 15). As before, it also remains
possible to study the critical exponent ν and critical field value
simultaneously by seeking to collapse the data to its universal
behavior as a function of L1/ν(B − Bc) (Fig. 16).

D. Spin-1/2 Ising model on a 2D lattice

Finally, as a proof-of-principle, we briefly demonstrate
the application of these methods to a two-dimensional (2D)
system: the spin-1/2 Ising model on a 2D square lattice. This
system is described by the Hamiltonian

H = −
∑
j,k

σ x
j,k

(
σx

j+1,k + σx
j,k+1

) + BSz
j,k, (63)
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FIG. 14. (Color online) A Binder cumulant study of the spin-1
transverse Ising model with crystal field. As above, the cumulants
are computed for different system sizes across a range of values for
the transverse field B (some intermediate system sizes have been
suppressed for clarity of the figure). Crossing points are interpolated
for successive pairs of curves, i.e., L = 10 and L = 15, and the BST
algorithm is used to extrapolate these values to the infinite limit,
which gives Bc = 1.999(1).

where the subscripts are understood to terminate at the
boundary of the system. As discussed above, the study
of two-dimensional systems with tensor network states is
considerably more involved than the study of one-dimensional
systems. More elaborate methods must be undertaken to
numerically approximate the ground states, and elaborate
approximation schemes must be used in order to calculate
expectation values, which are otherwise prohibitively costly
in time and memory. A detailed and high-precision study of
the critical point of this model is therefore beyond the scope
of this paper (see instead [20]). Nevertheless, we include the
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FIG. 15. (Color online) Per-site value of the second cumulant
of the longitudinal magnetization 1

L
〈�M2

x 〉 = 1
L

(〈M2
x 〉 − 〈Mx〉2),

computed for the spin-1 Ising model with a transverse crystal field.
The cumulant is calculated for an infinite system.

115103-13



COLIN G. WEST, ARTUR GARCIA-SAEZ, AND TZU-CHIEH WEI PHYSICAL REVIEW B 92, 115103 (2015)

−3 −2 −1 0 1 2 3

0.4

0.45

0.5

0.55

0.6

L1/ν(B−B
c
)

U
4

 

 

L=10

L=20

L=30

L=40

L=50

FIG. 16. (Color online) The Binder cumulants for the spin-1
Ising model with crystal field, plotted for a variety of system sizes as
a function of L1/ν(B − Bc) for the known values ν = 1 and Bc = 2.
As expected, for these values the curves are seen to collapse to a
functional form essentially independent of the length scale.

following rough estimation in order to demonstrate how easily
the moment-generating function method can be generalized to
higher-dimensional states, as well as to underscore the utility of
Binder cumulant techniques even for data calculated relatively
cheaply.

To this end, we generate approximate ground states for
the model, using a simple method of local updates (a 2D
generalization of TEBD) and the smallest nontrivial bond
dimension χ = 2. To check the behavior, we consider the order
parameter

M =
∑
j,k

σ x
j,k. (64)

Then, as in the one-dimensional case, we compute the
Binder cumulant of the order parameter across a range of
applied fields, for systems of size L × L up to L = 12, and
observe the crossings (Fig. 17). The largest crossing we are
able to compute, between L = 10 and L = 12, occurs at
B = 3.11(1), which is already reasonably accurate compared
to the accepted value of Bc = 3.044, as calculated by quantum
Monte Carlo [77]. A BST extrapolation of the data gives
Bc = 3.3(2), a crude estimation but with relatively large
error bars, owing largely to the fact that only three crossing
values have been used in the extrapolation. We note also
that, unlike the case of one-dimensional systems, the Binder
crossings for two-dimensional systems are not necessarily
converging monotonically and hence may not necessarily
admit an easy extrapolation. Instead, greater precision could
likely be obtained through the use of more sophisticated two-
dimensional methods (or additional computational resources)
to study the crossings for slightly larger system sizes.

VI. SUMMARY

In this paper we have presented a method for efficiently cal-
culating the higher-order moments and cumulants of general

2.8 2.9 3 3.1 3.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

B

U
4

 

 

L=6

L=8

L=10

L=12

FIG. 17. (Color online) A rough Binder cumulant study of the
spin-1/2 transverse Ising model on a square lattice, using a local-
update numerical algorithm with bond dimension χ = 2. As in the
one-dimensional case, the cumulants are computed for different
system sizes across a range of values for the transverse field B.
The largest crossing point, between L = 10 and L = 12, is at
B = 3.11(1). Extrapolating to the infinite limit gives Bc = 3.3(2),
though this cannot be done with high reliability on such a limited
data set (see text).

operators on systems represented by tensor network states. For
finite systems, this capability has a variety of applications in the
search for phase transitions in quantum systems. Chief among
these is the calculation of the celebrated “Binder cumulant,”
which provides a powerful tool for not only detecting phase
transitions, but determining their location to a high degree of
accuracy using only relatively small finite systems to probe the
infinite limit. The finite size scaling of the Binder cumulant also
provides an estimate of the critical exponent of the correlation
length. Although the second cumulants of Hamiltonians have
been considered in the context of matrix product states, to our
knowledge, critical point detection techniques based on the
Binder cumulant (or cumulants in general) have not generally
been put to use in studies based on tensor networks, despite
being widely applied to classical systems and quantum Monte
Carlo studies. It is our hope that the methods presented in this
paper will allow them to be embraced by the tensor network
community as well.

In the case of infinite systems, we also present a method
to calculate the per-site limits of the cumulants efficiently as
well. The higher cumulants of an order parameter often show
sharp behavior at the critical points, which in many cases
allows for easier detect than the changes in the order parameter
itself. In particular, we show how singularities in the second
cumulant can produce a relatively precise (computationally
cheap) estimation of the location of the transition. All the
techniques (finite and infinite) are demonstrated in the context
of the transverse Ising model, the spin-1 transverse Ising
model, the Ising model in a crystal field, and could easily
be applied to other models. We also demonstrate a useful
application of the second cumulant of the energy. This quantity,
which we calculate for both finite and infinite systems,
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provides a useful sufficient condition to determine when a
numerical ground-state estimation algorithm has converged.
As we demonstrate in the context of the Ising model, it can
identify convergence up to a very high level of precision.

Finally, we present a proof-of-principle demonstration of
the methods as applied to the transverse Ising model on a
square lattice. Our result demonstrates that the methods for
computing moments and cumulants are easily generalized to
states in two dimensions or higher. Precise calculation of the
moments and cumulants of a such a system may be more
difficult, since state preparation and the process of computing
expectation values are themselves much more complicated in
higher dimensions. However, the central idea of our method
on its own remains just as straightforward as in one dimension.

During the preparation of this work, it was brought to our
attention that a technique based on matrix product operators
(MPOs) has also been suggested as an alternative method for
evaluating cumulants and moments, particularly in the context
of the second cumulant of the energy and its use as a conver-
gence check. We believe both methods have complimentary
strengths and weaknesses, depending on the context in which
they are applied.
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APPENDIX A: EXTRAPOLATION WITH THE BST
ALGORITHM

We now briefly overview the Bulirsch-Stoer extrapolation
scheme, commonly referred to as the “BST” algorithm (the
meaning of the “T” in this acronym has evidently been lost
to time). This method was introduced in [70] in the context
of differential equations, but has been widely adopted as an
extrapolation scheme whenever one seeks to project a sequence
of data with unknown functional form to its infinite limit. In
particular it has become a useful tool for finite-size scaling
techniques, and was studied extensively in the context of lattice
models in [71].

The BST algorithm assumes that we are attempting to
extrapolate to a limiting value for an infinite system, which
is subject to power-law corrections when approximated by a
finite size. For example, suppose we have a sequence of critical
field values which are approximants to the true value of the
critical field in the infinite system: {B(L1),B(L2), . . . ,B(LN )},
which approach B∞ ≡ B(L → ∞). The BST algorithm ap-
plies when, for each estimate B(L), B∞ − B(L) = P (L) for
some fixed (but unknown) polynomial P . This pattern of
power-law corrections has generally been found to be true
in the case of Binder cumulants [78,79].

The technique works by taking the initial sequence
{α(0)

1 ,α
(0)
2 , . . . ,α

(0)
N } and using it to construct a new sequence,

{α(1)
1 ,α

(1)
2 , . . . ,α

(1)
k−1} whose convergence towards the infinite

limit has been accelerated, so that α
(1)
N−1 is in fact a better esti-

mate than α
(0)
N . For clarity, note that we are using parenthetical

superscripts to label the sequence, and subscripts to enumerate
the terms within a sequence.

The terms in this new sequence are defined as follows:

α
(j+1)
k ≡ α

(j )
k+1 + α

(j )
k+1 − α

(j )
k(

Lk+1

Lk

)ω
(

1 − α
(j )
k+1−α

(j )
k

α
(j )
k+1−α

(j−1)
k+1

)
− 1

. (A1)

Note that, since the denominator of Eq. (A1) makes
reference to the sequence α(j−1), it is necessary to define the
sequence {α(−1)} to handle the initial step of the algorithm
in which j = 0. To that end, one simply takes α

(−1)
k = 0 for

all k.
This procedure can then be repeated, taking the sequences

α(0) and α(1) as the inputs to generate α(2), and so on. This
iteration can be done at most N − 1 times, at which point the
resulting sequence α(N−1) contains only one term. This term
is the BST algorithm’s best estimation of the infinite limit of
the original sequence.

The parameter “ω,” which appears as the exponent on the
length scales, is a free parameter in the algorithm. The value
of ω which gives the best convergence will depend on the form
of the power law corrections in the original sequence, which is
generally unknown. Hence, in practice, a range of parameters
must be considered, selecting the one which best optimizes
the convergence. To this end, note that a rough estimate of the
“precision” of the sequences can be made by

�
(j+1)
k = 2

∣∣α(j )
k − α

(j )
k+1

∣∣. (A2)

This value should be decreasing with each iteration if the
procedure is correctly accelerating the convergence of each
new sequence. The final value of this estimator �final = �

(N−1)
1

gives a convenient way to fix the free parameter ω: we simply
repeat the algorithm while varying ω, and choose the one which
minimizes �final. In practice it has often been observed [80]
that the dependence of the estimations on ω is rather weak,
with large ranges of values giving comparable results. In other
words, it is often more important simply to avoid a “bad”
value of ω than to try to find its absolute “best” value. In our
work we have used as our procedure a sweep over the range
ω ∈ (0,2], testing with steps of size 0.1. We also require that
our extrapolation be “stable” under small variations in ω.

We note that the value of �final cannot be used as a complete
measure of the error in a final estimation. It is a measure of
the internal consistency and the precision of the acceleration
in the BST algorithm, but cannot contain any information
about whether the algorithm has captured the “true” functional
form of the finite-size corrections. Additionally, it does not
reflect the propagation of errors on the data which are being
extrapolated. A very small and stable value of �final indicates
that the algorithm is extrapolating the data to the best of
its capability given its assumptions and the finite number of
input points. It does not necessarily indicate that the result is
extremely precise.
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In this paper, to estimate the error in a BST extrapolation, we
start with the uncertainties of the input points, and essentially
determine the propagated uncertainty empirically. In our case,
the input points are the crossings of Binder cumulant curves.
The crossings are computed by linearly extrapolating between
data points, so we generously assume an uncertainty of one
half the step size between points. The error is then estimated
by considering a “worst-case scenario” in which the first few
crossing points are perturbed downward by this amount, and
the later points perturbed upwards. We run these perturbed
points through the BST algorithm and observe the effect on
the resulting extrapolation. The size of this effect is taken to
be a rough upper bound on the total uncertainty.

APPENDIX B: COMMENTS ON CONVERGENCE
SCHEMES

When finding a ground state in an algorithm such as TEBD
or iTEBD (and indeed also DMRG and iDMRG), the function
of each iteration is to rotate the current state vector closer to
an eigenstate with a lower energy. It is therefore quite natural
and typical to define the halting condition of such a scheme
by reference to the energy of the current state. In the simplest
instance, for example, one might set a convergence threshold
of ε and then, after each step i of the algorithm, compute the
resulting change in the state’s energy, �E = Ei − Ei+1, with
the understanding that the iteration will halt if ever �E � ε.
A more sophisticated version of the same idea would be to
compute the standard deviation for the N most recent steps
instead, to make the process less susceptible to small numerical
fluctuations.

Depending upon the quantities of interest, however, and
the desired levels of precision, this type of convergence
framework may not be optimal. For one thing, as discussed
above, one must be careful of instance of “metastability” in
the energy values, which may produce periods of time during
the algorithm where the energy is changing very slowly and yet
is still far from the true ground-state value. This, in part, is the
reason why a typical iTEBD convergence scheme consists of a
set of sequential iterations, each time with a smaller imaginary
time step δτ [16], since it is quite common to see the energy
values experience a greater change after the step size is reduced
(see Fig. 18). Even with decreasing step sizes, however, it is
possible for the changes in the energy to stall into metastability.
It is here that checking the second cumulant of the energy, as
discussed in the main text, can be advantageous, since a small
value of this cumulant rules out the possibility that the current
energy is far from that of the true ground state.

It is also important to consider, however, that not all quanti-
ties will converge at the same rate. In Fig. 19, for example,
we show the results of a study of the spin-1 Heisenberg
model with a relatively large transverse field. We consider the
observables E and 〈Sx〉, as well as the entanglement entropy
S (note that the state must be put in canonical form before the
exact entanglement entropy can be directly calculated from
the tensors). After every 100 steps of evolution we compute
for each quantity the coefficient of variation [the standard
deviation divided by the mean, σ (X)/X̄] over a sample of
the previous 300 steps, to determine how much the quantities
are currently being “changed” by the algorithm. Since these
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FIG. 18. (Color online) A test of the energy convergence behav-
ior during the iTBED algorithm, as applied to the spin-1 Heisenberg
model with a transverse field. After each step, the difference in energy
compared to the previous step is plotted. The segments separated by
sharp transitions indicate the different stages of the algorithm, with
the size of the imaginary time step δτ decreased for each subsequent
stage. Because the changes in the energy can become so small during
the course of any individual stage, one might erroneously believe that
convergence had been achieved, but moving to a smaller time step
reveals that this is not so.

coefficients of variation are dimensionless, different quantities
can be compared directly in terms of their convergence. As can
be seen in the figure, the number of steps sufficient to achieve
a stable value of the energy out to a high precision is not at all
sufficient to achieve the same accuracy in the other quantities.
A study which focused on the magnetization of ground states,
for example, might be better off using the stability of the
magnetizations themselves, rather than the energies, to certify
convergence.
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FIG. 19. (Color online) A test of the convergence behavior of
E, S, and 〈Sx〉 during the iTBED algorithm, as applied to the
spin-1 Heisenberg model with a transverse field. Every 100 steps,
the previous 300 steps are sampled and the standard deviation is
computed, and then divided by the mean. The resulting coefficient
of variation is plotted in the figure above. The curve for the energy
is consistently much lower, indicating that this quantity converges
much more quickly than the others.
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FIG. 20. (Color online) A test comparing the convergence behav-
ior of the energy (left axis) and 〈�H 2〉 (right axis) during the iTBED
algorithm as applied to the spin-1 Heisenberg model with a transverse
field. The underlying data are the same as Fig. 19. Though the energy
has converged to the level of one part in 105 after approximately
1000 steps, the energy cumulant takes much longer to reach a similar
level of precision. In part, this is because the cumulant requires
evolution with smaller time steps, in order to avoid plateaus and
fully converge.

Unfortunately, it does not seem to be the the case that any
one particular quantity is universally more difficult to converge
than the others; instead, the relative convergence rates tend to
depend on the Hamiltonian being studied. Therefore, when
precision is required in more than one observable, one option
is to to perform a small convergence study first, to determine
which quantity will produce the strictest convergence across
the board. We do note, however, that since algorithms like
iTEBD operate directly on the energy of the state, the energy
is likely to be among the fastest quantities to converge, making
it a poor choice for a convergence criterion if other quantities
are desired as well. Interestingly, however, in our experience
the same is not true for the second cumulant of the energy
〈�H 2〉, which is often (though likely not always) slower to
converge than the energy (see for example Fig. 20) and which
frequently seems not to converge until other observables like
the magnetizations have converged as well. Since this quantity
can also be efficiently computed using an MPO or a cumulant
generating function, it may be a good convergence criterion
for a variety of models.

Finally, having chosen which quantity or quantities to
monitor for convergence, it remains to decide which sequence
of imaginary time steps should be used. Here, too, the optimal
choice may depend on the model being considered, and
perhaps also the bond dimension of the MPS representing
it. In general, however, the precise set of steps sizes chosen
is likely less important than it may initially appear. To see
this, consider the possible consequences of a poor choice of
convergence scheme. Either the evolution may “waste time”
with too large a time step if it winds up in a plateau, or,
if the time steps become too small too quickly, it may fail to
change the state enough to ever approach the true ground state.
Both of these problems are demonstrated in Fig. 21, in which
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FIG. 21. (Color online) The transverse Ising model on a chain of
L = 30 is studied by a basic TEBD algorithm. The initial imaginary
time step is δτ = 0.1. After every 500 steps of evolution, the step
size is decreased either by a factor of 3 (triangles) or a factor of 10
(circles). In the early stages (steps 500–1500) the low-factor scheme
is outperformed, because it spends more time stuck in local plateaus.
In the later stages, however, the large-factor scheme falls behind. The
evolution between steps 1000 and 1500 is truncated too early, before
it had locally converged, and the subsequent time steps are too small
to cause a meaningful change in the state.

we compare two different convergence schemes. Both begin
with an initial step size of δτ = 0.1, and in each case, after a
fixed number of steps, the step size is decreased by a constant
reduction factor. At early stages, it seems to be a problem to
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FIG. 22. (Color online) The transverse Ising model on a chain
of L = 30 is studied by a basic TEBD algorithm. In contrast with
the convergence scheme used in Fig. 21, here we use the coefficient
of variation from the 30 most recent points to determine when to
move on to a smaller step size. The result is that unnecessary plateaus
are largely avoided, and no time step is terminated before it has
finished producing a useful change in the state. As a result, the energy
cumulant 〈�H 2〉 is always quite similar regardless of the step size.
The final energy computed for the ground state differs by less than one
part in 107.
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use a small reduction factor, since the evolution quickly get
stuck in a plateau at each stage. In the later stages, however,
where the time steps are small, we see how a large reduction
factor can cause problems as well, since the step size quickly
becomes too small to produce any meaningful change.

Both of these problems, however, can be viewed not as the
result of improper step sizing, but rather as the result of the
fact that we used a fixed number of steps at each stage. If we
employ a convergence check of the kind described above (for
example, computing the coefficient of variation of the 30 most
recent points) and move on to the next size time step whenever
the data have locally converged, the differences in the two
algorithms largely disappear (see Fig. 22). Time is no longer
wasted in plateaus, since a new step size is triggered whenever
the data have stopped changing significantly. On the other
hand, the small time steps are never employed prematurely
because the algorithm does not move on to a smaller step

until the current step has outlived its usefulness. Hence, by
requiring local convergence before changing the size of the
time step, the differences between different sets of step sizes
can be largely “smoothed out.” Although there may be small
advantages to a particular scheme in the context of a specific
Hamiltonian, in general any set of step sizes that contains some
intermediate-sized points can be successful (in practice, this
likely means reduction factors between roughly 2 and 10).

Finally, we note that of course, in any convergence scheme,
it must be remembered that the calculations involved in a
convergence check can themselves contribute substantially to
an algorithm’s run time, and one must take care to balance
this against the desire to run in an optimal number of steps. In
practice, the most important feature of an algorithm is likely the
amount of real-world time taken to reach the desired level of
precision, and the sophistication and frequency of the conver-
gence checks can be relaxed if they are at odds with this goal.
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