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We develop a theory for electron-electron interaction-induced many-body effects in three-dimensional Weyl or
Dirac semimetals, including interaction corrections to the polarizability, electron self-energy, and vertex function,
up to second order in the effective fine-structure constant of the Dirac material. These results are used to derive
the higher-order ultraviolet renormalization of the Fermi velocity, effective coupling, and quasiparticle residue,
revealing that the corrections to the renormalization group flows of both the velocity and coupling counteract
the leading-order tendencies of velocity enhancement and coupling suppression at low energies. This in turn
leads to the emergence of a critical coupling above which the interaction strength grows with decreasing energy
scale. In addition, we identify a range of coupling strengths below the critical point in which the Fermi velocity
varies nonmonotonically as the low-energy, noninteracting fixed point is approached. Furthermore, we find that
while the higher-order correction to the flow of the coupling is generally small compared to the leading order,
the corresponding correction to the velocity flow carries an additional factor of the Dirac cone flavor number (the
multiplicity of electron species, e.g. ground-state valley degeneracy arising from the band structure) relative to
the leading-order result. Thus, for materials with a larger multiplicity, the regime of velocity nonmonotonicity is
reached for modest values of the coupling strength. This is in stark contrast to an approach based on a large-N
expansion or the random phase approximation (RPA), where higher-order corrections are strongly suppressed
for larger values of the Dirac cone multiplicity. This suggests that perturbation theory in the coupling constant
(i.e., the loop expansion) and the RPA/large-N expansion are complementary in the sense that they are applicable
in different parameter regimes of the theory. We show how our results for the ultraviolet renormalization of
quasiparticle properties can be tested experimentally through measurements of quantities such as the optical
conductivity or dielectric function (with carrier density or temperature acting as the scale being varied to
induce the running coupling). Although experiments typically access the finite-density regime, we show that our
zero-density results still capture clear many-body signatures that should be visible at higher temperatures even
in real systems with disorder and finite doping.
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I. INTRODUCTION

Three-dimensional (3D) Weyl-Dirac semimetals, materials
that possess one or more Dirac points at which two bands in
the bulk touch with a linear dispersion E±(�k) = ±�vF |�k|, have
been of great interest in recent years. These materials may be
thought of as three-dimensional analogs of graphene or as solid
state (and nonrelativistic, i.e., the velocity of light is taken to be
infinite so the bare Coulomb interaction is unretarded although
there is a static background lattice dielectric constant reducing
the overall value of the Coulomb coupling) incarnations of
relativistic quantum electrodynamics since they are described
by quasirelativistic fermions with Coulomb interactions at low
energies. Dirac semimetals were first theorized long ago by
Herring [1] and by Abrikosov and Beneslavskiı̆ [2]. More
recently, these materials have attracted considerable attention
not only because they host a system of interacting massless
Dirac quasiparticles, but also due to the fact that they lie at the
intersection of many interesting topological phases of matter.
This observation has driven a concerted effort to identify
theoretically materials that possess symmetry-protected Dirac
points in the bulk [3–11]. Different topological states can
be realized by breaking certain symmetries; for example,
breaking inversion symmetry lifts the Dirac cone degener-
acy, giving rise to Weyl semimetals [3,4,6,10,11], materials
which exhibit anomalous transport properties [12–19] and

topologically protected Fermi arc states on their sur-
face [3,20,21]. Over the last two years, numerous experimental
works have confirmed that certain materials such as Na3Bi
and Cd3As2 are Dirac semimetals by directly observing Dirac
cones in the bulk [22–27] and Fermi arcs on the surface [28].
Many additional works observing and elucidating transport
properties [29–38] and phase transitions [39–49] in Dirac
semimetals have appeared. Even more recently, the first
Weyl semimetals were discovered experimentally [50–52],
with evidence for Fermi arcs [52] and the unusual transport
signatures they entail [53–55]. The theory developed in this
work applies equally well to both Dirac and Weyl systems
[i.e., chiral linearly dispersing gapless 3D systems with filled
(empty) valence (conduction) bands touching at singular Dirac
points], and we refer to both as Dirac systems from now on in
this paper. The number of such Dirac points (e.g., from possible
valley degeneracy in the system arising from band-structure
effects) or, equivalently, the number of Dirac cones defines
the number of flavors or multiplicity (N ) giving the ground-
state degeneracy (excluding the spin degeneracy for a Dirac
material or due to there being two separate cones per flavor in
a Weyl material) which would play an important role in the
theory.

A crucial feature of interacting Dirac materials is the
field-theoretic many-body renormalization of the quasiparticle
properties, i.e., the Fermi velocity, the quasiparticle residue,
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and the effective Coulomb interaction strength are no longer
pinned at their noninteracting band-structure values but ac-
quire a scale dependence. The strength of the renormalization
depends on the dimensionless ratio of the Coulomb interaction
to the kinetic energy as given by the effective fine-structure
constant:

α = g2

4πvF

= e2

�vF κ
, (1)

where e is the electron charge, vF is the Fermi velocity, and κ is
the effective lattice dielectric constant of the material (κ > 1
in general for solid state materials). Because of the linear
band approximation, any correlation function is dominated by
high-momentum excitations as is manifested by an ultraviolet
divergent dependence of these correlators on a cutoff scale �.
Through a renormalization of the quasiparticle properties, this
ultraviolet cutoff dependence can be removed at the expense
of introducing renormalized parameters which now depend on
the scale (such as momentum, energy, temperature, or density)
at which they are measured. This scale dependence is dictated
by renormalization group (RG) equations. For example, the
coupling (1) obeys

dα

d ln μ
= βα, (2)

where μ denotes the renormalization scale. The coefficient on
the right-hand side is called the beta function and is uniquely
determined by the divergence structure of the theory. If α(μ0)
is measured at one scale μ0, Eq. (2) then predicts the value of
α(μ′) at a different scale μ′. The quasiparticle renormalization
is an observable effect and has been measured most notably
in the two-dimensional (2D) Dirac material graphene in a
wide variety of experiments using energy, density (which
determines the Fermi energy), and momentum as the running
scale [56–60].

In principle, temperature, provided it is much higher than
the Fermi energy, could also be a varying scale to study the
RG flow, and may very well be the most suitable scaling
variable for 3D Dirac systems in terms of experimental
investigations. We note that our approach to the RG flow of
quasiparticle renormalization does not make any explicit use
of the precise value of the ultraviolet cutoff � since we express
renormalization at one scale simply in terms of that at another
value of the scaling parameter. This completely eliminates
choosing an arbitrary value of the ultraviolet cutoff which is
theoretically ill defined except as an ultraviolet cutoff, making
it problematic to assign its precise value. In particular, the basic
tenet of the RG approach is that physical quantities vary with
the energy or momentum scale (and equivalently, with carrier
density or temperature), but do not depend on the ultraviolet
cutoff scale which should not show up in observable quantities.
We should, however, mention that, in solid state systems,
unlike in relativistic quantum field theories [e.g., quantum elec-
trodynamics (QED) or quantum chromodynamics (QCD)],
there is indeed a true ultraviolet momentum cutoff given by the
inverse lattice constant. However, this cutoff is by no means a
sharply defined unique quantity for calculating renormalized
quasiparticle properties (e.g., it could be multiplied by 2π or

some other constant or one could simply use the bandwidth as
an ultraviolet energy cutoff), and thus any explicit calculation
of quasiparticle renormalization using such a lattice (or band)
cutoff momentum (or energy) is not quantitatively meaningful
in systems, such as Dirac materials, manifesting ultraviolet
divergences.

In this work, we present a calculation of the renormalization
group (RG) equations for coupling, Fermi velocity, and
quasiparticle residue up to second order in the interaction
strength α. Previous theoretical works have investigated renor-
malization phenomena in 3D Weyl or Dirac systems using the
random phase approximation (RPA) or a large-N expansion
[44,61–63], as well as first-order perturbation the-
ory [13,41,64]. One of the primary motivations for our current
work is to explore the effects of the leading corrections
to RPA and to identify the parameter regime in which a
perturbative approach is valid. Similar investigations played an
important role in the case of 2D Dirac materials, in particular
graphene, where it was demonstrated that perturbative RG
results are invalid for all but very strongly screening media,
and that apparent agreement between experiment and first-
order theory is often completely spurious [65,66]. These
findings led to the development of a theory that quantitatively
describes renormalization effects in graphene that applies to
a broader range of experimental setups [66]. It is therefore of
direct experimental relevance and of considerable fundamental
interest to perform a similar analysis in the context of 3D Dirac
materials to investigate how physical properties of 3D Dirac
materials vary under RG flows with higher-order corrections
included.

Therefore, in this work, we consider the effect of a Coulomb
interaction on a system with N “flavors” of massless Dirac
fermions to two-loop order. At this stage, N is simply a
mathematical quantity defining the number of electron flavors
or species, but in reality N is typically the (often large) valley
degeneracy in the relevant 3D Dirac system. After reviewing
the previous one-loop results, we proceed to calculate the
polarization, electron self-energy, and vertex function to two
loops. We use the term “loop expansion” to mean the usual
order-by-order diagrammatic perturbative many-body expan-
sion in the Coulomb interaction, which is precisely equivalent
to an expansion in the effective fine-structure constant for
linearly dispersing Dirac systems. At one-loop order, we
already see logarithmic divergences in both the polarization
and self-energy as a function of momentum. Therefore, at
two loops, we expect to see log-squared divergences, and
we confirm this with explicit analytical calculations. We then
consider the renormalization of the theory, in which we not
only determine the necessary counterterms to cancel out the
divergences, but also perform several useful self-consistency
checks on our results. We then make use of these results to
derive RG equations for the parameters in our theory, namely,
the Fermi velocity vF , the effective fine-structure constant α,
and the quasiparticle residue.

While the remainder of this paper gives a detailed account
of both the systematics and the calculations of the renormaliza-
tion group equations, we summarize here our main findings,
which are the renormalization group equations obtained up
to the two-loop expansion calculation for residue, Fermi
velocity, and coupling given in Eqs. (196), (200), and (205),
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respectively:

d ln Zψ

d ln μ
=

(
15 + N

3π2
− 1

2

)
α2, (3)

d ln vF

d ln μ
= − 2α

3π
+ 2N

9π2
α2, (4)

dα

d ln μ
= 2(N + 1)

3π
α2 + 27C − 44

54π2
Nα3, (5)

with C ≈ 1.33318 a constant that we determined numerically
[cf. Eq. (72)]. We find that, in contrast to the one-loop result
that implies α always going to zero as we go to low-momentum
scales, the two-loop result reveals that there is a critical
value above which α instead diverges, just as in the case of
graphene [65]. However, this critical value is much larger than
in graphene; in 3D Dirac materials, it is αc = 14.1298(1 + 1

N
),

which should be compared to αc = 0.78 for graphene. This
would seem to imply that perturbation theory is reliable
over a much wider range of values of α in the 3D case
relative to the 2D case. In particular, with experimental
values of α ∼ 0.1–1 in typical 3D Dirac materials (e.g., in
Cd3As2, dielectric constants in the range κ ∼ 20–40 have
been measured [67,68], while velocities are typically [24–26]
in the range 105–106 m/s), we might expect perturbation
theory to give quantitatively reliable results since the condition
α � αc applies here. However, we see from the equation for
the velocity renormalization that the second-order correction
has again the opposite sign relative to the first-order result,
producing a second special value of α, α∗ = 3π/N , where the
second-order term is equal in magnitude to the leading-order
term. It is generally the case that α∗ < αc, and for α∗ < α <

αc, we find the unusual situation in which both the velocity and
effective coupling decrease as the energy scale is reduced. This
trend continues until α reaches α∗, at which point the velocity
reverses its trend and begins to grow as the noninteracting
fixed point in the infrared is approached. Moreover, we see
that α∗ decreases with increasing Dirac cone multiplicity
N , so that for larger values of N , α � α∗ is achieved for
modest values of the interaction strength. This observation
may be particularly relevant for the pyrochlore iridates where
N = 12 [3], meaning that for α ∼ 0.1, the second-order term
in the velocity constitutes a large 25% correction. On the other
hand, for Cd3As2 with N = 1, this term yields a few-percent
correction to the leading order. If we interpret the appearance of
α∗ as signifying a breakdown of perturbation theory (given that
for this coupling, the second-order corrections are comparable
to the leading order), then α∗ can be used as a criterion for
determining the validity of results based on the perturbation
theory in α. The fact that perturbation theory appears to
work better for smaller degeneracies is particularly interesting
in light of the fact that methods such as RPA or large-N
expansions work in exactly the opposite regime, suggesting
that perturbation theory may be complementary to these
approaches [62,66]. Thus, the perturbative loop expansion may
be a reasonable approximation for 3D Dirac systems for small
values of N , whereas in graphene it is only reasonable when the
effective coupling constant itself is very small (for example, for
substrates with very large dielectric constants so that effective
κ values are large).

We also discuss how this predicted renormalization can be
observed experimentally, namely, by measuring the plasmon
frequency and the optical conductivity. While the control over
the doping in experiments on a 3D Dirac material is more
restricted than in experiments on graphene (since gating is
not an option for 3D materials as it is for 2D graphene), the
temperature of the system can serve as another energy scale.
If this scale is much greater than the Fermi energy, which is
determined by the doping density, then we expect that our
results, which have been derived for an intrinsic (undoped)
system, are valid for the system realized in experiments. In
fact, having a finite temperature higher than the Fermi energy
associated with the unintentional doping density in the system
is a convenient and practical way of approaching the intrinsic
Dirac point physics [63,69,70]. We elaborate on this argument
by an explicit calculation of the Drude weight which is in-
dependent of initial doping even at intermediate temperatures
of T > εF /2, thus probing the intrinsic limit. While simple
dimensional analysis predicts a linear temperature dependence
of the intrinsic Drude weight, this linear scaling is violated
by the logarithmic renormalization of the charge and Fermi
velocity, giving rise to a superlinear temperature dependence
instead. To leading order in α, the strength of this superlinear
scaling is set by a renormalization group invariant quantity
known as the Landau pole �L, a dimensionally transmuted
scale which marks the point of divergence of the one-loop fine-
structure constant at high energy. To probe the relative effects
of doping, temperature, and renormalization, we provide a
full calculation of the plasmon frequency (which is related to
the Drude weight) to leading order in the RPA, which clearly
shows the transition from a finite-density extrinsic regime at
low temperature to a zero-density intrinsic regime at high
temperature with superlinear logarithmic scaling violations.
An experimental observation of this superlinear temperature
dependence will yield direct evidence for our predicted
ultraviolet renormalization corrections.

We summarize how our ultraviolet renormalization results
compare with graphene, the 2D analog of the 3D Dirac
materials studied here, in Table I and with (3+1)-dimensional
[(3+1)D] QED in Table II, to which 3D Dirac materials
provide a nonrelativistic condensed matter analog. Let us
first discuss the comparison to graphene, whose many-body
renormalization effects were considered in detail in our
earlier works [65,66]. We note that, while the Fermi velocity
renormalizes in both graphene and 3D Dirac materials, the
charge only renormalizes in 3D Dirac materials (but not
in graphene). This is because in graphene (and, in fact, in
all solid state 2D Dirac systems), the Coulomb interaction
is given by a nonanalytic term in the action, and thus we
never obtain any terms in perturbation theory that renormalize
the charge. Physically, this is connected to the fact that the
Coulomb interaction in graphene still has the 3D Coulomb
form since graphene is not the solid state analog of (2+1)-
dimensional QED and is actually a 2D physical system existing
in the 3D world. Therefore, the only renormalization of
the overall interaction strength, as given by α, comes from
renormalization of the Fermi velocity in graphene. On the
other hand, the renormalization of α in 3D Dirac materials
is due to that of both charge and Fermi velocity [as in
(3+1)-dimensional QED where both charge and mass manifest
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TABLE I. Table summarizing the divergences appearing in graphene and 3D Dirac materials for various quantities.

Graphene [65,71] 3D Dirac

Vertex log divergence expected at O(α2) log divergence at O(α2)
Self-energy log divergence at O(α), log2 at O(α3) log divergence at O(α), log2 at O(α2)
Polarizability log divergence at O(α2) log divergence at O(α), log2 at O(α2)
Charge No renormalization Renormalizes
Fermi velocity Renormalizes Renormalizes
Optical conductivity log divergence at O(α2) log divergence at O(α)

ultraviolet renormalization]; the Fermi velocity may be seen
in this case as an independent parameter of the theory from
α. One very important consequence of this is that, unlike in
graphene, in which the system becoming weakly interacting
at low energy scales necessarily means that the Fermi velocity
diverges logarithmically at the Dirac point, the Fermi velocity
can (and, as it turns out, does) actually remain finite even at
low energies in 3D Dirac systems since the noninteracting
limit can be achieved by the charge renormalizing to zero at
low energy. This gives us a very major distinction between the
2D and 3D Dirac systems: in 2D, we must see a logarithmically
divergent Fermi velocity at low energy because it is the only
way for the system to become weakly interacting [56,60,65],
but this is not necessary in 3D. Note also that we expect
to see a logarithmic divergence appearing for the vertex
renormalization in graphene at O(α2), even though it has
not been calculated. This is because, at second order, the
self-energy acquires a temporal component [65], just as it does
in 3D Dirac materials. Due to gauge invariance, we expect that
the vertex renormalization should diverge as well at orders
higher than the first, and in such a way that the Coulomb
field strength does not renormalize at any order, as we see
happens in 3D Dirac materials. Thus, as summarized in Table I,
there are major mathematical and physical differences between
many-body effects induced by the ultraviolet renormalization
in 3D and 2D Dirac systems arising in condensed matter
physics.

We now consider the comparison between 3D Dirac
materials and (3+1)D QED, as summarized in Table II. Here,
the situation is in some sense opposite to that of graphene.
The interaction strength in (3+1)D QED renormalizes only
because charge renormalizes since the speed of light cannot
renormalize due to the requirement that it be constant. Both,
however, still exhibit the well-known Landau pole (as does
graphene [65]), a divergence of α at a large, but finite,
energy scale at one-loop order. While the Fermi velocity
renormalizes (and, in fact, diverges itself at the Landau pole),
it does not diverge rapidly enough to cancel the effect of the

diverging charge. We also note that logarithmic divergences
start appearing at lower orders in α in QED than in 3D Dirac
materials in the vertex correction. This is because we treat
a nonrelativistic Coulomb interaction here, rather than the
full relativistic electromagnetic force, as is done in QED.
This means that the quasiparticle residue, corresponding to
a temporal component of the self-energy, already differs from
unity at O(α) in QED; in the 3D Dirac case, this only happens
at O(α2). In both cases, however, the vertex function and the
quasiparticle residue are renormalized in such a way that the
strength of the electromagnetic field remains unchanged, as is
required by gauge invariance. This divergence of the vertex
in QED at O(α) also, ironically, leads to the cancellation of
a potential log2 divergence at O(α2). We will find that, for
the 3D Dirac material case considered here, only the diagram
in which the self-energy is inserted into one of the electron
lines in the bubble has a log2 divergence. In QED, on the
other hand, the vertex correction contribution also has a log2

divergence [73,74]; this divergence exactly cancels that from
the self-energy correction contribution, leaving only a simple
logarithmic divergence at O(α2).

One fundamental difference between solid state Dirac mate-
rials and QED is of course the large difference in the applicable
effective coupling in the two cases. Whereas the fine-structure
constant for QED is always e2

�c
≈ 1

137 , the corresponding
effective fine-structure constant in Dirac systems (either 2D
or 3D) is multiplied by a factor of c/vF κ [see Eq. (1)], which
is typically very large since the Fermi velocity (∼106 m/s) is
much less than the speed of light (≈3 × 108 m/s), although
the presence of the effective background dielectric constant
reduces the effective coupling in Dirac systems by a factor
of order 10 typically in most materials (except for graphene
suspended in vacuum where κ = 1, giving a very large
graphene fine-structure constant of around 300

137 ≈ 2.2). The
largeness of the effective fine-structure constant makes Dirac
systems more like a strong-coupling QED problem (albeit with
nonrelativistic Coulomb interactions) rather than the regular
QED where the loop expansion in powers of the fine-structure

TABLE II. Table summarizing the divergences appearing in 3D Dirac materials and in (3+1)D QED for various quantities.

3D Dirac (3+1)D QED [72–74]

Vertex log divergence at O(α2) log divergence at O(α)
Self-energy log divergence at O(α), log2 at O(α2) log divergence at O(α), log2 expected at O(α2)
Polarizability log divergence at O(α), log2 at O(α2) log divergence at O(α)
Charge Renormalizes Renormalizes
Fermi velocity/speed of light Renormalizes No renormalization
Electron mass Renormalizes

115101-4



MANY-BODY EFFECTS AND ULTRAVIOLET . . . PHYSICAL REVIEW B 92, 115101 (2015)

constant is asymptotic up to a very high (�137) order in the
perturbation theory. We discuss the asymptotic nature of the
loop expansion for 3D Dirac systems in this paper [see, e.g.,
Eq. (204)] and this issue was discussed in depth for graphene
in Ref. [65], where it was found that the loop expansion
may already fail at the first order for graphene suspended in
vacuum. One may wonder, given the large coupling constant
in Dirac materials, whether some aspects of its interaction
physics resemble QCD rather than QED. It turns out that one
specific aspect of interaction effects in Dirac materials (for
both 2D and 3D) does indeed have some superficial similarities
with QCD. This is the behavior of the Dirac system when the
effective coupling is larger than the critical coupling (α > αc)
so that the running coupling increases with decreasing energy,
eventually diverging at the Dirac point. This appears similar to
the QCD strong-coupling behavior (provided one starts with a
sufficiently large coupling α > αc in the beginning for the
Dirac system, whereas in QCD of course this behavior is
generic because of the structure of the beta function itself).
But, this similarity is somewhat misleading because the beta
functions in the two cases are fundamentally different, and the
divergent running coupling low-energy behavior of the Dirac
system we find (for α > αc) may very well be just an artifact
arising from the failure of the perturbation theory. In addition,
the Dirac problem neither has confinement nor true asymptotic
freedom (as is obvious from the existence of the Landau pole
in the theory), which are two hallmarks of QCD.

Another qualitative difference between QED and Dirac
systems worth pointing out is the role of the Fermi energy (i.e.,
a finite chemical potential away from the Dirac point) as well
as temperature in Dirac materials, which provide additional
physical parameters (doping density and temperature) for
the experimental implementation of the RG flow in solid
state materials. Either the finite Fermi energy (arising from
any finite doping of the system) or temperature, by itself,
can act as a low-energy cutoff for the RG flow just as the
bandwidth or the inverse lattice constant acts as a high-energy
or high-momentum cutoff in solids. But, in the presence
of a finite Fermi energy (temperature), the other parameter,
i.e., temperature (Fermi energy), can be used as a practical
parameter to induce the RG flow as long as temperature (Fermi
energy) is much greater than the Fermi energy (temperature).
This can be very useful in experimental measurements where
the pure undoped Dirac limit (or zero temperature) can
never be reached. Since the Fermi energy (i.e., the chemical
potential) depends monotonically on the doping density, one
can change the doping density (at fixed low temperature) or
the temperature (at fixed low doping density) as the scaling
parameter to study the ultraviolet renormalization of Dirac
materials. By contrast, in purely relativistic field-theoretic
problems (e.g., QED, QCD), the concepts of doping, finite
chemical potential (or Fermi energy), temperature, etc., simply
do not apply, and the system is always an intrinsic system (in
our sense) and can never be detuned from the precise critical
point.

It is also instructive to compare the many-body renor-
malization properties of 3D Dirac systems with normal
3D metals (or doped semiconductors) which are often the
textbook systems for studying many-body effects arising
from long-range Coulomb interactions in solids [75–78].

Three-dimensional metals are defined by the sharp existence
of a finite Fermi surface and the associated Fermi liquid
properties, with ultraviolet renormalization or divergences
not playing any role whatsoever since the energy dispersion
in these cases is parabolic, and there is no zero-density
critical point because of the existence of a large band
gap separating the filled valence band from the partially
filled conduction band with the finite Fermi energy. Thus,
the key physics of interest in Dirac materials, namely, the
many-body interaction corrections associated with ultraviolet
renormalization, is not relevant for ordinary metals at all. In
fact, there exist detailed RG analyses [79,80] of the stability
of the Fermi surface in 3D and 2D metals starting from
high momentum and systematically approaching the Fermi
surface, with the conclusion that, except for the possible
occurrence of interaction-driven superconductivity at high
orbital momentum channels (the so-called Kohn-Luttinger
superconductivity [81]) at exponentially low temperatures, the
Fermi surface is stable and there is no ultraviolet divergence (in
the QED sense) anywhere for 3D (or 2D) metals. Thus, the key
physics of ultraviolet renormalization and scale-dependent RG
flow with logarithmic running of the coupling are features not
arising in normal metals as they do in Dirac systems. Of course,
there are strong Fermi liquid renormalization effects in normal
metals, as discussed extensively in many standard many-body
theory textbooks [75–78], and these effects are nonperturbative
since the dimensionless interaction coupling strength in 3D
metals (which depends explicitly on the metallic electron
density and is not a simple effective fine-structure constant as in
Dirac systems) is large (∼5–6 typically), but these many-body
corrections (often quantitatively large) are not indicative of
any fundamental ultraviolet divergence in the system with
no logarithmic cutoff-dependent renormalization corrections
arising anywhere in the problem. In fact, the divergence one
worries about in metals is the infrared divergence associated
with the long-range Coulomb interaction (and not an ultra-
violet divergence associated with large momenta) which is
“cured” by considering a loop expansion in the dynamically
screened Coulomb interaction (rather than the loop expansion
in the bare Coulomb interaction we consider for the Dirac
system in this work), which provides a controlled perturbation
theory for metals at high electron density (which is equivalent
to weak metallic interaction coupling). At metallic densities,
such an expansion is only qualitatively valid (since there is no
quantum phase transition in the problem), but a comparison
with experiment (or with quantum Monte Carlo simulations)
shows that metallic many-body corrections calculated using
an expansion in the screened Coulomb interaction works
reasonably well even at metallic densities where the system
is far from being weakly coupled for reasons not very clear at
this stage [82]. Density-dependent (but not cutoff-dependent)
many-body corrections similar to the metallic quasiparticle
renormalization effects also show up in doped extrinsic Dirac
materials as nonultraviolet nonlogarithmic subleading correc-
tions, but we ignore them completely in our current work since
they are completely negligible compared with the ultraviolet
logarithmic corrections as the Dirac point is approached.

The rest of this paper is organized as follows: In Sec. II,
we describe the (Euclidean-time) action for our system and the
associated Feynman rules. Section III is dedicated to reviewing
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the one-loop results and deriving the two-loop polarization,
while Sec. IV provides a detailed calculation of the two-loop
electron self-energy. In Sec. V, we formulate the renormalized
perturbation theory, determine the counterterms that arise
therein, and derive the RG equations for our model. In Sec. VI,
we show how our results can be tested in finite-temperature
experiments on finite-density samples even though our results
are derived at zero density. We present our conclusions in
Sec. VII. We provide derivations of the one-loop polarization
and electron self-energy, the two-loop vertex corrections,
and the optical conductivity within the Drude-Boltzmann
approximation in the Appendix, along with an alternate
derivation of the RG equations using the Callan-Symanzik
equation. The latter provides yet another consistency check on
our results.

II. MODEL

The model that we will be using is that of a 3D system with
N “flavors” (e.g., valleys) of Dirac electrons interacting via a
Coulomb interaction. We note that the total degeneracy of the
3D system we consider is 2N including both spin and valleys.
We will work with the following Euclidean-time action (setting
� = 1):

S = −
N∑

a=1

∫
dt d3 �R (ψ̄aγ

0∂0ψa + vF ψ̄aγ
i∂iψa

+ϕψ̄aγ
0ψa) + 1

2g2

∫
dt d3 �R (∂iϕ)2, (6)

where the γ matrices form a Clifford algebra, i.e., {γ μ,γ ν} =
2δμν for μ and ν = 0,1,2, and 3 and ψ̄ = ψ†γ 0. There is an
implied sum on i in the above action from i = 1 to 3. The
fields ψ are four-component Grassmann spinors, and N is the
number of valleys. In all, this model results in 2N Dirac cones.
The factor of 2 comes from spin in a regular Dirac semimetal,
or from the presence of a pair of Weyl nodes for each of the N

flavors in a Weyl semimetal.
Here and throughout this work, we will employ a quasirela-

tivistic notation, i.e., we define k = (k0,�k), d4k = dk0 d3�k, /k =
k0γ

0 + vF
�k · �γ , and k2 = k2

0 + v2
F |�k|2. The Feynman rules

associated with this action are the following:

G0(k) = i

/k
, (7)

D0(k) = g2

|�k|2 = 4παvF

|�k|2 , (8)

iγ 0. (9)

Here, the straight lines are electron propagators, while the
wavy lines are the Coulomb propagators.

III. POLARIZATION

We now turn our attention to the calculation of the
polarization. We will first quote the known first-order result,
and then embark on a detailed calculation of the second-order

FIG. 1. Leading-order polarization bubble �B (q).

result. A general feature of these contributions at all orders
is that they are ultraviolet divergent, and thus we introduce a
momentum cutoff � into our theory.

A. First order

The first-order, noninteracting, contribution to the polariza-
tion, shown in Fig. 1, is well known [2], so we simply quote
the result here for the sake of completeness and leave the
derivation to Appendix A. If one computes the polarization
using the given action in Eq. (6), then this contribution is

�B(q)=− |�q|2
24π2vF

N ln

{
[z2 + (2λ + 1)2][z2 + (2λ − 1)2]

(z2 + 1)2

}
+ |�q|2

8π2vF

N

∫ 1

−1
dy y

(
1 − 1

3
y2

)
2λ + y

z2 + (2λ + y)2
,

(10)

where z = q0

vF |�q| and λ = �
|�q| . The integral in this expression can

be done analytically, but the result is rather complicated and not
particularly illuminating. We see that �B(q) is logarithmically
divergent as � → ∞, the entire divergence coming from the
first term. The logarithmic and finite terms, the latter of which
we will need later, in �B(q) are

�B(q) ≈ −|�q|2
g2

2α

3π
N

[
ln

(
�

|�q|
)

− 1

2
ln

(
z2 + 1

4

)]
. (11)

Note that this expression has an additional factor of 2N

compared to that found in Ref. [2]. This is because said
reference considers a single Dirac cone, while we consider
a system with 2N flavors of Dirac cones.

B. Second order

We now consider the second-order correction. Two dia-
grams, both depicted in Fig. 2, contribute to this correction.
Note that the first diagram contains the first-order electron
self-energy �1(q), shown in Fig. 3, as a subdiagram. We
will simply quote the result here, leaving the derivation to

(a) (b)

FIG. 2. Self-energy (left) and vertex (right) corrections to the
polarization �SE(q) and �V (q), respectively.
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FIG. 3. One-loop electron self-energy �1(q).

Appendix B:

�1(q) = i
2α

3π

[
4

3
+ ln

(
�

|�q|
)]

vF �q · �γ . (12)

1. “Self-energy” correction

We will first determine the “self-energy” term, which we
denote by �SE(q). The integral for this correction is

�SE(q)=2N

∫
d4k

(2π )4
Tr[γ 0G0(k+q)γ 0G0(k)�1(k)G0(k)],

(13)

which includes a factor of 2 due to the symmetry of the
diagram. We now substitute in the bare Green’s functions and
self-energy and evaluate the trace. The trace that we must
perform is

Tr(γ 0γ μγ 0γ νγ iγ ρ)

= 4(2δμ0 − 1)(δμνδiρ − δμiδνρ + δμρδνi). (14)

Using this formula, we may rewrite the integral as

�SE(q) = 16α

3π
vF N

∫
d3�k

(2π )3
(I1 − I2 + I3)

×
[

4

3
+ ln

(
�

|�k|

)]
, (15)

where I1, I2, and I3 are integrals over k0, given by

I1 = 2vF

∫ ∞

−∞

dk0

2π

k0(k0 + q0)|�k|2(
k2

0 + v2
F |�k|2)2[

(k0 + q0)2 + v2
F |�k + �q|2]

= −|�k|[q2
0 − v2

F (|�k| + |�k + �q|)2
]

2
[
q2

0 + v2
F (|�k| + |�k + �q|)2

]2 , (16)

I2 = 2v3
F

∫ ∞

−∞

dk0

2π

�k · (�k + �q)|�k|2(
k2

0 + v2
F |�k|2)2[

(k0 + q0)2 + v2
F |�k + �q|2]

=
{

1

2|�k|[q2
0 + v2

F (|�k| + |�k + �q|)2
]

+ 1

|�k + �q|[q2
0 + v2

F (|�k| + |�k + �q|)2
]

− q2
0

|�k + �q|[q2
0 + v2

F (|�k| + |�k + �q|)2
]2

}
�k · (�k + �q), (17)

I3 = vF

∫ ∞

−∞

dk0

2π

�k · (�k + �q)(
k2

0 + v2
F |�k|2)[(k0 + q0)2 + v2

F |�k + �q|2]
= |�k| + |�k + �q|

2|�k||�k + �q|[q2
0 + v2

F (|�k| + |�k + �q|)2
] �k · (�k + �q). (18)

If we now substitute all of these into �SE(q), we obtain

�SE(q) = − 8α

3π
vF N

∫
d3�k

(2π )3

|�k|[q2
0 − v2

F (|�k| + |�k + �q|)2
][

q2
0 + v2

F (|�k| + |�k + �q|)2
]2

×
[

1 −
�k · (�k + �q)

|�k||�k + �q|

][
4

3
+ ln

(
�

|�k|

)]
. (19)

We now switch to a prolate spheroidal coordinate system, with
the z axis being the long axis of the spheroids. The system is
defined as follows:

k⊥,x = 1
2 |�q| sinh μ sin ν cos θ, (20)

k⊥,y = 1
2 |�q| sinh μ sin ν sin θ, (21)

k‖ = 1
2 |�q|(cosh μ cos ν − 1), (22)

where 0 � μ < ∞, 0 � ν < π , and 0 � θ < 2π . The Jaco-
bian of this transformation is

J = 1
8 |�q|3 sinh μ sin ν(cosh2 μ − cos2 ν). (23)

Some useful identities are

|�k| = 1
2 |�q|(cosh μ − cos ν), (24)

|�k + �q| = 1
2 |�q|(cosh μ + cos ν), (25)

and

�k · (�k + �q) = 1
4 |�q|2(cosh2 μ + cos2 ν − 2). (26)

Using these identities, we may also write the Jacobian as J =
1
2 |�q| sinh μ sin ν|�k||�k + �q|. Making this coordinate change,
�SE(q) becomes, after performing the (trivial) integral over θ ,

�SE(q) = − 2

π2

|�q|2
g2

α2N

∫ ∞

0
dμ

∫ π

0
dν sinh μ sin ν

× (cosh μ − cos ν)(z2 − cosh2 μ)

(z2 + cosh2 μ)2

× sin2 ν

[
2

9
+ 1

6
ln

(
2λ

cosh μ − cos ν

)]
. (27)

We now make another substitution, namely, x = cosh μ and
y = cos ν. Doing this, we obtain

�SE(q) = − 2

π2

|�q|2
g2

α2N

∫ ∞

1
dx

∫ 1

−1
dy

× (x − y)(z2 − x2)

(z2 + x2)2
(1−y2)

[
2

9
+ 1

6
ln

(
2λ

x − y

)]
.

(28)

We note now that this integral is divergent, and thus we must
impose a momentum cutoff |�k| � �. In terms of x and y, this
translates to imposing a cutoff of 2λ + y on the x integral:

�SE(q) = − 2

π2

|�q|2
g2

α2N

∫ 1

−1
dy

∫ 2λ+y

1
dx

(x − y)(z2 − x2)

(z2 + x2)2

× (1 − y2)

[
2

9
+ 1

6
ln

(
2λ

x − y

)]
. (29)
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We may simplify this expression further by interchanging the
order of the x and y integrals,∫ 1

−1
dy

∫ 2λ+y

1
dx →

∫ 2λ−1

1
dx

∫ 1

−1
dy +

∫ 2λ+1

2λ−1
dx

∫ 1

x−2λ

dy,

(30)
and evaluating the y integral. Doing these, we find that

�SE(q) = − 2

π2

|�q|2
g2

α2N

[∫ 2λ−1

1
dx

z2 − x2

(z2 + x2)2
f1(x)

+
∫ 2λ+1

2λ−1
dx

z2 − x2

(z2 + x2)2
f2(x)

]
, (31)

where

f1(x) = 1

108

[
3

2
(x4 − 6x2 − 3) ln

(
x + 1

x − 1

)
+ x(49 − 3x2) + 24x ln

(
2λ√

x2 − 1

)]
, (32)

f2(x) = 1

864

{
−57

(
2�

|�q|
)4

+ 160

(
2�

|�q|
)3

x

− 132

(
2�

|�q|
)2

(x2 − 1) + (x − 1)3(29x + 75)

+ 12(x − 1)3(x + 3) ln

(
2λ

x − 1

)}
. (33)

We may now extract the leading divergence of �SE(q). To do
this, we take the derivative of the integrals above with respect
to λ, evaluate the result, and then expand in powers of λ. A
ln2 term would correspond to ln λ

λ
with a coefficient twice that

of the ln2 term, while a simple ln term would correspond to
1
λ

. The first integral is the sole contributor to the divergence of
�SE(q); we find that it possesses both a ln2 and a ln term. We
thus find that �SE(q) is given by

�SE(q) ≈ |�q|2
g2

2α2

9π2
N ln2

(
�

|�q|
)

+ |�q|2
g2

2α2

27π2
N

×
[

2(z2 + 4)

z2 + 1
+ 3 ln

(
4

z2 + 1

)]
ln

(
�

|�q|
)

− 2

π2

|�q|2
g2

α2Nf (z) + O

(
1

λ

)
. (34)

The finite term f (z), could, in principle, be found analyt-
ically, but the expression giving it is extremely complicated,
and thus we determine it numerically. This term comes entirely
from the integral involving f1(x), as that involving f2(x) goes
to zero as λ → ∞. We present a plot of f (z) in Fig. 4.

2. Vertex correction to polarization

We now turn our attention to the vertex contribution �V (q).
This contribution is given by

�V (q)=−4παvF N

∫
d4k

(2π )4

∫
d4p

(2π )4

× Tr

[
γ 0 /k

k2
γ 0 /k + /q

(k + q)2
γ 0 /p + /q

(p + q)2
γ 0 /p

p2

]
1

|�k − �p|2 .

(35)

FIG. 4. (Color online) Plot of the function f (z) appearing in
Eq. (34), giving the dependence of the finite term in �SE(q) as a
function of z = q0/vF |�q|.

We now evaluate the trace and perform the integrals on k0 and
p0. The trace that we need to evaluate is

Tr(γ 0γ μγ 0γ νγ 0γ ργ 0γ σ )

= 4δμ0δρ0(2δν0δσ0 − δνσ ) − 4δμ0δρ �=0(δν0δρσ + δσ0δνρ)

− 4δμ �=0δρ0(δμνδσ0 + δμσ δν0)

+ 4δμ �=0δρ �=0(δμνδρσ − δμρδνσ + δμσ δνρ). (36)

Using this, we find that the integral splits into nine terms:

J1 = −32παvF N

∫
d4k

(2π )4

∫
d4p

(2π )4

1

|�k − �p|2

× k0p0(p0 + q0)(k0 + q0)

k2p2(p + q)2(k + q)2
, (37)

J2 = 16παvF N

∫
d4k

(2π )4

∫
d4p

(2π )4

1

|�k − �p|2

× k0(p0 + q0)p(k + q)

k2p2(p + q)2(k + q)2
, (38)

J3 = 16παv3
F N

∫
d4k

(2π )4

∫
d4p

(2π )4

1

|�k − �p|2

× k0(k0 + q0) �p · ( �p + �q)

k2p2(p + q)2(k + q)2
, (39)

J4 = 16παv3
F N

∫
d4k

(2π )4

∫
d4p

(2π )4

1

|�k − �p|2

× k0p0( �p + �q) · (�k + �q)

k2p2(p + q)2(k + q)2
, (40)

J5 = 16παv3
F N

∫
d4k

(2π )4

∫
d4p

(2π )4

1

|�k − �p|2

× p0(p0 + q0)�k · (�k + �q)

k2p2(p + q)2(k + q)2
, (41)

J6 = 16παv3
F N

∫
d4k

(2π )4

∫
d4p

(2π )4

1

|�k − �p|2

× (k0 + q0)(p0 + q0)�k · �p
k2p2(p + q)2(k + q)2

, (42)

J7 = −16παv5
F N

∫
d4k

(2π )4

∫
d4p

(2π )4

1

|�k − �p|2

×
�k · (�k + �q) �p · ( �p + �q)

k2p2(p + q)2(k + q)2
, (43)
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J8 = 16παv3
F N

∫
d4k

(2π )4

∫
d4p

(2π )4

1

|�k − �p|2

×
�k · ( �p + �q)(k + q) · p

k2p2(p + q)2(k + q)2
, (44)

J9 = −16παv5
F N

∫
d4k

(2π )4

∫
d4p

(2π )4

1

|�k − �p|2

×
�k · �p(�k + �q) · ( �p + �q)

k2p2(p + q)2(k + q)2
. (45)

Evaluating the frequency integrals is a straightforward, if
tedious, exercise; once we have done so and simplified the
result, we obtain

�V (q)

= −4παvF N

∫
d3�k

(2π )3

∫
d3 �p

(2π )3

1

|�k − �p|2

× 1[
q2

0 + v2
F (|�k| + |�k + �q|)2

][
q2

0 + v2
F (| �p| + | �p + �q|)2

]
× (−q2

0Q1 + v2
F Q2), (46)

where Q1 and Q2 are given by

Q1 =
�k · �p
|�k|| �p| −

(�k+�q) · �p
|�k+�q|| �p| −

�k · ( �p+�q)

|�k|| �p+�q| + (�k + �q) · ( �p + �q)

|�k + �q|| �p + �q| ,

(47)

Q2 = (|�k|+|�k + �q|)(| �p|+| �p + �q|)
|�k||�k+�q|| �p|| �p + �q| [�k · �p|�q|2 − (�k · �q)( �p · �q)

+ (|�k|2 + �k · �q−|�k||�k + �q|)(| �p|2 + �p · �q−| �p|| �p + �q|)].
(48)

To perform this integral, we introduce two sets of prolate
spheroidal coordinates, one for �k (μ, ν, θ ) and one for �p
(μ′, ν ′, θ ′). The quantities Q1 and Q2 become

Q1 = 4

(cosh2 μ − cos2 ν)(cosh2 μ′ − cos2 ν ′)

× [cosh μ sin2 ν cosh μ′ sin2 ν ′

+ sinh μ sin ν cos ν sinh μ′ sin ν ′ cos ν ′ cos(θ − θ ′)],

(49)

Q2 = 4|�q|2 cosh μ cosh μ′

(cosh2 μ − cos2 ν)(cosh2 μ′ − cos2 ν ′)
[sin2 ν sin2 ν ′

+ sinh μ sin ν sinh μ′ sin ν ′ cos(θ − θ ′)].

(50)

Furthermore,

|�k − �p|2 = 1
4 |�q|2[cosh2 μ + cos2 ν + cosh2 μ′ + cos2 ν ′

− 2 − 2 cosh μ cos ν cosh μ′ cos ν ′

− 2 sinh μ sin ν sinh μ′ sin ν ′ cos(θ − θ ′)]

= |�q|2f (μ,ν,θ ; μ′,ν ′,θ ′). (51)

We thus obtain

�V (q) = |�q|2
g2

α2

256π4
N

∫ ∞

0
dμ

∫ π

0
dν

∫ 2π

0
dθ

∫ ∞

0
dμ′

×
∫ π

0
dν ′

∫ 2π

0
dθ ′ sinh μ sin ν sinh μ′ sin ν ′

f (μ,ν,θ ; μ′,ν ′,θ ′)

× 1

(z2 + cosh2 μ)(z2 + cosh2 μ′)

(
z2Q′

1 − Q′
2

|�q|2
)

,

(52)

where Q′
i = (cosh2 μ − cos2 ν)(cosh2 μ′ − cos2 ν ′)Qi .

Note that the integrand only depends on θ and θ ′ through
their difference θ − θ ′, and that it is a periodic function of
both. As a result, we may “shift away” one of these variables,
say, θ ′, thus making the integral over that variable trivial. The
other integral, in this case over θ , can then be done with the
aid of the formulas∫ 2π

0
dθ

1

a + b cos θ
= 2π√

a2 − b2
, (53)∫ 2π

0
dθ

cos θ

a + b cos θ
= 2π

b

(
1 − a√

a2 − b2

)
. (54)

Doing these integrals, we find that �V (q) splits into two parts,
�V (q) = �V,E(q) + �V,H (q). These two parts are as follows.
�V,E(q) is the “easy” part, which we can do analytically,
while �V,H (q) is the “hard” part, which cannot be determined
completely analytically.

The “easy” part comes from the 2π
b

in Eq. (54), and is given
by, after changing variables to x = cosh μ and y = cos ν,

�V,E(q) = |�q|2
g2

α2

8π2
N

(
I 2

1 − z2I 2
2

)
, (55)

where

I1 =
∫ ∞

1
dx

∫ 1

−1
dy

x

z2 + x2
, (56)

I2 =
∫ ∞

1
dx

∫ 1

−1
dy

y

z2 + x2
. (57)

Note that I1 is logarithmically divergent; we must therefore
impose a cutoff, as before. These integrals may be done
exactly; the results are

I1 = ln

[
z2 + (2λ − 1)2

z2 + 1

]
+

(
λ + 1

2

)
ln

[
z2 + (2λ + 1)2

z2 + (2λ − 1)2

]
− 2 + z

[
tan−1

(
2λ + 1

z

)
− tan−1

(
2λ − 1

z

)]
, (58)

I2 = λ ln

[
z2 + (2λ + 1)2

z2 + (2λ − 1)2

]
− 1 + z2 + 1 − 4λ2

2z

×
[

tan−1

(
2λ + 1

z

)
− tan−1

(
2λ − 1

z

)]
. (59)

The divergence of �V,E(q) comes from I1. To determine the
full divergence, we need both the ln and finite terms of I1:

I1 ≈ 2 ln

(
�

|�q|
)

+ ln

(
4

1 + z2

)
. (60)
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We can also determine the finite term; in fact, I2 goes to zero
as λ → ∞, so the full finite contribution is determined by
I1. Therefore, the logarithmically divergent and finite terms
coming from this part of �V (q) are

�V,E(q) ≈ |�q|2
g2

α2

2π2
N ln2

(
�

|�q|
)

+ |�q|2
g2

α2

2π2
N ln

(
4

1 + z2

)
ln

(
�

|�q|
)

+ |�q|2
g2

α2

8π2
N ln2

(
4

1 + z2

)
. (61)

The remaining terms in the integrals in Eqs. (53) and (54)
give us �V,H (q). These are

�V,H (q) = |�q|2
g2

α2

4π2
N

∫ ∞

0
dμ

∫ π

0
dν

×
∫ ∞

0
dμ′

∫ π

0
dν ′ sinh μ sin ν sinh μ′ sin ν ′

√
F (μ,ν; μ′,ν ′)

× R1 − z2R2

(z2 + cosh2 μ)(z2 + cosh2 μ′)
, (62)

where

R1 = cosh μ cosh μ′( − sin2 ν sin2 ν ′ − 1
2 cosh2 μ

− 1
2 cos2 ν − 1

2 cosh2 μ′ − 1
2 cos2 ν ′ + 1

+ cosh μ cos ν cosh μ′ cos ν ′), (63)

R2 = − cosh μ sin2 ν cosh μ′ sin2 ν ′

− 1
2 cos ν cos ν ′(cosh2 μ + cos2 ν + cosh2 μ′

+ cos2 ν ′ − 2 − 2 cosh μ cos ν cosh μ′ cos ν ′), (64)

and

F (μ,ν; μ′,ν ′) = [cosh(μ + μ′) − cos(ν + ν ′)][cosh(μ + μ′)

− cos(ν − ν ′)][cosh(μ − μ′) − cos(ν + ν ′)]

×[cosh(μ − μ′) − cos(ν − ν ′)]. (65)

This integral also has a logarithmic divergence. In fact, it too
contributes to the ln2 term of �V (q). Fortunately, we can
determine this term analytically. We begin by introducing a
pair of x and y coordinates corresponding to each pair of μ

and ν coordinates and by imposing a cutoff, as before. Doing
this and simplifying the resulting expression, we obtain

�V,H (q) = |�q|2
g2

α2

4π2
N

∫ 1

−1
dy

∫ 2λ+y

1
dx

×
∫ 1

−1
dy ′

∫ 2λ+y ′

1
dx ′ 1√

F̄ (x,y; x ′,y ′)

× R̄1 − z2R̄2

(z2 + x2)(z2 + x ′2)
, (66)

where λ = �
|�q| , z = q0

vF |�q| , and F̄ , R̄1, and R̄2 are F , R1, and
R2, respectively, rewritten in terms of the x and y coordinates.
We now take the derivative of this integral with respect to λ.
The ln2 λ term of the integral will correspond to a ln λ

λ
term in

the derivative, with a coefficient twice as large as that of the
ln2 term. The result that we obtain is

∂

∂λ
�V,H (q) = |�q|2

g2

α2

π2
N

∫ 1

−1
dy

∫ 2λ+y

1
dx

×
∫ 1

−1
dy ′ 1√

F̄ (x,y; 2λ + y ′,y ′)

× R̄1(x ′ = 2λ + y ′) − z2R̄2(x ′ = 2λ + y ′)
(z2 + x2)[z2 + (2λ + y ′)2]

.

(67)

We now expand the integrand in powers of 1
λ

. The leading term
is, after integrating over y ′, with respect to which the leading
term is constant,

∂

∂λ
�V,H (q) ≈ −|�q|2

g2

α2

2π2
N

1

λ

∫ 1

−1
dy

∫ 2λ+y

1
dx

x

x2 + z2
.

(68)

This is the only term in the expansion that will contribute to
the ln2 λ term of �V,H (q). It also contributes to the subleading
ln λ term, and is in fact the only contribution with a coefficient
that is a function of z; all other terms only contribute ln λ-
divergent terms with constant coefficients. The total constant
contributed by these, which we will call C, must be determined
numerically. If we now evaluate the integrals, we obtain

∂

∂λ
�V,H (q)≈−|�q|2

g2

α2

2π2
N

{
2 ln λ

λ
+

[
ln

(
4

1 + z2

)
+C

]
1

λ

}
.

(69)

Therefore, the leading divergence of �V,H (q) is

�V,H (q) ≈ −|�q|2
g2

α2

2π2
N

{
ln2

(
�

|�q|
)

+
[

ln

(
4

1 + z2

)
+ C

]
ln

(
�

|�q|
)}

. (70)

The ln2 term exactly cancels that from the “easy” part, so that
the whole diagram only has a simple logarithmic divergence.
The full form of �V (q) is thus

�V (q) = |�q|2
g2

α2

4π2
N

[
−2C ln

(
�

|�q|
)

+ g(z)

]
+ O

(
1

λ

)
,

(71)

where g(z) is a function that we will determine shortly.
To obtain C, we numerically evaluate λ ∂

∂λ
�V,H (q) for a

large value of λ and z = 0 using Eq. (67) and subtract off
the ln λ term, which we know exactly. In the limit of large λ,
λ ∂

∂λ
�V,H (q) is a linear function of ln λ, the linear term giving

the coefficient of the ln2 term and the constant term giving
the coefficient of the ln term. We note that �V,H (q) and all
two-loop contributions to the polarization that we determine
have the form |�q|2

g2
α2

4π2 NF (z,λ), so that we only need to vary z

and λ. To perform these numerical calculations, we made use
of the VEGAS algorithm as implemented in the CUBA package.
We obtained results with errors of 0.1% or less; see Fig. 5 for an
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FIG. 5. (Color online) Plot of λ d

dλ
F (z,λ) for z = 5, where λ =

�/|�q| and z = q0/vF |�q|. At large λ, this curve becomes approx-
imately linear; the slope of the line is exactly −4 and is twice
the coefficient of the ln2 λ term, while the constant term gives
us the coefficient of the ln λ term. The solid red line is a linear
fit to the points at large λ.

example, in which we plot λ d
dλ

F (z,λ) for z = 5. We find that

C ≈ 1.333 18. (72)

To obtain g(z), we evaluate �V,H (q) numerically for a large
value of λ and subtract off the logarithmically divergent
terms; our result is plotted in Fig. 6.

IV. SECOND-ORDER SELF-ENERGY

We now determine the electron self-energy to two loops.
There are three possible diagrams that contribute to this order,
and we discuss each in turn.

A. Two-loop rainbow correction to self-energy

The first potential two-loop correction to the electron self-
energy is shown in Fig. 7. This diagram evaluates to

�2b(q) = −4παvF

∫
d4k

(2π )4

1

|�q − �k|2 γ 0G0(k)�1(k)G0(k)γ 0

∝
∫

d4k

(2π )4

1

|�q − �k|2
[

4

3
+ ln

(
�

|�k|

)]
γ 0 /k

k2
�k · �γ /k

k2
γ 0.

(73)

FIG. 6. (Color online) Plot of the function g(z) appearing in
Eq. (71), giving the dependence of the finite part of �V (q) as a
function of z = q0/vF |�q|.

FIG. 7. Two-loop rainbow correction to the electron self-energy
�2b(q).

Straightforward algebra reveals that the integral over k0

vanishes identically:

∫
dk0

2π

1

k4
γ 0(k0γ

0 + vF
�k · �γ )�k · �γ (k0γ

0 + vF
�k · �γ )γ 0

= �k · �γ
∫

dk0

2π

k2
0 − v2

F |�k|2(
k2

0 + v2
F |�k|2)2 = 0. (74)

Therefore, the full contribution vanishes identically:

�2b(q) = 0. (75)

B. Two-loop vertex correction to self-energy

Reduction to a quadruple integral. The second two-loop
correction to the electron self-energy is shown in Fig. 8. This
diagram has the value

�2a(q) = −16π2iα2v2
F

∫
d4k

(2π )4

∫
d4p

(2π )4

1

|�q−�k|2
1

|�q− �p|2

× γ 0 /k

k2
γ 0 /k+/p−/q

(k+p−q)2
γ 0 /p

p2
γ 0. (76)

The product of gamma matrices in the integrand can be
expanded as

γ 0γ μγ 0γ νγ 0γ ργ 0

= δμ0δν0δρ0γ 0−δμ0δν0(1−δρ0)γ ρ

− δμ0(1−δν0)δρ0γ ν−δμ0(1−δν0)(1−δρ0)γ νγ ργ 0

− (1−δμ0)δν0δρ0γ μ−(1−δμ0)δν0(1−δρ0)γ μγ ργ 0

− (1−δμ0)(1−δν0)δρ0γ μγ νγ 0

+ (1−δμ0)(1−δν0)(1−δρ0)γ μγ νγ ρ, (77)

FIG. 8. Two-loop vertex correction to the electron self-energy
�2a(q).
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which leads to

�2a(q) = −16π2iα2v2
F

∫
d4k

(2π )4

∫
d4p

(2π )4

1

|�q−�k|2
1

|�q− �p|2
1

k2p2(k+p−q)2

×{k0p0(k0+p0−q0)γ 0−vF k0(k0+p0−q0) �p· �γ−vF k0p0(�k+ �p−�q)· �γ−v2
F k0γ

0(�k+ �p−�q)· �γ �p· �γ
− vF p0(k0+p0−q0)�k· �γ−v2

F (k0+p0−q0)γ 0�k· �γ �p· �γ−v2
F p0γ

0�k· �γ (�k+ �p−�q)· �γ+v3
F
�k· �γ (�k+ �p−�q)· �γ �p· �γ }. (78)

As usual, we first perform the integrals over the energies k0 and p0:

B1 ≡
∫

dk0

2π

∫
dp0

2π

k0p0(k0+p0−q0)

M(k,p)
= 1

4

q0

q2
0+v2

F (|�k|+| �p|+|�k+ �p−�q|)2
, (79)

B2 ≡
∫

dk0

2π

∫
dp0

2π

k0(k0+p0−q0)

M(k,p)
= 1

4

|�k|+| �p|+|�k+ �p−�q|
| �p|[q2

0+v2
F (|�k|+| �p|+|�k+ �p−�q|)2

] , (80)

B3 ≡
∫

dk0

2π

∫
dp0

2π

k0p0

M(k,p)
= −1

4

|�k|+| �p|+|�k+ �p−�q|
|�k+ �p−�q|[q2

0+v2
F (|�k|+| �p|+|�k+ �p−�q|)2

] , (81)

B4 ≡
∫

dk0

2π

∫
dp0

2π

k0

M(k,p)
= 1

4v2
F

q0

| �p||�k+ �p−�q|[q2
0+v2

F (|�k|+| �p|+|�k+ �p−�q|)2
] , (82)

B5 ≡
∫

dk0

2π

∫
dp0

2π

p0(k0+p0−q0)

M(k,p)
= 1

4

|�k|+| �p|+|�k+ �p−�q|
|�k|[q2

0+v2
F (|�k|+| �p|+|�k+ �p−�q|)2

] , (83)

B6 ≡
∫

dk0

2π

∫
dp0

2π

k0+p0−q0

M(k,p)
= − 1

4v2
F

q0

|�k|| �p|[q2
0+v2

F (|�k|+| �p|+|�k+ �p−�q|)2
] , (84)

B7 ≡
∫

dk0

2π

∫
dp0

2π

p0

M(k,p)
= 1

4v2
F

q0

|�k||�k+ �p−�q|[q2
0+v2

F (|�k|+| �p|+|�k+ �p−�q|)2
] , (85)

B8 ≡
∫

dk0

2π

∫
dp0

2π

1

M(k,p)
= 1

4v2
F

|�k|+| �p|+|�k+ �p−�q|
|�k|| �p||�k+ �p−�q|[q2

0+v2
F (|�k|+| �p|+|�k+ �p−�q|)2

] , (86)

with

M(k,p) ≡ (
k2

0+v2
F |�k|2)(p2

0+v2
F | �p|2)[(k0+p0−q0)2+v2

F |�k+ �p−�q|2]. (87)

We then have

�2a(q) = −16π2iα2v2
F

∫
d3k

(2π )3

∫
d3p

(2π )3

1

|�q−�k|2
1

|�q− �p|2
{
B1γ

0−B2vF �p· �γ−B3vF (�k+ �p−�q)· �γ

− B4v
2
F γ 0(�k+ �p−�q)· �γ �p· �γ−B5vF

�k· �γ−B6v
2
F γ 0�k· �γ �p· �γ−B7v

2
F γ 0�k· �γ (�k+ �p−�q)· �γ+B8v

3
F
�k· �γ (�k+ �p−�q)· �γ �p· �γ }

. (88)

The γ 0 component of this is

1

4
Tr[γ 0�2a(q)] = −4π2iα2v2

F

∫
d3k

(2π )3

∫
d3p

(2π )3

1

|�q−�k|2
1

|�q− �p|2
{
4B1−4B4v

2
F �p·(�k+ �p−�q)−4B6v

2
F
�k· �p−4B7v

2
F
�k·(�k+ �p−�q)

}
= −4π2iα2v2

F q0

∫
d3k

(2π )3

∫
d3p

(2π )3

1

|�q−�k|2
1

|�q− �p|2
1

q2
0+v2

F (|�k|+| �p|+|�k+ �p−�q|)2

×
{

1− �p
| �p| ·

�k+ �p−�q
|�k+ �p−�q|+

�k
|�k| ·

�p
| �p|−

�k
|�k| ·

�k+ �p−�q
|�k+ �p−�q|

}
, (89)

while the spatial components are

1

4
Tr[γ i�2a(q)] = −4π2iα2v2

F

∫
d3k

(2π )3

∫
d3p

(2π )3

1

|�q−�k|2
1

|�q− �p|2
× {−4B2vF pi−4B3vF (ki+pi−qi)−4B5vF ki+4B8v

3
F [ki �p·(�k+ �p−�q)−(ki+pi−qi)�k· �p+pi

�k·(�k+ �p−�q)]
}

= −4π2iα2v2
F

∫
d3k

(2π )3

∫
d3p

(2π )3

1

|�q−�k|2
1

|�q− �p|2
|�k|+| �p|+|�k+ �p−�q|

q2
0+v2

F (|�k|+| �p|+|�k+ �p−�q|)2

×
{
− ki

|�k|−
pi

| �p|+
ki+pi−qi

|�k+ �p−�q| +ki(| �p|2− �p·�q)+pi(|�k|2−�k·�q)+qi
�k· �p

|�k|| �p||�k+ �p−�q|

}
. (90)
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If we choose the coordinates such that �q = (0,0,|�q|), then it becomes apparent that the terms of the integrand which are
proportional to kx,ky or px,py are odd functions of these variables, implying that these terms vanish upon integration. We may
then make the replacement ki → qi

�k·�q/|�q|2, and similarly for pi . The total integral is therefore proportional to qi :

1

4
Tr[γ i�2a(q)] = −4π2iα2v3

F qi

|�q|2
∫

d3k

(2π )3

∫
d3p

(2π )3

1

|�q−�k|2
1

|�q− �p|2
|�k|+| �p|+|�k+ �p−�q|

q2
0+v2

F (|�k|+| �p|+|�k+ �p−�q|)2

×
{
−

�k·�q
|�k| − �p·�q

| �p| + (�k+ �p−�q)·�q
|�k+ �p−�q| +| �p|2�k·�q+|�k|2 �p·�q+|�q|2�k· �p−2(�k·�q)( �p·�q)

|�k|| �p||�k+ �p−�q|

}
. (91)

Extracting the divergence in the temporal part. To extract the divergent logarithm term in the temporal part of the two-loop
self-energy [Eq. (89)], we must examine the behavior of the quadruple integral in the region |�k|,| �p| � |�q|. In this regime, the
integral reduces to

1

4
Tr[γ 0�2a(q)] = −4π2iα2v2

F q0

∫
d3k

(2π )3

∫
d3p

(2π )3

1

|�k|2
1

| �p|2
1

q2
0+v2

F (|�k|+| �p|+|�k+ �p|)2

{
1− �p·(�k+ �p)

| �p||�k+ �p|−
�k·(�k+ �p)

|�k||�k+ �p|+
�k· �p

|�k|| �p|

}
,

(92)

where we have discarded terms which become odd under the change of variable �k → −�k, �p → − �p in the limit of large |�k|,| �p|.
To perform the remaining integrals, we switch to prolate spheroidal coordinates:

| �p| = |�k|
2

(cosh μ − cos ν), |�k + �p| = |�k|
2

(cosh μ + cos ν), �k · �p = |�k|2
2

(cosh μ cos ν − 1),

�p · (�k + �p) = |�k|2
4

(
cosh2 μ + cos2 ν − 2

)
, |�k| + | �p| + |�k + �p| = |�k|(cosh μ + 1),

d3p = |�k|3
8

sinh μ sin ν(cosh2 μ − cos2 ν). (93)

Using spherical coordinates for �k and performing the trivial integrations over θ and over the angular variables associated with �k,
we find

1

4
Tr[γ 0�2a(q)] = iα2v2

F q0

π2

∫ �

0
d|�k||�k|

∫
dμ dν

sinh μ sin ν

q2
0 + v2

F |�k|2(cosh μ + 1)2

sin2 ν sinh2 μ

2

(cosh μ − cos ν)2
. (94)

Next, we perform the integration over |�k|:∫ �

0
d|�k||�k| 1

q2
0 + v2

F |�k|2(1 + cosh μ)2
= 1

2(1 + cosh μ)2v2
F

ln

(
1 + v2

F �2

q2
0

(1 + cosh μ)2

)
, (95)

and define x ≡ cosh μ, y ≡ cos ν to obtain

1

4
Tr[γ 0�2a(q)] = iα2q0

4π2

∫ ∞

1
dx

x − 1

(1 + x)2
ln

(
1 + v2

F �2

q2
0

(1 + x)2

)∫ 1

−1
dy

1 − y2

(x − y)2

= iα2q0

π2

∫ ∞

1
dx

x − 1

(1 + x)2
ln

(
1 + v2

F �2

q2
0

(1 + x)2

)
(x arccothx − 1)]

= iα2q0

2π2
(10 − π2) ln

vF �

q0
+ finite = iq0

2π2
(10 − π2)α2 ln

�

|�q| + finite. (96)

Extracting the divergence in the spatial part. To extract the divergent logarithm term in the spatial part of the two-loop
self-energy [Eq. (91)], we must examine the behavior of the quadruple integral in the region |�k|,| �p| � |�q|. It helps to first
redefine �k → �k+�q:

1

4
Tr[γ i�2a(q)] = −4π2iα2v3

F qi

|�q|2
∫

d3k

(2π )3

∫
d3p

(2π )3

1

|�k|2
1

|�q− �p|2
|�k+�q|+| �p|+|�k+ �p|

q2
0+v2

F (|�k+�q|+| �p|+|�k+ �p|)2

×
{
− (�k+�q)·�q

|�k+�q| − �p·�q
| �p| + (�k+ �p)·�q

|�k+ �p| +| �p|2(�k+�q)·�q+|�k+�q|2 �p·�q+|�q|2�k· �p−2(�k·�q)( �p·�q)−|�q|2 �p·�q
|�k+�q|| �p||�k+ �p|

}
. (97)
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We then make the following expansions in the large-momentum limit:

|�k+�q| ≈ |�k|+
�k·�q
|�k| ,

1

|�k+�q|≈
1

|�k|−
�k·�q
|�k|3 ,

1

| �p−�q|≈
1

| �p|+
�p·�q
| �p|3 ,

|�k+�q|+| �p|+|�k+ �p|
q2

0+v2
F (|�k+�q|+| �p|+|�k+ �p|)2

≈ 1

q2
0+v2

F (|�k|+| �p|+|�k+ �p|)2

[
|�k|+| �p|+|�k+ �p|+q2

0−v2
F (|�k|+| �p|+|�k+ �p|)2

q2
0+v2

F (|�k|+| �p|+|�k+ �p|)2

�k·�q
|�k|

]
≡ Q(�k, �p)+R(�k, �p)

�k·�q
|�k| , (98)

where the last equality defines the functions Q(�k, �p) and R(�k, �p). We then have

1

4
Tr[γ i�2a(q)] = −4π2iα2v3

F qi

|�q|2
∫

d3k

(2π )3

∫
d3p

(2π )3

1

|�k|2| �p|2
(

1+2
�p·�q
| �p|2

)[
Q(�k, �p)+R(�k, �p)

�k·�q
|�k|

]

×
{

− �p·�q
| �p| + (�k+ �p)·�q

|�k+ �p| − (�k+�q)·�q
|�k|

(
1−

�k·�q
|�k|2

)
+| �p|(�k+�q)·�q

|�k||�k+ �p|

(
1−

�k·�q
|�k|2

)
+ |�k| �p·�q

| �p||�k+ �p|

(
1+

�k·�q
|�k|2

)

+ |�q|2�k· �p
|�k|| �p||�k+ �p|

(
1−

�k·�q
|�k|2

)
−2

(�k·�q)( �p·�q)

|�k|| �p||�k+ �p|

(
1−

�k·�q
|�k|2

)
− |�q|2 �p·�q

|�k|| �p||�k+ �p|

(
1−

�k·�q
|�k|2

)}
. (99)

The terms that scale as the inverse sixth power in the momenta
�k, �p give rise to a logarithmic divergence. These are the terms
we are interested in. There are also terms in Eq. (99) which
scale as the inverse fifth power and so would seem to produce
a linear divergence. However, these terms vanish identically as
can be seen by performing a coordinate transformation �k →
−�k, �p → − �p. We isolate each of the terms which contribute to
the logarithmic divergence in the following series of integrals:

�1 =
∫

d3k

(2π )3

∫
d3p

(2π )3

Q(�k, �p)

|�k|2| �p|2

(
(�k·�q)2

|�k|3 −|�q|2
|�k|

)
, (100)

�2 = −
∫

d3k

(2π )3

∫
d3p

(2π )3

Q(�k, �p)

|�k|2| �p|2
| �p|

|�k+ �p|

(
(�k·�q)2

|�k|3 −|�q|2
|�k|

)
,

(101)

�3 =
∫

d3k

(2π )3

∫
d3p

(2π )3

Q(�k, �p)

|�k|2| �p|2
(�k·�q)( �p·�q)

|�k|| �p||�k+ �p| , (102)

�4 =
∫

d3k

(2π )3

∫
d3p

(2π )3

Q(�k, �p)

|�k|2| �p|2
|�q|2(�k· �p)

|�k|| �p||�k+ �p| , (103)

�5 = −2
∫

d3k

(2π )3

∫
d3p

(2π )3

Q(�k, �p)

|�k|2| �p|2
(�k·�q)( �p·�q)

|�k|| �p||�k+ �p| = −2�3,

(104)

�6 = −2
∫

d3k

(2π )3

∫
d3p

(2π )3

Q(�k, �p)

|�k|2| �p|2
(�k·�q)( �p·�q)

|�k|| �p|2 , (105)

�7 = −2
∫

d3k

(2π )3

∫
d3p

(2π )3

Q(�k, �p)

|�k|2| �p|2
( �p·�q)2

| �p|3 , (106)

�8 = 2
∫

d3k

(2π )3

∫
d3p

(2π )3

Q(�k, �p)

|�k|2| �p|2
( �p·�q)(�k+ �p)·�q

| �p|2|�k+ �p| , (107)

�9 = 2
∫

d3k

(2π )3

∫
d3p

(2π )3

Q(�k, �p)

|�k|2| �p|2
(�k·�q)( �p·�q)

|�k|| �p||�k+ �p| = 2�3,

(108)

�10 = 2
∫

d3k

(2π )3

∫
d3p

(2π )3

Q(�k, �p)

|�k|2| �p|2
|�k|( �p·�q)2

| �p|3|�k+ �p| , (109)

�11 = −
∫

d3k

(2π )3

∫
d3p

(2π )3

R(�k, �p)

|�k|2| �p|2
(�k·�q)2

|�k|2 , (110)

�12 = −
∫

d3k

(2π )3

∫
d3p

(2π )3

R(�k, �p)

|�k|2| �p|2
(�k·�q)( �p·�q)

|�k|| �p| , (111)

�13 =
∫

d3k

(2π )3

∫
d3p

(2π )3

R(�k, �p)

|�k|2| �p|2
(�k·�q)(�k+ �p)·�q

|�k||�k+ �p| , (112)

�14 =
∫

d3k

(2π )3

∫
d3p

(2π )3

R(�k, �p)

|�k|2| �p|2
| �p|(�k·�q)2

|�k|2|�k+ �p| , (113)

�15 =
∫

d3k

(2π )3

∫
d3p

(2π )3

R(�k, �p)

|�k|2| �p|2
(�k·�q)( �p·�q)

| �p||�k+ �p| , (114)

To perform these integrals, we again make use of prolate
spheroidal coordinates for �p and ordinary spherical coordi-
nates for �k, in which case we have

Q(�k, �p) → |�k|(cosh μ+1)

q2
0+v2

F |�k|2(cosh μ+1)2
≡ Q̃(μ,|�k|),

R(�k, �p) → q2
0−v2

F |�k|2(cosh μ+1)2[
q2

0+v2
F |�k|2(cosh μ+1)2

]2 ≡ R̃(μ,|�k|).

(115)

In addition to the relations given in Eq. (93), we also make use
of the following:

�k · �q = |�k||�q| cos θk,

�p · �q = |�k|
2

[qx sinh μ sin ν cos θ + qy sinh μ sin ν sin θ

+ qz(cosh μ cos ν − 1)]. (116)

Here, θk is the polar coordinate associated with �k. After we plug
these expressions into the �i , we first perform the integrations
over θ as well as over φk , the azimuthal coordinate associated
with �k. All the remaining four-dimensional integrals are then
functions of qx and qy only in the combination q2

x + q2
y , which

we may rewrite as |�q|2 − q2
z . We then set qz = |�q| cos θk
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and perform all the θk integrations, which are easily done.
Replacing cosh μ → x, cos ν → y, we then find the following
results:

10∑
i=1

�i = |�q|2
12π4

∫ ∞

1
dx

∫ 1

−1
dy

∫ �

0
d|�k|

× |�k|(1 + x)(x + y − 2)(1 − y2)[
q2

0 + v2
F |�k|2(1 + x)2

]
(x − y)3

,

15∑
i=11

�i = |�q|2
24π4

∫ ∞

1
dx

∫ 1

−1
dy

∫ �

0
d|�k|

× |�k|[q2
0 − v2

F |�k|2(1 + x)2
]
(x − 1)(1 − y2)[

q2
0 + v2

F |�k|2(1 + x)2
]2

(x − y)2
.

(117)

Each 3D integral is logarithmically divergent, and the coeffi-
cient of the divergence can be computed straightforwardly by
first performing the |�k| integrals exactly and keeping only the
term proportional to ln(vF �/q0). The remaining integrals on
x and y can also be done exactly. The results are

10∑
i=1

�i = − (10 − π2)|�q|2
12π4v2

F

ln

(
�

|�q|
)

+ finite,

15∑
i=11

�i = − (10 − π2)|�q|2
24π4v2

F

ln

(
�

|�q|
)

+ finite, (118)

and thus

15∑
i=1

�i = − (10 − π2)|�q|2
8π4v2

F

ln

(
�

|�q|
)

+ finite, (119)

1

4
Tr[γ i�2a(q)] = 4π2iα2v3

F qi

|�q|2
(10 − π2)|�q|2

8π4v2
F

ln

(
�

|�q|
)

= i(10 − π2)

2π2
α2vF qi ln

(
�

|�q|
)

. (120)

Combining this with what we obtained for the temporal part,
we then have for the full diagram

�2a(q) = i
10 − π2

2π2
(q0γ

0 + vF �q · �γ )α2 ln

(
�

|�q|
)

. (121)

FIG. 9. Two-loop bubble correction to the electron self-energy
�2c(q).

C. Two-loop bubble correction to self-energy

The two-loop bubble correction to the self-energy is shown
in Fig. 9. This diagram evaluates to

�2c(q) = −
∫

d4k

(2π )4
γ 0G0(q−k)γ 0�B(k)V 2

k , (122)

where �B(q) is the result for the one-loop bubble diagram
given in Eq. (11). To compute this integral, we will devise
a streamlined approach to computing self-energy diagrams
that contain vacuum polarization subdiagrams. In other words,
consider the more general situation where �B (k) is replaced by
an arbitrary polarization function �(k). Dimensional analysis
tells us that �(k) must have the following general form:

�(k) = |�k|2
vF

[
F (z) ln

(
�

|�k|

)
+ G(z)

]
, (123)

where z = k0/(vF |�k|) as usual, and F (z) and G(z) are arbitrary
functions. Using this form, we can rewrite our expression for
the corresponding self-energy �(q) as

�(q) = −8πiα2v2
F

∫ ∞

−∞
dz

∫
d3k

(2π )3

1

|�k|γ
0 /q − /k

(q − k)2
γ 0

×
[
F (z) ln

(
�

|�k|

)
+ G(z)

]
. (124)

We are only interested in the logarithmically divergent terms,
so we expand the fermion propagator in the limit of large �k:

γ 0 /q−/k

(q − k)2
γ 0 → 1

v2
F |�k|2

[
1−z2

(1+z2)2
q0γ

0− z2 + 1/3

(1 + z2)2
vF �q · �γ

]
.

(125)

We then have

�(q)=−4iα2

π

∫ ∞

−∞
dz

[
1 − z2

(1 + z2)2
q0γ

0− z2 + 1/3

(1 + z2)2
vF �q · �γ

]
×

∫ �

|�q|
d|�k| 1

|�k|

[
F (z) ln

(
�

|�k|

)
+ G(z)

]
. (126)

The integral over |�k| is easily performed, allowing us to express
the self-energy as

�(q) = −4iα2

π

{
[A2q0γ

0 − B2vF �q · �γ ] ln2

(
�

|�q|
)

+ [A1q0γ
0 − B1vF �q · �γ ] ln

(
�

|�q|
)}

, (127)

where

A2 = 1

2

∫ ∞

−∞
dz F (z)

1 − z2

(1 + z2)2
,

B2 = 1

2

∫ ∞

−∞
dz F (z)

z2 + 1/3

(1 + z2)2
,

A1 =
∫ ∞

−∞
dz G(z)

1 − z2

(1 + z2)2
,

B1 =
∫ ∞

−∞
dz G(z)

z2 + 1/3

(1 + z2)2
. (128)
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We are now ready to evaluate �2c(q). From the expression
for �B(q) given in Eq. (11), we have

F (z) = − N

6π2
, G(z) = N

12π2
ln

(
1 + z2

4

)
. (129)

Plugging these functions into the above expressions for A1,
etc., we find

A2 = 0, B2 = − N

18π
, A1 = − N

12π
, B1 = N

36π
.

(130)

These results then lead to the final expression for the self-
energy correction:

�2c(q) = − 2N

9π2
iα2vF �q · �γ ln2

(
�

|�q|
)

+ iN

9π2
[3q0γ

0 + vF �q · �γ ]α2 ln

(
�

|�q|
)

. (131)

Combining �2a and �2c, we then obtain the full second-
order electron self-energy:

�2(q) = − 2N

9π2
iα2vF �q · �γ ln2

(
�

|�q|
)

+ i

[(
15 + N

3π2
− 1

2

)
q0γ

0 +
(

45 + N

9π2
− 1

2

)
vF �q · �γ

]
×α2 ln

(
�

|�q|
)

. (132)

V. RENORMALIZATION

We will now demonstrate the renormalizability of our
theory and derive the renormalization group (RG) equation
for the interaction strength, Fermi velocity, and quasiparticle
residue to second order in α. We will also derive identities that
serve as valuable checks for our previous results.

All of the results derived in the previous section depend
on an ultraviolet momentum cutoff scale �. In a complete
theory (which is unknown) that takes into account the full band
structure and interaction without any approximation, the cutoff
dependence would be absent since the energy dispersion will
not be precisely linear all the way to large momenta in such an
exact theory, and therefore no explicit cutoff will be necessary.
The cutoff indicates the energy/momentum regime where our
effective low-energy theory defined by our action in Eq. (6) that
describes the excitations at the Dirac cones is no longer valid.
This high-momentum regime can be, for example, identified
with the Brillouin zone boundary, the position of a van Hove
singularity in the band structure, or simply the inverse lattice
constant. We emphasize, however, that even such an unknown
exact band theory, if it includes quantum interaction effects
correctly, would manifest the ultraviolet renormalization ef-
fects in the sense that as the theory is used to calculate lower
and lower momentum or energy properties of the system, it
would manifest a logarithmic divergence as the Dirac point is
approached, but the effective cutoff momentum entering such
an exact theory would itself be also scale dependent and not
like the fixed cutoff � appearing in our formalism, which is
based on a model linear Dirac band dispersion. In our effective
theory framework, the cutoff separates the space of low-energy

modes with known dispersion and interaction from the a priori
unknown high-energy modes, and when restricting internal
loop momenta to k < �, we essentially discard the latter.
In a complete renormalized theory, these contributions must
be taken into account separately. For observables measured
at small scales p � �, the high-energy contributions arise
from modes fluctuating over time and distance scales ∼1/�,
i.e., they appear as essentially local corrections. A simple
power-counting argument shows that only the self-energy,
the vertex, and the polarization have a strong dependence
on the high-energy cutoff, and we account for the missing
high-energy contributions by adding local terms to the action.
These terms are known as counterterms. The coefficients of
the counterterms are a priori unknown but should be chosen
in such a way that our computation gives the experimentally
observable renormalized parameters, which only depend on
the cutoff in subleading order O(p/�). As we discuss in the
following, this procedure allows us to remove any strong cutoff
dependence from the theory, yet introduces a dependence of
the renormalized parameters on a low-energy renormalization
scale. The divergence structure of the theory also determines
the running of the renormalized parameters.

This section is structured as follows: First, in Sec. V A,
we introduce the renormalized Hamiltonian and discuss the
relation between bare and renormalized parameters. This is
followed by a detailed and abstract discussion of counterterm
renormalization for 3D Dirac materials in Sec. V B. In
particular, we derive various identities that link the coefficients
of logarithmic divergences in self-energy, vertex, and polariza-
tion to the beta functions for coupling, Fermi velocity, and field
strength. In Sec. V C, we use the results of the first part of this
paper to derive the beta functions explicitly. The two-loop
RG equations have some additional corrections stemming
from the insertion of lower-order counterterms in the one-loop
diagrams, and we include a derivation of these diagrams in this
section. Based on the results for the beta function, we comment
on the critical interaction strength αc at which the RG flow
has a fixed point, possibly, but not necessarily, indicating a
breakdown of the perturbative expansion.

A. Renormalized perturbation theory

We first formulate a renormalized theory, in which we
introduce counterterms that remove logarithmic divergences as
a function of the momentum cutoff � from all results obtained
from the theory. To do so, we relabel all fields and constants in
the original theory with a superscript B to denote their “bare”
values, and then introduce renormalized fields and constants.
In other words, we rewrite the action as

S = −
N∑

a=1

∫
dt d3 �R (

ψ̄B
a γ 0∂0ψ

B
a + vF ψ̄B

a γ i∂iψ
B
a

+ϕBψ̄B
a γ 0ψB

a

) + 1

2(gB)2

∫
dt d3 �R (∂iϕ

B)2. (133)

We first rescale the electron field ψ = Z
−1/2
ψ ψB and the

Coulomb field ϕ = Z
−1/2
ϕ ϕB . If we perform this field rescaling

and rearrange terms, the action becomes

SB = S0 + Sct, (134)
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where

S0 = −
N∑

a=1

∫
dt d3 �R (ψ̄aγ

0∂tψa + vF ψ̄aγ
i∂iψa

+ϕψ̄aγ
0ψa) + 1

2g2

∫
dt d3 �R (∂iϕ)2, (135)

Sct =
N∑

a=1

∫
dt d3 �R (δ0ψ̄aγ

0∂tψa + δ1vF ψ̄aγ
i∂iψa

+ δvϕψ̄aγ
0ψa) − δp

2g2

∫
dt d3 �R (∂iϕ)2. (136)

The first part of the action S0 is just the “bare” action, but with
a renormalized Fermi velocity vF and charge g that are defined
at a momentum scale μ, which we will call the renormalization
scale. The second part Sct gives us the counterterms mentioned
above. As discussed, they have a precise meaning in that they
account for the high-energy physics that is not captured by the
low-energy theory (6). The δ coefficients in this part of the
action are given by

δ0 = 1 − Zψ, (137)

δ1 = 1 − vB
F

vF

Zψ, (138)

δv = 1 − ZψZ1/2
ϕ , (139)

δp = 1 − g2

g2
B

Zϕ. (140)

The Feynman rules associated with S0 are the same as those
given earlier for the “bare” action. Those for the counterterms
are as follows:

− i(δ0k0γ
0 + vF δ1�k · �γ ), (141)

|�k|2 δp

g2
, (142)

− iγ 0δv. (143)

B. Identities

As we have seen, when computing correlation functions
defined by the theory given by Eq. (133),

GB
n,m

[{xi},{yj }; αB,vB
F ,�

]
= 〈

T ψB
a (x1) . . . ψB

a (xn)ϕB(y1) . . . ϕB(ym)
〉
, (144)

we will encounter divergences as a function of the momentum
cutoff � in our theory. The Green’s functions acquire an ex-
plicit cutoff dependence as indicated on the left-hand side. Our
goal in defining the renormalized theory above is to eliminate
this cutoff dependence, trading it for a dependence on the scale
μ. The renormalized correlators determined from this theory,

Gn,m(x1, . . . ,xn; y1, . . . ,ym; α,vF ,μ)

= Z
−n/2
ψ GB

n,m

[
x1, . . . ,xn; y1, . . . ,ym; αB,vB

F ,�
]
, (145)

where

Gn,m({xi},{yi}; α,vF ,μ)

= 〈T ψa(x1) . . . ψa(xn)ϕ(y1) . . . ϕ(ym)〉, (146)

thus do not depend on the cutoff. The renormalized Green’s
functions are instead functions of the renormalization
scale μ, the renormalized Fermi velocity vF , and the
renormalized charge g2. As we will show in the following,
these renormalized quantities are running quantities that
depend on the scale μ, i.e., g2 = g2(μ) and vF = vF (μ),
with an evolution that is governed by renormalization group
equations. The cutoff dependence is removed by allowing
the bare parameters (the bare Fermi velocity vB

F and the
bare residue Zψ ) to depend on the cutoff so as to cancel the
divergences order by order in perturbation theory:

Zψ = 1 − Fψ (α,�,μ), (147)

Zϕ = 1 − Fϕ(α,�,μ), (148)

vB
F = vF [1 − FvF

(α,�,μ)], (149)

(gB)2 = g2[1 − Fg(α,�,μ)], (150)

where

Fψ (α,�,μ) =
∑
n�1

zψ,n(α) lnn

(
�

μ

)
, (151)

Fϕ(α,�,μ) =
∑
n�1

zϕ,n(α) lnn

(
�

μ

)
, (152)

FvF
(α,�,μ) =

∑
n�1

vn(α) lnn

(
�

μ

)
, (153)

Fg(α,�,μ) =
∑
n�1

gn(α) lnn

(
�

μ

)
. (154)

The dependence on powers of ln (�
μ

) of these functions is
required to cancel the divergences in � coming from the bare
action. The bare fine-structure constant αB can similarly be
written as

αB = α[1 − Fα(α,�,μ)], (155)

where

Fα(α,�,μ) =
∑
n�1

fn(α) lnn

(
�

μ

)
. (156)

The functions fn can be expressed as a linear combination of
the various vn’s and en’s, i.e.,

f1(α) = g1(α) − v1(α), (157)

f2(α) = g2(α) − v2(α) + g1(α)v1(α) − v1(α)2, (158)

f3(α) = g3(α) − v3(α) + g2(α)v1(α) + g1(α)v1(α)2

+ g1(α)v2(α) − 2v1(α)v2(α) − v1(α)3, (159)

and so on.
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Let us now consider the bare n-particle correlator defined
in Eq. (144). Note that by the definition of SB in Eq. (133) it
does not depend on μ, i.e.,

μ
d

dμ
GB

n,m

[{xi},{yi}; αB,vB
F ,�

] = 0. (160)

We can use this fact to derive the Callan-Symanzik equation
for the n-particle correlator (146) by combining Eq. (160) with
Eq. (145). This gives

μ
d

dμ

[
Z

n/2
ψ Gn,m({xi},{yi}; α,vF ,μ)

]∣∣
gB,vB

F

= 0. (161)

The Callan-Symanzik equation then follows by using the chain
rule: (

μ
∂

∂μ
+ βα

∂

∂α
+ vF γvF

∂

∂vF

+ nγψ

)
× Gn,m({xi},{yi}; g2,vF ,μ) = 0, (162)

where we define

βα = μ
dα

dμ

∣∣∣∣
αB

, (163)

vF γvF
= μ

dvF

dμ

∣∣∣∣
αB

, (164)

γψ

√
Zψ = μ

d

dμ

√
Zψ

∣∣∣∣
αB

, (165)

γϕ

√
Zϕ = μ

d

dμ

√
Zϕ

∣∣∣∣
αB

. (166)

Note that, by construction, the n-particle Green’s function
Gn,m({xi}; g,vF ,μ) is finite, for we determine the coefficients
in Eqs. (147), (149), and (150) precisely to remove the
divergent terms. This implies that βg , γvF

, and γψ must be
free of any divergences in �. In addition, it turns out that βα ,
γvF

, γψ , and γϕ are independent of vF .
Let us now relate βα , βvF

, γψ , and γϕ to the coefficients
of the divergent pieces in Eqs. (147) and (149). First, let us
consider the coupling α. Since the bare coupling αB cannot
depend on μ,

μ
d

dμ
αB

∣∣∣∣
αB

= 0. (167)

If we now substitute in Eq. (155), we get

μ
d

dμ
{α[1 − Fα(α,�,μ)]}

∣∣∣∣
αB

= 0 (168)

or

βα[1 − Fα(α,�,μ)] − μα
d

dμ
[1 − Fα(α,�,μ)]

∣∣∣∣
gB,vB

F

= 0.

(169)

We can rewrite this as

βα = Fα(α,�,μ)βα

−α

(
βα

∂

∂α
+ vF γvF

∂

∂vF

+ μ
∂

∂μ

)
Fα(α,�,μ). (170)

Since βα must be finite, it is completely determined by f1(α):

βα = −αf1(α). (171)

Higher-order terms obey the recursion relation

(n + 1)fn+1(α) = βα

[
fn(α) + α

∂fn

∂α

]
+ αvF γvF

∂fn

∂vF

.

(172)

We can derive similar relations for the Fermi velocity anoma-
lous dimension γvF

. Requiring that the bare Fermi velocity be
constant in μ yields

γvF
= γvF

FvF
(α,�,μ)

+
[
βα

∂

∂α
+ vF γvF

∂

∂vF

+ μ
∂

∂μ

]
FvF

(α,�,μ), (173)

from which, by a similar method as for g above, we obtain the
relations

γvF
= −v1(α) (174)

and

(n + 1)vn+1(α) =
(

γvF
+ βα

∂

∂α
+ vF γvF

∂

∂vF

)
vn(α). (175)

We may also derive such a relation for the field anomalous
dimensions γψ (α) and γϕ(α). The relations for the renormal-
ization of ψ are

γψ (α) = 1

2
zψ,1(α) (176)

and

(n + 1)zψ,n+1(α) =
(

βα(α)
∂

∂α
− 2γψ (α)

)
zψ,n(α), (177)

and those for ϕ are

γϕ(α) = 1

2
z1,ϕ(α) (178)

and

(n + 1)zϕ,n+1(α) =
(

βα(α)
∂

∂α
− 2γϕ(α)

)
zϕ,n(α). (179)

C. RG analysis

We now pursue the RG analysis for our system, deriving
the counterterms and RG equations and performing some
important checks on our results.

1. One-loop RG analysis

The divergent part of the first-order self-energy [Eq. (12)]
is

�1(q) = i
2α

3π
ln

(
�

|�q|
)

vF �q · �γ + finite. (180)

This divergence can be canceled out by the self-energy-like
counterterm (141). This, in fact, yields the values of δ0 and δ1

to O(α); we find that δ0 = O(α2), and thus there is no field
strength renormalization Zψ to this order, and that

δ1 = 2α

3π
ln

(
�

μ

)
+ O(α2). (181)
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FIG. 10. Diagram corresponding to the counterterm �SE,CT (q)
for the two-loop self-energy polarization diagram.

The leading-order polarization, as we see from Eq. (11), is
divergent as well. This divergence may be canceled by the
Coulomb propagatorlike counterterm (142). This defines the
renormalization δp to order O(α):

δp = 2αN

3π
ln

(
�

μ

)
+ O(α2). (182)

Finally, the vertex correction at �q = 0 is given by

∼
∫

d4k

(2π )4

g2

|�k|2 iγ 0 i

/k
iγ 0 i

/k
iγ 0 = 0. (183)

Any divergence here would be canceled by the vertex coun-
terterm (143). We see that there is no divergence, and thus
δv = O(α2).

2. Two-loop RG analysis

The divergent parts of the two-loop contributions to
polarization, given by Eqs. (34) and (71), are

�SE(q) ≈ |�q|2
g2

2α2

9π2
N

{
ln2

(
�

|�q|
)

+ 1

3

[
2(z2 + 4)

z2 + 1

+ 3 ln

(
4

z2 + 1

)]
ln

(
�

|�q|
)}

(184)

and

�V (q) ≈ −|�q|2
g2

α2

2π2
NC ln

(
�

|�q|
)

. (185)

The diagram corresponding to the counterterm that cancels
out the divergence in �SE(q) is shown in Fig. 10, and we will
denote it by �SE,CT (q). We find that it is given by

�SE,CT (q)

= 2iδ1N

∫
d4k

(2π )4
tr

[
iγ 0 i

/k + /q
iγ 0 i

/k
vF

�k · �γ i

/k

]
= −|�q|2

g2
δ1

2α

3π
N

[
ln

�

|�q| − z2

z2 + 1
− 1

2
ln

(
z2 + 1

4

)]
= −|�q|2

g2

4α2

9π2
N ln

�

μ

[
ln

�

|�q| − z2

z2 + 1
− 1

2
ln

(
z2 + 1

4

)]
.

(186)

(a) (b)

(c)

FIG. 11. (a) Coulomb counterterm contribution to the second-
order self-energy counterterm diagrams �2ct (q). This is the only
nonvanishing contribution. (b) Self-energy counterterm contribution.
This diagram vanishes for the same reason that the “rainbow” diagram
is zero. (c) Vertex counterterm contribution. This diagram only
contributes at orders higher than α2.

Since the vertex renormalization is zero to leading order [cf.
Eq. (183)], there is no contribution from

= O(α3). (187)

If we now add �SE and �SE,CT , we find that it partially cancels
the divergence from �SE ; all that is left behind are ln2 and ln
terms with constant coefficients:

�SE(q) + �SE,CT (q)

= |�q|2
g2

2α2

9π2
N

{
ln2

(
μ

|�q|
)

+ 1

3

[
2(z2 + 4)

z2 + 1

+ 3 ln

(
4

z2 + 1

)]
ln

(
μ

|�q|
)}

+ |�q|2
g2

2α2

9π2
N

[
− ln2

(
�

μ

)
+ 8

3
ln

(
�

μ

)]
. (188)

This remaining divergence plus that coming from �V may
then be canceled by adding the appropriate terms to δp. Upon
doing so, δp becomes

δp = 2α

3π
N

[
1+

(
3

4
C− 8

9

)
α

π

]
ln

(
�

μ

)
+ 2α2

9π2
N ln2

(
�

μ

)
.

(189)

We now turn our attention to the two-loop self-energy
diagrams. There is only one nonvanishing second-order self-
energy counterterm diagram, namely, the one involving the
counterterm Coulomb propagator, shown in Fig. 11. This
diagram evaluates to

�2ct = −iδp

∫
d4k

(2π )4
γ 0 /k + /q

(k + q)2
γ 0 g4

|�k|4
|�k|2
g2

= δp�1(q) = i
4N

9π2
α2vF �q · �γ ln

�

|�q| ln
�

μ
. (190)

This has precisely the form needed to remove the ln2 term
from �2(q) provided we add appropriate second-order terms
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to δ1:

δ1 = 2α

3π
ln

(
�

μ

)
+ 2N

9π2
α2 ln2

(
�

μ

)
+

(
45 + N

9π2
− 1

2

)
α2 ln

(
�

μ

)
+ O(α3). (191)

δ0 also receives contributions at second order:

δ0 =
(

15 + N

3π2
− 1

2

)
α2 ln

(
�

μ

)
+ O(α3). (192)

3. Beta functions and RG equations

We are now in a position to determine the RG equations
describing the various couplings in our theory. We do this
by determining the coefficients in the F functions defined by
Eqs. (147)–(150). As we saw above, we can then immediately
read off the beta functions and anomalous dimensions from
these and thus obtain the associated RG equations.

Let us begin with Zψ . From Eq. (137), we see that, to second
order in α, it is just

Zψ = 1 −
(

15 + N

3π2
− 1

2

)
α2 ln

(
�

μ

)
. (193)

This immediately tells us z1,ψ (α),

z1,ψ (α) =
(

15 + N

3π2
− 1

2

)
α2, (194)

and thus γψ ,

γψ =
(

15 + N

6π2
− 1

4

)
α2. (195)

The RG equation for Zψ is thus

d ln Zψ

d ln μ
=

(
15 + N

3π2
− 1

2

)
α2. (196)

Next, we will look at vF . We first solve Eq. (138) for vB
F

vF
:

vB
F

vF

= 1 − δ1

Zψ

= 1 − δ1

1 − δ0
. (197)

Using our results, we find that, to order α2, vB
F

vF
is

vB
F

vF

= 1 − 2α

3π
ln

(
�

μ

)
+ 2N

9π2
α2 ln

(
�

μ

)
− 2N

9π2
α2 ln2

(
�

μ

)
. (198)

This immediately tells us v1(α) to second order:

v1(α) = 2α

3π
− 2N

9π2
α2. (199)

The RG equation for vF is then

d ln vF

d ln μ
= γvF

= −v1(α) = − 2α

3π
+ 2N

9π2
α2. (200)

It is interesting to note that the second-order correction to
the RG flow of the velocity only depends on the self-energy
correction coming from the RPA-type bubble diagram shown

in Fig. 9, while the contribution coming from Fig. 8 cancels
out exactly.

Next, we look at Zϕ . As is shown in Appendix C, 1 − δv =
Zψ , and thus, to second order in α, Zϕ = 1. We therefore
find that Zϕ remains constant for all values of μ. Finally, we

consider g2. Solving Eq. (140) for (gB )2

g2 gives us

(gB)2

g2
= 1

1 − δp

. (201)

Expanding to second order in α, we get

(gB)2

g2
= 1 + 2α

3π
N

[
1 +

(
3

4
C − 8

9

)
α

π

]
ln

(
�

μ

)
+ 2α2

9π2
N (2N + 1) ln2

(
�

μ

)
. (202)

From this, we can now read off g1(α):

g1(α) = − 2α

3π
N

[
1 +

(
3

4
C − 8

9

)
α

π

]
. (203)

We can now determine f1(α) and thus the RG equation for α.
The former is

f1(α) = −2

3
(N + 1)

α

π
−

(
1

2
C − 22

27

)
N

(
α

π

)2

, (204)

and the latter is
dα

d ln μ
= −αf1(α) = 2(N + 1)

3π
α2 + 27C − 44

54π2
Nα3. (205)

These equations agree exactly with those that we would obtain
directly from the Callan-Symanzik equation; we show this in
Appendix D. If we calculate the value of the coefficient of the
α3 term, then we find that it is negative:

27C − 44

54π2
= −0.015 018 4. (206)

Therefore, we find that there are two fixed points for this
equation, similarly to the case of graphene [65], α = 0 and

αc = 36π

44 − 27C

(
1 + 1

N

)
= 14.1298

(
1 + 1

N

)
. (207)

If we start with a value below the latter critical value α < αc, at
a large scale μ, then α will go to zero as we decrease μ. On the
other hand, if we start with α > αc, then we instead find that
α diverges to infinity as μ decreases, indicating a runaway
to infinite coupling. Similar behavior was also found in
graphene [65], although in that case the corresponding critical
coupling is much smaller: αc = 0.78. In the present context of
3D Dirac materials, however, an additional interesting feature,
not present in 2D graphene, arises. Notice that the second-order
correction to the velocity RG equation (200) also differs in sign
from the leading-order term, implying the existence of a second
special value of α, this time at α∗ = 3π/N . If we start with
α < α∗, then the velocity grows monotonically as μ decreases,
while for α > α∗ the velocity is initially suppressed as μ

decreases. Moreover, since α∗ < αc for all values of N , there
exists a window of couplings α∗ < α < αc, in which both the
coupling and velocity become smaller with decreasing μ.
This behavior persists until α falls below α∗, at which point
the velocity reverses course and grows as the low-energy,
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FIG. 12. (Color online) Numerical solution of the RG equations
for α (dark gray, red online) and vF (light gray, blue online) for
α(μ0) = 0.9 and N = 12, which are typical values for the pyrochlore
iridates. Since α(μ0) is far below αc, indicated by the red dashed line,
we find that it increases for small μ, then saturates to αc. vF , on the
other hand, decreases as μ increases up to about μ ≈ 0.95μ0, then
starts increasing. This is better illustrated in Fig. 13.

noninteracting fixed point is approached. Thus, we find that
for sufficiently large interaction strengths, the velocity exhibits
nonmonotonic behavior as the weak-coupling fixed point is
approached at the Dirac point. We illustrate this behavior in
Figs. 12 and 13, in which we show a numerical solution of
the RG equations for α and vF for α(μ0) = 0.9 and N = 12,
typical values for the pyrochlore iridates. This nonmonotonic
running of the velocity for α∗ < α < αc is in total contrast to
graphene velocity renormalization, which is always monotonic
for all coupling constants.

One noteworthy feature of the RG flow for the Fermi
velocity that creates a major contrast to graphene is the fact
that, unlike in graphene, where the Fermi velocity diverges at
low energy [56,60,65] (at least for a strictly nonrelativistic,
instantaneous interaction; in the real system with relativistic
interactions, this growth will cease when the Fermi velocity
reaches the speed of light) the Fermi velocity remains finite in
the limit that the energy scale goes to zero (i.e., at the Dirac
point). This can be traced back to the fact that, in graphene,
charge does not renormalize, as shown in Table I. As a result,
since graphene becomes weakly interacting at low-energy
scales, the Fermi velocity must diverge. This is not the case for
3D Dirac materials. Because charge can renormalize in this
case, there is another way for the system to become weakly

FIG. 13. (Color online) Plot of vF alone, with the range for μ

adjusted to better illustrate the nonmonotonic behavior of vF .

interacting at low energy, and that is for the charge to go
to zero. This is exactly what happens here. As a result, the
Fermi velocity remains finite, even at low energies; it simply
renormalizes to a different value. Thus, the nature of ultraviolet
renormalization in 3D and 2D Dirac materials is qualitatively
different.

As in the case of graphene [65], the appearance of αc and α∗
in 3D Dirac systems may be a manifestation of the breakdown
of perturbation theory (due to the asymptotic nature of the
perturbative expansion in α) rather than real quantum phase
transitions, particularly since these points precisely correspond
to the second-order corrections becoming comparable in
magnitude to the leading-order results. Following Dyson’s
original argument for QED [83], we can obtain an estimate
for the order of the expansion beyond which the perturbative
results can no longer be trusted [65,84]:

n ≈ 3.097 97

α3/2
. (208)

Here, n is the expected perturbative order up to which the loop
expansion in the effective fine-structure constant is asymptotic,
with the perturbation series diverging beyond the nth order.
As an example, let us consider Cd3As2: the experimental
values [24–26] of the Fermi velocity are typically in the
range 105–106 m/s, while the dielectric constant has been
measured to be κ ∼ 20–40 [67,68], suggesting coupling values
in the range α ∼ 0.1–1. Equation (208) then suggests that
our second-order perturbative analysis is likely to be valid
for coupling values toward the lower end of this range, but
as α approaches unity, the results become questionable. If we
interpret α∗ as a signature of the breakdown of the perturbative
expansion, then we would further conclude that the validity of
perturbation theory also depends on N since α∗ is inversely
proportional to N . For a material like Cd3As2 for which N = 1,
we find α∗ = 3π ≈ 9.4, which is more or less consistent
with Eq. (208). However, for the pyrochlore iridates [3] with
N = 12, we instead obtain α∗ = π/4 ≈ 0.8, which may call
into question the applicability of perturbation theory for these
materials if their effective interaction strength α satisfies
α � α∗. The fact that perturbation theory would seem to be
more reliable in the regime of smaller N is interesting given
that this is precisely complementary to the regime in which
RPA or a large-N expansion is valid [62,66]. It would appear
that perturbation theory and RPA/large N are in this sense
complementary to one another.

In contrast to QED, where the bare coupling is fixed to
be ∼ 1

137 so that the perturbative expansion is asymptotic to a
very high order, the 3D Dirac materials enable, in principle,
an investigation of both the running of the coupling for a
specific material and the analysis of the asymptotic nature of
the underlying field theory by varying the Dirac material so as
to modify the bare coupling from a value as small as 0.1 to as
large as 1.

4. Consistency check

We will now apply the recursion relations for the coun-
terterms (172) and (175) to our results to ensure that they
are satisfied, thus providing a compelling check on our
calculations. To be exact, we can show that our results for
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f1(α) and v1(α), at order α, along with the beta functions
and anomalous dimensions determined in the previous section,
give the same values of f2(α) and v2(α) to order α2 that we
determined directly from our two-loop calculations.

Let us start with the relation for α, Eq. (172). We already
found f1(α) in the previous section, so we only need to
determine f2(α). Using the previously stated formula for this
function, we find that, to order α2,

f2(α) = g2(α) − v2(α) + g1(α)v1(α) − v1(α)2

= − 4α2

9π2
(N + 1)2. (209)

Now let us check that we obtain this result from our recursion
relation. If we substitute f1(α) and βα into Eq. (172) and only
keep the lowest-order terms, we obtain

2αf2(α) = −2(N + 1)

3π
α2

(
1 + α

∂

∂α

)
2(N + 1)

3π
α

= −8(N + 1)2

9π2
α3. (210)

This gives us the value of f2(α) stated above.
We may similarly apply the relation for vF , Eq. (175). We

may immediately read off v2(α) from our previous results:

v2(α) = 2N

9π2
α2. (211)

Again, we wish to show that we obtain this same result from
the recursion relation. Substituting v1(α), γvF

, and βα into
Eq. (175) and keeping only the lowest-order terms, we find that

2v2(α) =
(

− 2α

3π
+ 2(N + 1)

3π
α2 ∂

∂α

)
2α

3π

= 4N

9π2
α2. (212)

We thus obtain the same value of v2(α) stated above.

VI. EXPERIMENTAL DETECTION

In this section, we discuss how the running of the
quasiparticle properties discussed in the previous sections
can be detected in experiment. Such an experiment has
to extract either the Fermi velocity or the fine-structure
constant over a parameter range to check for scaling. Previous
experiments on 2D Dirac materials had precise control over
temperature, doping, and disorder, all of which are competing
scales that cut off the intrinsic renormalization group flow
at low energies, possibly masking the intrinsic Dirac point
physics. For example, varying the doping by means of an
external gate potential, the Fermi velocity renormalization
induces an increase in the Fermi velocity as smaller densities
(corresponding to smaller Fermi energies) are probed [56].

It appears that at the present time, a comparable control
over 3D Dirac material properties is still lacking. While initial
experiments have reported control over the bulk detuning by
varying the surface doping [23], this might not yet be sufficient
to provide definite signatures of renormalization. In addition,
typical samples can have strong disorder. However, a clear
observation of scaling does not require the suppression of all
relevant perturbations, but rather a hierarchy of scales where

one parameter (for example, the temperature) can be tuned
to large values compared to any other scale (for example,
the doping). In this section, we discuss this largely overlooked
alternative way of detecting renormalization effects by varying
the temperature.

This section is structured as follows: First, we give an
example for the integrated charge renormalization to leading
order in α which can be obtained in closed analytical form,
thereby introducing the Landau pole scale which signifies
a divergence in the renormalized coupling. Second, we
illustrate the effects of finite temperature on the Drude weight
as obtained from kinetic theory as a generic example of
an observable that can be detected in optical conductivity
measurements. We show that the Drude weight of an ex-
trinsic system (i.e., with finite doping) at finite temperature
assumes the same value as the Drude weight of an intrinsic
system, i.e., increasing the temperature probes the intrinsic
system irrespective of initial detuning. The renormalization
is then apparent in an additional temperature dependence
of the quasiparticle parameters giving rise to a deviation
from the intrinsic unrenormalized linear-in-temperature scal-
ing. In the third subsection, we present a calculation of the
plasmon behavior to leading order in RPA, which naturally
incorporates the effect of finite doping and the renormalization
of α. Thus, by studying plasmon properties experimentally as
a function of doping density and/or temperature, it should be
possible to verify the ultraviolet renormalization and the RG
flow of 3D Dirac system many-body effects.

A. Coupling constant renormalization and Landau pole

To illustrate the coupling constant renormalization, we
consider the renormalization group flow of the coupling to
one loop. As derived in Eq. (205), the renormalization group
equation is

dα

d ln μ
= 2(N + 1)α2

3π
. (213)

If the beta function has negative sign, the coupling becomes
weaker with increasing energy scale; this is the situation
encountered in quantum chromodynamics, where the perturba-
tive high-energy limit is known as asymptotic freedom. In the
present theory, however, the coupling increases with increasing
energy scale, just like in quantum electrodynamics. Starting in
a perturbative regime at small energy, the system becomes
nonperturbative at higher energy. Solving the renormalization
group equation (213) with the boundary condition α(μ0) = α0

(the measured value of the charge at a scale μ0), we obtain

α(μ) = α0

1 + 2(N + 1)α0

3π
ln

μ0

μ

. (214)

It turns out that this solution has a divergence at a scale
μ = �L = μ0e

3π/2(N+1)α0 known as the Landau pole. We can
express the renormalized coupling (214) in terms of the Landau
pole:

α(μ) = 3π

2(N + 1)
ln−1 �L

μ
. (215)
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The Landau pole is thus the effective parameter that char-
acterizes the interacting Dirac semimetal. At scales close to
�L, the coupling diverges and the theory becomes strongly
interacting, even if we start with a weakly interacting theory
at low energy. The theory makes no prediction for �L; it
is a material property that must be taken from experiment.
Strictly speaking, as the renormalized coupling diverges, our
first-order theory loses validity, and a more complete and fully
nonperturbative calculation is required in order to establish
if the divergence is cut off by nonperturbative effects or
if the coupling truly diverges. Our theory, however, makes
the unambiguous prediction that the charge should increase
logarithmically at high energy or temperature (setting μ = T ).
By analogy with quantum electrodynamics, one would expect
that the pole is preempted by a phase transition, although this
remains to be established for Dirac semimetals [85].

We mention that by definition our leading-order beta
function [Eq. (213)] has no asymptotic freedom (i.e., there
is a positive sign on the right-hand side for all α values); in
fact, we have the Landau pole at very high energy where the
running coupling diverges. We note, however (as discussed
in Sec. I of our paper), that our calculated beta function to
second order [cf. Eq. (205)] does have a negative sign if
α > αc with the renormalized coupling running to infinity
at lower-energy scale (i.e., behaving superficially similar to
the QCD situation) provided we start in the strong-coupling
regime of α > αc. In such a strong-coupling situation (which
arises only when the second-order perturbative correction is
comparable to the first-order term, and hence may very well be
unreliable within a loop expansion theory), the Dirac system
manifests stronger (weaker) coupling at low (high) energy,
superficially mimicking QCD behavior.

B. Optical conductivity and Drude weight

In this section, we show the competing effects of tempera-
ture and doping on the Drude weight of a 3D Dirac material
and demonstrate that even a moderate temperature of order
T ∼ εF /2, where εF is the doping-induced Fermi energy, is
sufficient to probe the intrinsic response of the system without
detuning. The Drude-Boltzmann form of the low-frequency
conductivity takes the form

σ (ω) = −ω2
d

4π

1

ω − i/τ
, (216)

where ω2
d is the Drude weight and 1/τ is a transport relaxation

time induced by disorder or interactions. Within kinetic theory,
the Drude weight is given by (a detailed derivation is given in
Appendix E)

ω2
d = 4πe2 2v2

F

3

DF

ε2
F

∫ ∞

0
dε ε2

(
−∂f 0(ε)

∂ε

)
, (217)

where DF = Nε2
F /[π2v3

F ] is the density of states and f0 the
Fermi-Dirac distribution. The red curve in Fig. 14 shows
the extrinsic Drude weight as a function of temperature.
The low-temperature Drude weight (which is dominated by
intraband excitations) starts off at a constant value with a
Sommerfeld correction that decreases its value at small but
finite temperature. The Drude weight assumes a minimum

FIG. 14. (Color online) Drude weight for extrinsic (red solid line)
and intrinsic (green dashed line) Dirac materials. At high temperature,
there is no difference between the intrinsic and the extrinsic Drude
weight, thus manifestly showing that temperature can act as an
appropriate running scale to study the intrinsic Dirac point physics.

and then increases at high temperature where it has a linear
temperature dependence. For comparison, we include a plot
of the intrinsic Drude weight as given by Eq. (217) with
the chemical potential set to zero. It is apparent from the
figure that at high temperature both curves are equal and
the intrinsic Drude weight is measured, even if the system
started off at finite doping. The renormalization should induce
a superlinear high-temperature dependence reflecting the
intrinsic semimetallic many-body effects as discussed in the
next section.

The computation of the Drude weight within kinetic theory
gives the same results as a diagrammatic calculation using
the Kubo formula to the leading one-loop order [86]. Note
that in the intrinsic limit, higher-order diagrams are expected
to introduce nonlocal corrections to the conductivity [87,88].
Here, we consider the extrinsic case, for which this effect does
not appear.

C. Plasmon dispersion

We now consider the plasmon dispersion which is given by
the pole of the dielectric function. It is related to the Drude-
Boltzmann form of the conductivity by

ε(ω) = 1 − 4πi

ω
σ (ω) = 1 − ω2

d

ω2
= 0. (218)

A full solution of the plasmon dispersion to leading order in
RPA was presented in Ref. [63], and will not be repeated
here. Instead, we expand on this work by considering the
effect of charge renormalization. The defining expression for
the dielectric function does not involve the bare coupling α,
Fermi velocity, and cutoff separately, but only combined in
the form of the Landau pole without any additional divergent
terms. The full solution of Eq. (218) then gives the plasmon
dispersion as a function of temperature, Fermi energy, and
Landau pole. The plasmon dispersion is shown in Fig. 15
for both doped extrinsic (red line) and undoped intrinsic
(green line) Dirac systems using a Landau pole scale of
�L = 8εF . As discussed in the previous section, doping
does not influence the plasmon at high temperature and the
dispersion is equal for intrinsic and extrinsic configurations.
The full calculation of the plasmon dispersion which includes
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FIG. 15. (Color online) Plasmon dispersion for extrinsic (red
solid line) and intrinsic (green dashed line) systems with �L = 8εF .
The manifest superlinearity in the temperature-dependent plasmon
dispersion of the doped system arises from the ultraviolet renormal-
ization with temperature also acting as the cutoff for T � TF , as
expected.

the coupling constant renormalization predicts a superlinear
high-temperature scaling of

ωd ∼ T

ln �L/T
∼ α(T )T . (219)

This superlinear scaling is valid at high temperature and
is cut off a low temperature due to finite doping, as seen
in Fig. 15. While simple dimensional analysis would only
predict a linear temperature dependence of the intrinsic
plasmon [63], the correct result displays a superlinear scaling
through the logarithmic temperature dependence due to the
renormalization of the coupling as discussed in Sec. VI A.
Note that the result for the intrinsic plasmon agrees with the
Drude weight (217) if we assume a constant κ and replace the
bare value of charge and Fermi velocity by the corresponding
renormalized expression (215).

An experimental observation of such a superlinearity in the
measured temperature dependence of the plasmon dispersion
would be strong evidence for the ultraviolet renormalization of
interaction effects in Dirac materials. We emphasize that since
3D Dirac materials cannot be doped in situ in a continuous
manner using an external gate (as can be done for 2D graphene
layers), temperature-dependent measurements (in the regime
of temperature being larger than the Fermi energy associated
with the doping density) are probably the simplest technique
to characterize their intrinsic Dirac point properties. Such
temperature dependence will have a low-temperature cutoff
(or saturation) due to the remnant doping in the sample, as
shown in Fig. 15, but above this cutoff scale of the extrinsic
Fermi energy, the system should reflect the RG scaling defined
by its Dirac point properties.

VII. CONCLUSION

We have calculated the electron self-energy and polarizabil-
ity for Dirac-Weyl materials up to second order in the effective
fine-structure constant α and for arbitrary number of pairs of
Dirac cones N (arising, for example, from valley degeneracy
associated with band-structure effects). As expected, we find
that log-squared divergences arise at second order as necessary

for the renormalizability of the theory, and we have used
these to perform many self-consistency checks of our results.
After calculating the counterterms necessary to cure these
divergences, we extracted from them the many-body renor-
malization effects that are evident in properties such as the
quasiparticle residue, Fermi velocity, and coupling strength.
Our derivation of the RG flows of the quasiparticle properties
reveal the existence of a critical point αc = 14.13(1 + 1/N),
above which the coupling flows to larger values at low energies.
This behavior is very analogous to what occurs in graphene,
which also exhibits such a fixed point, albeit at a much lower
value of the coupling: αc = 0.78 [65]. Following Dyson’s
original argument [65,83], we have argued that the appearance
of αc may be an artifact of the asymptotic nature of the
perturbative series and not a real feature of the system, but
only measurements can determine whether there is a strong-
coupling fixed point in 3D Dirac systems. It is conceivable that
our perturbative expansion is correctly indicating the presence
of a strong-coupling fixed point for the system, but the precise
value of the critical coupling strength can only be correctly
evaluated by nonperturbative methods.

Unlike graphene, however, Dirac-Weyl materials exhibit a
second special value of the coupling, α∗ = 3π/N , at which
the flow of the velocity reverses direction. This implies that
for couplings in the range α∗ < α < αc, both the interaction
strength and Fermi velocity initially decrease with the energy
scale until the coupling reaches the value α∗, at which point
the velocity flow reverses and begins to climb to larger
values as the energy scale is reduced further. At this point,
it is unclear whether α∗ should be viewed as giving rise
to an experimentally observable nonmonotonic behavior in
the Fermi velocity, or if it should instead be seen as an
indication that perturbation theory cannot be trusted for
coupling strengths comparable to or larger than α∗ (as is likely
to be the case for αc). This is a very interesting avenue for
further exploration given that α∗ may be in the experimentally
relevant regime for materials possessing a large Dirac cone
multiplicity, such as the pyrochlore iridates. We hope that
future experimental work in 3D Dirac materials will look for
possible signatures of nonmonotonicity in the measured Fermi
velocity as a function of doping density (at low temperatures)
or temperature (at low doping densities) to check for the
predicted existence of α∗ in the theory.

We also discuss the experimental detection of ultraviolet
renormalization effects by computing the Drude weight and
the plasmon dispersion up to leading order in the fine-structure
constant and the random phase approximation, respectively.
There are two main findings: first, by performing computations
at finite doping and temperature, we establish that the intrinsic
renormalization group results which we obtain in this work
govern the behavior of the system at high temperature, i.e.,
the behavior of a Dirac material is the same as for an intrinsic
system irrespective of initial detuning. This general result (that
holds not only for the observables discussed in this paper) is of
particular relevance for current experiments which are not able
to precisely control doping and disorder. Second, we find that
the high-temperature Drude weight including renormalization
and the plasmon dispersion scale in a superlinear form as
∼ T/ ln �L/T . While the term linear in temperature can be
predicted from dimensional analysis, the logarithmic scaling
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is a direct manifestation of renormalization. The strength of
the renormalization effect is set by the Landau pole scale �L,
a scale which resembles similar findings in QED at one-loop
order [72] and which provides a renormalization-flow invariant
parameter that may be used to fit our results to experimental
data. The superlinear temperature scaling should provide a
direct signature of renormalization effects in current and future
experiments on Dirac materials.
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APPENDIX A: FIRST-ORDER POLARIZATION BUBBLE

Here, we give the details of how to determine the first-order
polarization bubble �B(q), shown in Fig. 1. The expression
that we obtain is

�B(q) = N

∫
d4k

(2π )4
Tr[γ 0G0(k + q)γ 0G0(k)]

= −N

∫
d4k

(2π )4
Tr

[
γ 0 /k + /q

(k + q)2
γ 0 /k

k2

]
. (A1)

Evaluating the trace, we obtain

�B(q) = −4N

∫
d4k

(2π )4

× k0(k0 + q0) − v2
F
�k · (�k + �q)(

k2
0 + v2

F |�k|2)[(k0 + q0)2 + v2
F |�k + �q|2] . (A2)

Evaluating the integral over k0, we get

�B(q) = −2N

∫
d3�k

(2π )3

|�k| + |�k + �q|
q2

0 + v2
F (|�k| + |�k + �q|)2

×
[

1 −
�k · (�k + �q)

|�k||�k + �q|

]
. (A3)

If we now switch to prolate spheroidal coordinates, as given in
Eq. (22), we obtain, after performing the (trivial) θ integration,

�B(q) = − |�q|2
8π2vF

N

∫ ∞

0
dμ

∫ π

0
dν sinh μ sin ν

× cosh μ

z2 + cosh2 μ
(1 − cos2 ν). (A4)

We now make another coordinate change, x = cosh μ and
y = cos ν. Note, however, that the integral has a logarithmic
divergence, and thus we introduce a cutoff |k| � � on the
momentum. Doing these, we obtain

�B(q) = − |�q|2
8π2vF

N

∫ 1

−1
dy

∫ 2λ+y

1
dx

x

z2 + x2
(1 − y2).

(A5)

If we now evaluate the x integral, we get

�B(q) = − |�q|2
8π2vF

N

∫ 1

−1
dy (1 − y2) ln

[
z2 + (2λ + y)2

z2 + 1

]
.

(A6)

If we now perform an integration by parts, we obtain Eq. (10)
in the main text.

APPENDIX B: FIRST-ORDER ELECTRON SELF-ENERGY

The diagram corresponding to the first-order electron self-
energy correction is shown in Fig. 3, and will be denoted by
�1(q). The expression that we obtain for this diagram is

�1(q) = −
∫

d4k

(2π )4
γ 0G0(k + q)γ 0D0(−k), (B1)

or, upon substituting in the expressions for the bare Green’s
function G0(k + q) and the bare Coulomb propagator,

�1(q) = −ig2
∫

d4k

(2π )4
γ 0 /k + /q

(k + q)2
γ 0 1

|�k|2 . (B2)

The integral on k0 may easily be done; after evaluating it, we
obtain

�1(q) = −1

2
ig2

∫
d3�k

(2π )3
γ 0 (�k + �q) · �γ

|�k|2|�k + �q|γ
0. (B3)

Since γ 0 anticommutes with γ i , we may rewrite this as

�1(q) = 1

2
ig2

∫
d3�k

(2π )3

(�k + �q) · �γ
|�k|2|�k + �q| . (B4)

We now note that the integrand is symmetric under rotations
of �k about the axis along �q. Because of this, we may make the
replacement

(�k + �q) · �γ → (�k + �q) · �q
|�q|2 �q · �γ , (B5)

thus obtaining

�1(q) = i
g2

2|�q|2
∫

d3�k
(2π )3

(�k + �q) · �q
|�k|2|�k + �q| �q · �γ . (B6)

We now switch to spherical coordinates, with the +z axis in
the direction of �q. The integral now becomes

�1(q) = i
g2

2|�q|2
1

(2π )2

∫ �

0
d|�k|

∫ π

0
dθ sin θ

× |�q|2 + |�k||�q| cos θ√
|�k|2 + |�q|2 + 2|�k||�q| cos θ

�q · �γ . (B7)

Here, we impose a cutoff � on the |�k| integral because the
integral is divergent. Naı̈vely, we would expect this integral
to have a linear divergence, but we will see that it is only
logarithmic. Let us make the substitutions |�k| = |�q|κ and x =
cos θ . The integral now becomes

�1(q) = 1

8
i

(
g

π

)2 ∫ �/|�q|

0
dκ

∫ 1

−1
dx

1 + κx√
1 + κ2 + 2κx

�q · �γ .

(B8)

These integrals can be performed exactly; doing so, we obtain
Eq. (12) in the main text.
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FIG. 16. Two-loop self-energy vertex diagram VSE(p,q).

APPENDIX C: SECOND-ORDER VERTEX DIAGRAMS

In this Appendix, we compute the two-loop corrections to
the vertex and show that Zϕ = 1 identically to second order.

1. Two-loop self-energy correction to vertex function

The first diagram that we compute is the two-loop self-
energy diagram (Fig. 16). It is given by

VSE(p,q) =
∫

d4k

(2π )4
iγ 0 i

/k − /p
iγ 0 i

/k
�1(k)

i

/k
iγ 0

× g2

|�k − �p + �q|2 . (C1)

We isolate the logarithmic divergence by setting p = 0:

VSE(0,q) ∼
∫

d4k

(2π )4
iγ 0 i

/k
iγ 0 i

/k
�1(k)

i

/k
iγ 0 g2

|�k + �q|2 . (C2)

Expanding the gamma matrix part, we find

VSE(0,q) ∼ −2g2αvF

3π
i

∫
d4k

(2π )4

1

k6|�k + �q|2
×[(

3vF k2
0 |�k|2 − v3

F |�k|4)γ 0

+(
k3

0 − 3v2
F k0|�k|2)�k · �γ ][4

3
+ ln

�

|�k|

]
. (C3)

It turns out that the k0 integration vanishes identically, and thus
VSE(p,q) is ultraviolet finite.

2. Two-loop vacuum polarization bubble
correction to vertex function

Next, we consider the vertex function diagram with the
vacuum polarization bubble inserted in the internal Coulomb
line (Fig. 17), and we again set p = 0 to extract the divergence:

VB(0,q) =
∫

d4k

(2π )4
iγ 0 i

/k
iγ 0 i

/k
iγ 0 g4

|�k + �q|4 �B(k + q).

(C4)

Since the divergent part of �B does not depend on frequency,
the integration over k0 for this term will be identical to what
we had for the one-loop vertex function diagram [Eq. (183)],
and it will thus vanish. Thus, the only potential divergence

FIG. 17. Two-loop vacuum polarization bubble vertex diagram
VB (p,q).

comes from the finite term in �B :

VB(0,q) ∼ ig4N

12π2vF

γ 0
∫

d4k

(2π )4

k2
0 − v2

F |�k|2
k4|�k|2 ln

1 + z2

4
.

(C5)

Rewriting k0 in terms of z and performing the trivial integration
over �k, we find

VB(0,q) ∼ ig4N

48π5v2
F

γ 0
∫ ∞

−∞
dz

z2 − 1

(1 + z2)2
ln

1 + z2

4
ln

�

|�q| .

(C6)

The integral over z evaluates to π , leaving us with

VB(0,q) = i
N

3π2
α2γ 0 ln

�

|�q| + finite. (C7)

3. Two-loop parallel Coulomb line correction to vertex function

We now consider the diagram with two parallel Coulomb
lines (Fig. 18). The expression for this diagram is

VPC(p,q) =
∫

d4k

(2π )4

∫
d4�

(2π )4
iγ 0 i

/q + /�
iγ 0 i

/q + /k + /�

× iγ 0 i

/p + /q + /k + /�
iγ 0 i

/p + /q + /�
iγ 0 g2

|�k|2
g2

|��|2 .

(C8)

We isolate the potential logarithmic divergence by setting
p = q = 0 in the integrand. If we then redefine k → k − �,
then it becomes straightforward to perform the integration

FIG. 18. Two-loop parallel Coulomb line vertex diagram VPC(q).
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FIG. 19. Two-loop crossed Coulomb line vertex diagram VCC(q).

over k0:∫
dk0

γ 0/kγ 0/k

k4
=

∫
dk0

k2
0 − v2

F |�k|2 − 2k0vF
�k · �γ γ 0

k4
= 0.

(C9)

We conclude that this diagram has no ultraviolet divergence.

4. Two-loop crossed Coulomb line correction to vertex function

Here, we consider the diagram with two crossed Coulomb
lines (Fig. 19). The expression that we obtain is

VCC(p,q) =
∫

d4k

(2π )4

∫
d4�

(2π )4
iγ 0 i

/q + /�
iγ 0 i

/q + /k + /�

× iγ 0 i

/p + /q + /k + /�
iγ 0 i

/p + /q + /k
iγ 0 g2

|�k|2
g2

|��|2 .

(C10)

We again set p = q = 0, redefine � → −�, and then k →
k + � to obtain

VCC(p,q) ∼ −ig4
∫

d4k

(2π )4

∫
d4�

(2π )4

× γ 0/�γ 0/kγ 0/kγ 0(/k + /�)γ 0

�2k4(k + �)2|�k + ��|2|��|2 . (C11)

Expanding out the gamma matrix product and throwing away
terms which integrate to zero, we are left with

VCC(p,q)

∼ −ig4γ 0
∫

d4k

(2π )4

∫
d4�

(2π )4

× 1

�2k4(k + �)2|�k + ��|2|��|2
{(

k2
0 − v2

F |�k|2)(�2
0 − v2

F |��|2)
− 3k0�0v

2
F |�k|2+k3

0�0−
[
4k0�0+3k2

0 − v2
F |�k|2]v2

F
�k · ��}.
(C12)

Performing the integrations over k0 and �0, this becomes

VCC(p,q) ∼ −iγ 0 g4

4v2
F

∫
d3k

(2π )3

∫
d3�

(2π )3

1

|��|2|�k + ��|3

× |�k| + |��| − |�k + ��|
(|�k| + |��| + |�k + ��|)2

(
1 +

�k · ��
|�k||��|

)
. (C13)

FIG. 20. Two-loop vertex correction vertex diagram VV (q).

Next, we switch to prolate spherical coordinates in �k, yielding

VCC(p,q) ∼ −iγ 0 g4

16π2v2
F

∫
d3�

(2π )3

1

|��|3
∫

dμ dν

× sinh μ sin ν
1 − cos ν

(1 + cosh μ)2

× cosh μ cos ν + cosh μ − cos ν − 1

(cosh μ + cos ν)2
. (C14)

Performing the integrations over �� and ν, we find

VCC(p,q) ∼ iγ 0 g4

8π4v2
F

ln
�

|�q|
∫

dμ
sinh μ

(1 + cosh μ)2

× (cosh μ − 1)

(
1 + cosh μ ln tanh

μ

2

)
. (C15)

The μ integral evaluates to − 10−π2

4 , giving

VCC(p,q) = −iγ 0 10 − π2

2π2
α2 ln

�

|�q| + finite. (C16)

5. Two-loop vertex correction to vertex function

Finally, we consider the two-loop vertex correction diagram
(Fig. 20). This diagram gives us

VV (p,q) =
∫

d4k

(2π )4

∫
d4�

(2π )4
iγ 0 i

/q + /�
iγ 0 i

/q + /k + /�

× iγ 0 i

/q + /k
iγ 0 i

/p + /q + /k
iγ 0 g2

|�k|2
g2

|��|2

∼ ig4γ 0
∫

d4k

(2π )4

∫
d4�

(2π )4

/�γ 0(/k + /�)γ 0/kγ 0/kγ 0

�2(k + �)2k4|�k|2|��|2 .

(C17)

We proceed by observing that

γ 0(/k + /�)γ 0/kγ 0/kγ 0 = γ 0/kγ 0/kγ 0(/k + /�)γ 0 + · · · , (C18)

where the . . . represent terms which vanish upon integration
over k and �. This means that the product of gamma
matrices evaluates to precisely what he had in the previous
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subsection:

VV (p,q) ∼ ig4γ 0
∫

d4k

(2π )4

∫
d4�

(2π )4

1

�2k4(k + �)2|�k|2|��|2
× {(

k2
0 − v2

F |�k|2)(�2
0 − v2

F |��|2) − 3k0�0v
2
F |�k|2

+ k3
0�0 − [

4k0�0 + 3k2
0 − v2

F |�k|2]v2
F
�k · ��},

(C19)

and the integrations over k0 and �0 are also identical:

VV (p,q) ∼ iγ 0 g4

4v2
F

∫
d3k

(2π )3

∫
d3�

(2π )3

1

|�k|2|��|2|�k + ��|

× |�k| + |��| − |�k + ��|
(|�k| + |��| + |�k + ��|)2

(
1 +

�k · ��
|�k||��|

)
. (C20)

Again using prolate spherical coordinates, we find

VV (p,q) ∼ iγ 0 g4

16π2v2
F

∫
d3�

(2π )3

1

|��|3

×
∫

dμ dν sinh μ sin ν
1 − cos ν

(1 + cosh μ)2

× cosh μ cos ν + cosh μ − cos ν − 1

(cosh μ − cos ν)2
. (C21)

This is nearly identical to the analogous expression for
VCC(p,q), except for the overall sign and the sign in the
denominator of the final factor in the integrand. The latter
comes from the fact that now we had |�k|2 in the denominator
instead of |�k + ��|2 as before. Despite this sign difference in
the denominator, the integral over ν evaluates to precisely the
same value as before, so that the only difference compared
with VCC(p,q) is the overall sign:

VV (p,q) = iγ 0 10 − π2

2π2
α2 ln

�

|�q| + finite. (C22)

It would then seem that the divergences of VCC(p,q) and
VV (p,q) would cancel each other. However, VV (p,q) receives
an extra symmetry factor of 2.

6. Two-loop vertex function

Summing up the various contributions to the vertex func-
tion, we find the total result

V (2)(p,q) = VB(p,q) + VCC(p,q) + 2VV (p,q) + finite

= iγ 0

(
N

3π2
+ 10 − π2

2π2

)
α2 ln

�

|�q| + finite.

(C23)

This implies that the relevant counterterm coefficient is

δv =
(

N

3π2
+ 10 − π2

2π2

)
α2 ln

�

μ
+ O(α3) = δ0 + O(α3).

(C24)

As pointed out in the main text, this implies that Zϕ = 1
to second order in α. This confirms the requirement δv = δ0

stemming from gauge invariance.

APPENDIX D: CALLAN-SYMANZIK RG ANALYSIS

Here, we present an alternative means of deriving the RG
equations for our system, namely, through direct application
of the Callan-Symanzik equation. We will find that our results
agree with those derived in the main text, providing a valuable
consistency check.

1. Photon two-point function

The Callan-Symanzik equation for the photon two-point
function expanded to third order in α reads as

(μ∂μ + βα∂α + vF γvF
∂vF

+ 2γϕ)

× [
Vq + V 2

q �(0) + V 2
q �(1) + V 3

q (�(0))2] = 0. (D1)

Here, Vq = 4παvF /|�q|2 is the Coulomb interaction, and �(0)

and �(1) are the leading- and next-to-leading-order vacuum
polarization functions. Summing up the relevant diagrams
and their respective counterterms from Secs. III and V
yields the following expressions for the renormalized vacuum
polarization functions:

�(0) = − N |�q|2
6π2vF

ln

(
μ

|�q|
)

+ N |�q|2
12π2vF

ln

(
1 + z2

4

)
, (D2)

�(1) = Nα|�q|2
18π3vF

ln2

(
μ

|�q|
)

− Nα|�q|2
18π3vF

[
ln

(
1 + z2

4

)
+ 2z2

1 + z2

]
ln

(
μ

|�q|
)

− Nα|�q|2
8π3vF

(
C − 32

27

)
ln

(
μ

|�q|
)

. (D3)

In �(1), the term involving the constant C comes from the two-
loop vertex correction to the polarizability. All other terms in
�(1) come from the self-energy correction to the polarizability.

We can use Eq. (D1) to derive equations for βα , γvF
, and γϕ

by plugging in �(0) and �(1) and solving the resulting equation
order by order in α. The first-order equation we obtain is trivial:

β(1)
α ∂α

4παvF

|�q|2 = 0, (D4)

and simply tells us that the first-order beta function for α is
zero: β(1)

α = 0.
The second-order equation reads as

V 2
q μ∂μ�(0) + β(2)

α ∂αVq + vF γ (1)
vF

∂vF
Vq + 2γ (1)

ϕ Vq = 0.

(D5)

Plugging in the expressions for Vq and �(0), we obtain the
following relation:

β(2)
α = 2N

3π
α2 − αγ (1)

vF
− 2αγ (1)

ϕ . (D6)

Next, we consider the third-order equation which follows
from Eq. (D1):

V 2
q μ∂μ�(1) + V 3

q μ∂μ(�(0))2 + β(3)
α ∂αVq

+β(2)
α ∂α

(
V 2

q �(0)
) + vF γ (2)

vF
∂vF

Vq + vF γ (1)
vF

∂vF

(
V 2

q �(0)
)

+ 2γ (2)
ϕ Vq = 0. (D7)
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Plugging in �(0), �(1), β(2)
α , γ (1)

vF
, we find that the z dependence

cancels out, and we are left with the following relation:

β(3)
α + αγ (2)

vF
+ 2αγ (2)

ϕ − α3

2π2
N

(
C − 32

27

)
= 0. (D8)

The fact that the z dependence cancels out of the Callan-
Symanzik equation constitutes a nontrivial consistency check
of our results for the vacuum polarizability.

In order to obtain explicit expressions for β(2)
α and β(3)

α , we
must first calculate the first- and second-order contributions
to γvF

and γϕ from the Callan-Symanzik equations for the
electron two-point function and electron-photon three-point
function.

2. Electron two-point function

We can obtain γvF
as well as the scaling function for the

electron field strength γψ from the Callan-Symanzik equation
for the electron two-point function expanded to second order:

(μ∂μ + βα∂α + vF γvF
∂vF

+ 2γψ )

×
[

i

/q
+ i

/q
�1

i

/q
+ i

/q
�2

i

/q
+ i

/q
�1

i

/q
�1

i

/q

]
= 0, (D9)

This equation involves the renormalized first- and second-
order electron self-energies, which we obtain by summing up
the results from Secs. IV and V:

�1 = 2α

3π
ivF �q · �γ ln

(
μ

|�q|
)

. (D10)

�2 = − 2N

9π2
iα2vF �q · �γ ln2

(
μ

|�q|
)

+ i

[(
15 + N

3π2
− 1

2

)
q0γ

0

+
(

45 + N

9π2
− 1

2

)
vF �q · �γ

]
α2 ln

(
μ

|�q|
)

. (D11)

Plugging these results into the first-order equation that follows
from Eq. (D9),

(
vF γ (1)

vF
∂vF

+ γ
(1)
ψ

) i

/q
+ μ∂μ

i

/q
�1(q)

i

/q
= 0, (D12)

and using the identity

∂vF

i

/q
= i

/q
i �q · �γ i

/q
(D13)

yields the following leading-order behavior of γvF
and γψ :

γ (1)
vF

= − 2α

3π
, γ

(1)
ψ = 0. (D14)

We now turn our attention to the effects of the
two-loop corrections to the electron self-energy. Collect-
ing all the second-order terms in the Callan-Symanzik

equation gives

i

/q
μ∂μ�2

i

/q
+ i

/q
μ∂μ�1

i

/q
�1

i

/q
+ i

/q
�1

i

/q
μ∂μ�1

i

/q

+β(2)
α

i

/q
∂α�1

i

/q
+ vF γ (2)

vF
∂vF

i

/q

+ vF γ (1)
vF

∂vF

[
i

/q
�1

i

/q

]
+ 2γ

(2)
ψ

i

/q
= 0. (D15)

Using the identity from Eq. (D13) and collecting all the finite
terms, we find

α2

(
15 + N

3π2
− 1

2

)
i

/q
iq0γ

0 i

/q
+ α2

(
45 + N

9π2
− 1

2

)
× i

/q
ivF �q · �γ i

/q
+ γ (2)

vF

i

/q
ivF �q · �γ i

/q
+ 2γ

(2)
ψ

i

/q
= 0.

(D16)

Writing

i

/q
= − i

/q
iq0γ

0 i

/q
− i

/q
ivF �q · �γ i

/q
, (D17)

and collecting like terms, we obtain the following two
relations:

α2

(
15 + N

3π2
− 1

2

)
− 2γ

(2)
ψ = 0,

α2

(
45 + N

9π2
− 1

2

)
+ γ (2)

vF
− 2γ

(2)
ψ = 0, (D18)

which imply

γ
(2)
ψ = α2

(
15 + N

6π2
− 1

4

)
,

γ (2)
vF

= 2Nα2

9π2
. (D19)

3. Electron-photon three-point function

To complete the analysis, we must also obtain γϕ , the scaling
function for the photon field strength. We can compute this
from the Callan-Symanzik equation for the electron-photon
three-point function. Summing up the various contributions
to the second-order vertex function, we find the renormalized
result

V (2)(p,q) = iγ 0

(
N

3π2
+ 10 − π2

2π2

)
α2 ln

μ

|�q| + finite, (D20)

while we found in Sec. V that the first-order vertex function has
no divergence, V (1)(p,q) = finite, and is thus independent of
the renormalization scale. The second-order Callan-Symanzik
equation reads as(

β(2)
α ∂α + vF γ (1)

vF
∂vF

+ γ (1)
ϕ + 2γ

(1)
ψ

)
�(p,q)

+μ∂μ

[
Vp�(0)(p)�(p,q) + Vp

i

/q
V (1)(p,q)

i

/p + /q

+�(p,q)�1(p + q)
i

/p + /q
+ i

/q
�1(q)�(p,q)

]
= 0,

(D21)
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where Vp = 4παvF /| �p|2, and where we have defined

�(p,q) ≡ Vp

i

/q
iγ 0 i

/p + /q
. (D22)

Equation (D21) can be drastically simplified by using the
Callan-Symanzik equations quoted earlier, namely, Eqs. (D12)
and (D5), yielding(−γ (1)

ϕ − 2γ
(1)
ψ

)
�(p,q) = 0, (D23)

which implies

γ (1)
ϕ = −2γ

(1)
ψ = 0. (D24)

Inputting this result and the result for γ (1)
vF

from Eq. (D14)
into Eq. (D6) then produces an explicit expression for the
leading-order beta function for α:

β(2)
α = 2(N + 1)

3π
α2. (D25)

To obtain γ (2)
ϕ , we need to consider the Callan-Symanzik

equation at third order in α. The full form of this equation is
very complicated; however, we may make use of Eqs. (D7)
and (D15) to simplify it considerably, with the result(−γ (2)

ϕ − 2γ
(2)
ψ

)
iγ 0 + (

β(2)
α ∂α + vF γ (1)

vF
∂vF

)
V (1)(p,q)

+μ∂μV (2)(p,q) = 0. (D26)

Although we have not directly computed V (1)(p,q), we can see
from this equation that it must be independent of momentum
since there is no other momentum dependence in the equation.
This would mean that V (1)(p,q) = V (1)(0,0). However, we
have shown in Eq. (183) that the latter vanishes, hence,
V (1)(p,q) = 0. Using Eq. (D20), we then have

γ (2)
ϕ = −2γ

(2)
ψ +

(
N

3π2
+ 10 − π2

2π2

)
α2 = 0. (D27)

Since we now have γ (2)
ϕ and γ

(2)
ψ , we can go back and determine

β(3)
α from Eq. (D8):

β(3)
α = −αγ (2)

vF
− 2αγ (2)

ϕ + α3

2π2
N

(
C − 32

27

)
= − (44 − 27C)Nα3

54π2
. (D28)

We thus find that we obtain all the same results as we did in
Sec. V of the main text.

APPENDIX E: DRUDE-BOLTZMANN FORM
OF THE CONDUCTIVITY

In this Appendix, we derive an expression for the Drude
part of the conductivity without renormalization effects using
kinetic theory. Denote the distribution function momentum �q at
a node a with chirality s by fas(�k,t). In the absence of an exter-
nal field, the noninteracting distribution is given by the Fermi-
Dirac distribution f 0

as(�q) = {exp[(svF |�q| − μ)/kBT ] + 1}−1.
The full distribution in the presence of an external electric
field exerting a force �F = �

∂ �k
∂t

= e �E on the electrons solves

the Boltzmann equation[
∂

∂t
+ �F · ∂

∂ �q
]
fas(�q,t) = −fas(�q,t) − f 0

as(�q,t)

τ�q
, (E1)

where we assumed a relaxation time ansatz for the collision
integral. In linear response, the distribution function can be
expanded as

fas(�q,ω) = 2πδ(ω)f 0
as(�q) + gas(�q,ω), (E2)

where g(�q,ω) is determined from the Boltzmann equation:[
iω + 1

τ�q

]
gas(�q,ω) = −e �E

�
· ∂

∂ �q f 0
as(�q). (E3)

Hence,

gas(�q,ω) =
[
iω + 1

τ�q

]−1(
−e �E

�
· ∂

∂ �q f 0
as(�q)

)
, (E4)

and the current is (assuming a constant scattering time)

�j (ω) = vF e
∑
as

∫
d3 �q

(2π )3

�q
|�q|fas(�q,ω)

= 1

iω + 1/τ
× v2

F e2g

3π2(�vF )3

∫ ∞

0
dε ε2

(
−∂f 0(ε)

∂ε

)
· �E.

(E5)

The conductivity is

σ (ω) = 1

iω + 1/τ
× v2

F e2g

3π2(�vF )3

∫ ∞

0
dε ε2

(
−∂f 0(ε)

∂ε

)
.

(E6)

This yields the dielectric function

ε(ω) = 4πi

ω
σ (ω) = ω2

p

ω2 − iωγ
, (E7)

where γ = 1/τ and ω2
p denotes the Drude weight

ω2
d = 4πe2 2v2

F

3

DF

ε2
F

∫ ∞

0
dε ε2

(
−∂f 0(ε)

∂ε

)
. (E8)

Here, DF = Nε2
F /[π2(�vF )3] is the density of states. Aside

from the temperature dependence of the energy average, there
is an additional temperature dependence of the chemical
potential, which starts at μ = εF at zero temperature and then
falls off to zero at high temperature. The extrinsic chemical
potential μ(T ) at finite temperature is fixed by the relation

2N

∫
d3�k

(2π )3
n+(�k) + 2N

∫
d3�k

(2π )3
[n−(�k) − 1] = n, (E9)

where ns are the Fermi-Dirac distributions with energy εs(k) =
s�vF k and n = gk3

F /6π2 is the zero-temperature carrier
density. Equation (E9) reduces to

μ

εF

[
π2

(
T

TF

)2

+
(

μ

εF

)2]
= 1. (E10)

The asymptotic behavior of μ is

μ

εF

=
{

1 − π2

3

(
T
TF

)2
, T � TF

1
π2

(
TF

T

)2
, T � TF .

(E11)

This behavior is illustrated in Fig. 21.
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FIG. 21. (Color online) Chemical potential vs temperature as
obtained by solving Eq. (E10). Dashed lines indicate the low- and
high-temperature limits (E11).

The temperature dependence of the Drude weight (E8) is
determined both by the energy average and the temperature
dependence of the chemical potential. At small and high
temperature, we obtain

1

ε2
F

∫ ∞

0
dε ε2

(
−∂f 0(ε)

∂ε

)
=

{
1 − π2

3

(
T
TF

)2
, T � TF

π2

6

(
T
TF

)2
, T � TF .

(E12)

In the Born approximation, the transport scattering time is
given by

−fa(�k) − f 0
a (�k)

τ�k

= −2πni

�

∫
d3�k′

(2π )3
{|〈�k|V |�k′〉|2fa(�k)[1 − fa(�k′)]

− |〈�k′|V |�k〉|2fa(�k′)[1 − fa(�k)]}δ(ε�k − ε�k′)

= −2πni

�
ga(k)

∫
d3�k′

(2π )3
δ(ε�k − ε�k′)|〈�k|V |�k′〉|2(1 − cos θ )

(E13)

and, hence,

1

τ�k
= 2πni

�

∫
d3�k′

(2π )3
δ(ε�k − ε�k′)|〈�k|V |�k′〉|2(1 − cos θ ).

(E14)

Note that this transport scattering time is different from the
quasiparticle lifetime derived from the imaginary part of the
self-energy to this order in the interaction by the additional
factor [36] of (1 − cos θ ). In the present case, we assumed that
τ�q is energy independent.
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