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Below ∼630 mK, the 4He atom mass flux F , which passes through a cell filled with solid hcp 4He in the
pressure range 25.6–26.4 bar, rises with falling temperature and, at a temperature Td , the flux drops sharply. The
flux above Td has characteristics that are consistent with the presence of a bosonic Luttinger liquid. We study
F as a function of 3He concentration, χ = 0.17–220 ppm, to explore the effect of 3He impurities on the mass
flux. We find that the strong reduction of the flux is a sharp transition, typically complete within a few mK and
a few hundred seconds. Modest concentration-dependent hysteresis is present. We find that Td is an increasing
function of χ and the Td (χ ) dependence differs somewhat from the predictions for bulk phase separation for Tps

vs χ . We conclude that 3He plays an important role in the flux extinction. The dependence of F on the solid
helium density is also studied. We find that F is sample dependent, but that the temperature dependence of F

above Td is universal; data for all samples scale and collapse to a universal temperature dependence, independent
of 3He concentration or sample history. The universal behavior extrapolates to zero flux in the general vicinity of
Th ≈ 630 mK. With increases in temperature, it is possible that a thermally activated process contributes to the
degradation of the flux. The possibility of the role of disorder and the resulting phase slips as quantum defects
on one-dimensional conducting pathways is discussed.
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I. INTRODUCTION

Solid helium is a unique substance that displays a com-
bination of classical and quantum properties. It has been
extensively studied both experimentally and theoretically for
many decades. One of the most interesting properties of liquid
helium is superfluidity, a state of matter in three dimensions
than occurs below a pressure-dependent temperature Tλ. This
quantum property is strongly affected by spatial limitation.
In the two-dimensional (2D) case, the phase transition from
the superfluid phase to the normal phase is related to the
unbinding of vortices, as described by Berezinskii et al. [1,2].
In one dimension (1D), another sort of quantum point defect,
the so-called phase slip, is responsible for this transition.
Quantum Monte Carlo (QMC) simulation [3] predicted that
the cores of screw dislocations in solid helium should be an
example of 1D superfluidity. The flow of superfluid helium in
1D can be described by the quantum hydrodynamic theory
known as Luttinger liquid theory [4]. This idea has been
confirmed by large-scale QMC simulations [5–7] for the case
of nanopores. The basic requirements for 1D channels to
demonstrate Luttinger liquid behavior [8] are that the pore
diameter is sufficiently small, the pore length is sufficiently
long, and the temperature is low enough with respect to Tλ.

We developed an apparatus, the so-called UMass Sand-
wich [9], to study the possible ability of solid helium to carry
a helium mass flux [10–12]. Using porous media (here, Vycor
rods), we are able to apply a chemical-potential difference
between two separated regions in a solid 4He sample without
mechanically squeezing the solid helium lattice itself. It was
found that an experimental cell filled with solid 4He can carry
a flux [10], but only below some characteristic temperature
Th, and the flux rate substantially increases with decreasing
temperature. It can be reduced and eliminated with an increase
in pressure [11]. Tiny amounts of the impurity 3He also change
the flux dramatically [13] at a characteristic low temperature
Td . A brief report that discusses some of the 3He concentration

dependence has appeared [13]. Here, we will describe our
measurements as a function of the 3He concentration at several
pressures in more detail and discuss our interpretations of the
role of the 3He. We will also offer comments on several flow
scenarios, including one-dimensional pathways.

We note here that this report corrects a thermometry error
that caused a small shift in the temperature scale below
∼100 mK that was used in the work reported previously
in Ref. [13]. This was caused by a change in the room-
temperature electronics which we subsequently determined
introduced a small but measurable heating of the thermometer
used to measure the solid helium temperature. The temperature
correction [14] for the work reported in Ref. [13] is less than
1 mk above 120 mK, 5.5 mK at 80 mK, and can be found
from T Cnew = T C − 0.09637 exp(−T C/0.02755). T C is the
temperature of the thermometer affixed to the experimental cell
(Fig. 1) and is used to define the solid helium temperature T .
All temperatures reported in this work include this correction.

II. EXPERIMENTAL TECHNIQUE

In this work, many freshly grown (and some partially
annealed) solid 3He- 4He mixture samples have been used
to study the effect of the 3He impurity concentration χ (in
the range 0.17 < χ < 220 ppm), temperature, and pressure
on the 4He mass flux. Our experimental methods have been
described in substantial detail in Refs. [10–12]. We provide a
brief discussion of our approach here.

A. Sample preparation

Solid helium samples are grown at constant temperature
from the superfluid in the temperature range 0.3 < T < 0.4 K
by the condensation of helium into a sample cell (volume,
V = 1.84 cm3) through a direct-access heat-sunk capillary
(capillary 3 in Fig. 1) followed by an increase in the pressure
up to near the melting pressure (about 25.34 bar). Subsequent
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FIG. 1. Schematic diagram of the cell used for flow experiments.
Two capillaries, 1 and 2, go to liquid reservoirs R1 and R2 at the top
ends of the Vycor rods, V 1 and V 2. Capillary 3 enters from the side
of the cell and is used for adding helium to the cell. Two capacitance
pressure gauges, C1 and C2, are located on either end of the cell for
in situ pressure measurements of the solid 4He. Pressures in the lines
1 and 2 are read by pressure gauges, P 1 and P 2, outside the cryostat.
Each reservoir has a heater, H1 and H2, which prevents the liquid in
it from freezing and allows the temperatures of the reservoirs to be
controlled. The relevant temperatures are read by calibrated carbon
resistance thermometers T 1, T 2, and T C. (Reproduced from Fig. 1
in Ref. [11].)

additions of helium are by means of two other capillaries (1,2 in
Fig. 1) in series with Vycor (porous glass with interconnected
pores of diameter ≈7 nm) rods (0.14 cm diameter, 7.62 cm
length). Helium is added to the Vycor to inject atoms and
create the solid at the desired pressure in the range of
25.6 < P < 26.4 bar. A cold plate at the base of the sample cell
is thermally connected to the mixing chamber of the dilution
refrigerator and, when the cell is filled with solid 4He, it can be
cooled to about 60 mK. The lowest temperature of the cell is
limited by the characteristics of our 1970s vintage refrigerator
and the heat flux through the superfluid-filled Vycor rods. Their
warmer ends have to have much higher temperature than the
temperature of the solid-filled cell, up to 1.5 K, to prevent the
formation of solid helium in the two reservoirs, R1 and R2, and
at the interface between the Vycor rods and the reservoirs. The
pressure and temperature ranges available have upper limits
due to the need to maintain an adequate value of the superfluid
density in the reservoir and the Vycor so as to not restrict the
flux of helium in places external to the solid-filled cell.

To create samples of known 3He concentration, the cell is
emptied between each set of measurements [13]. The cell is
then filled with nominally pure 4He liquid (0.17 ppm 3He)
up to the saturated vapor pressure through use of line 3. Then,
a small calibrated volume at room temperature is filled with
pure 3He to a known pressure. This is injected into the cell via
line 3 and this injection is followed by additional 4He, which
also enters through line 3, to bring the cell close to the melting
curve. With knowledge of the relevant volumes and pressures,
a known concentration of 3He is thus introduced into the cell.

The solid is then grown by injection of 4He through the two
Vycor rods. After the sample is grown, it is allowed to rest
for ≈5–10 hours at a solid helium temperature �0.4 K before
starting any measurements. Most solid helium samples are
freshly grown (and not annealed above 0.5 K). As we will see,
we find reproducibility in a given sample with temperature
changes, which suggests that the samples are adequately in
equilibrium after being created. As we reported previously
for nominal-purity well helium (measured for this work to be
∼0.17 ppm 3He concentration), high-temperature annealing
leads, on cooling, either to a substantial flux decrease or to
complete flux extinction, with in that case no evidence for flux
at lower temperatures.

B. Measurement procedure

To initiate the flux, an initial chemical potential difference
�μ0 is applied between the tops of the Vycor rods by changing
the temperatures, T 1 and T 2, of the two reservoirs, R1 and
R2, to create a temperature difference between them (see
Fig. 1). This creates a flux due to the fountain effect, which is
seen by observing changes in P 1 and P 2. Since we monitor
the pressures and the temperatures as a function of time, the
chemical potential �μ can be calculated,

�μ =
∫

dP

ρ
−

∫
SdT , (1)

where ρ and S are the temperature-dependent density and
entropy of liquid helium, respectively. In contrast to some of
the earlier work from our laboratory [11], where �P = P 1 −
P 2 was applied by direct mass injection, our current study
uses the application of a temperature difference [15] �T =
T 1 − T 2. This approach offers two advantages. It allows for
smaller density changes in the solid helium than was the case
for direct injection of 4He to the sample cell through one of
the lines, 1 or 2. And it allows us to keep constant the total
amount of 4He in the apparatus.

An example of the procedure used for the flux measure-
ments for a solid 4He sample with a 10.2 ppm 3He impurity
content is shown in Fig. 2. The creation of a change in the
energy deposited in heaters H1 and H2 results in a temperature
difference, �T = T 1 − T 2, between the reservoirs [Fig. 2(a)],
R1 and R2, at the tops of the Vycor rods. This results in
pressure responses [Fig. 2(b)], P 1, P 2, and �P = P 1 − P 2
due to the fountain effect at a sequence of rising solid helium
temperatures [Fig. 2(c)], T C. The derivative of �P ,

F = d(P 1 − P 2)

dt
, (2)

is taken to be reasonably proportional to the flux F of atoms
that move from one reservoir to the other. We report the rate of
pressure change in mbar/s units, where 0.1 mbar/s corresponds
to a flux of ≈4.8 × 10−8 g/s.

We use measurements of F of this sort in two related ways.
In one, we study how the flux F depends on the chemical
potential �μ as time evolves. The chemical potential changes
from its initially imposed peak value �μ0, imposed by the
initial �T , to zero as equilibrium is restored by the creation
of a fountain-effect-induced pressure difference, P 1 − P 2. In
the other, we study, for a given value of the imposed �T , how
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(a)

(b)

(c)

FIG. 2. (Color online) An example of flux measurements for a
10.2 ppm sample. (a) Here, temperatures are established for each
of the reservoirs, held constant while the pressure in each of the
reservoirs stabilizes, and then the temperature values of the two
reservoirs are interchanged. The interchange results in a flux of
atoms driven by the fountain effect, which is recorded by (b) the
pressure gauges P 1 and P 2. The rate of change of P 1 − P 2 provides
a measure of the time-dependent flux. (c) The solid 4He temperature
is changed and the process continues for a sequence of solid 4He
temperatures, T C.

the maximum resulting flux F depends on the temperature of
the solid 4He. Data, of the sort shown in Fig. 2 for a specific
10.2 ppm 3He sample, is taken for a variety of solid helium
samples, each with a specific value of the 3He concentration.
We choose to focus on the behavior of �P , which also allows
us to eliminate a small long-term drift in P 1 and P 2, which
is typically present in our long-duration measurements due to
main helium bath level changes. Our basic conclusions are not
changed if instead we focus on the individual behaviors of P 1
or P 2.

C. Flux dependence on �μ

Using data, including that in Fig. 2, F vs �μ is obtained
for positive �T values and presented in Fig. 3 for a set of solid
helium temperatures. The maximum flux values are typically
constrained by the solid helium sample. But for the lower cell
temperatures, the constraint can be imposed by the temperature
of the reservoir at the upper end of the Vycor which restricts
the magnitude of the flux, as shown previously [16]. The
dashed line in Fig. 3 represents the flux limit imposed by the
Vycor. Similar behavior is seen for negative �T values. As was
found earlier [12], a power law provides a good two-parameter
characterization for data of this sort,

F = A(�μ)b, (3)

where A and b are fit parameters. Within our errors, the
parameter b is independent of temperature, but depends on
pressure. In the pressure range of our study, b is less than
0.5 [12]. We will return to a discussion of the characteristics
of A and b later.

FIG. 3. (Color online) An example of the F (�μ) dependence for
different solid helium temperatures for the case of a sample with a
3He concentration of 10.2 ppm. Solid lines are power-law fits by use
of Eq. (3). The dashed line is the upper limit of the flux due to the
Vycor bottleneck for reservoir temperatures of 1.48 K (see Fig. 3
in Ref. [16]). Note that before taking a derivative to calculate F , a
moving average of the �P (t) data (see Fig. 2) was determined: by 3
points for T C < 0.25 K, by 7 points for 0.25 < T C < 0.40 K, by 9
points for T C = 0.445 K, and by 12 points for T C = 0.492 K.

D. Flux dependence on temperature

The maximum flux measured through the solid helium that
results from a specific imposed �T (typically ±10 mK in
Fig. 2) occurs for a resulting �μ in the range 5–8 mJ/g, and
has a temperature dependence as illustrated in Fig. 4. This is for
the case of a different solid sample with a 3He concentration
of 19.5 ppm. As we will see, this temperature dependence is
present for all of the concentrations we have studied. This
maximum flux F increases with falling temperature, with
warming and cooling showing the same values of the flux
for a given sample, as long as the sample is not annealed. And

FIG. 4. (Color online) Maximum values for the flux as a function
of temperature for the case of a solid with 19.5 ppm 3He at P =
26.40 bar. The sharp behavior of the flux extinction in a very narrow
range of temperature near T = Td is evident.
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FIG. 5. (Color online) An example of the extinction of the flux
as the temperature of the solid helium falls below T = Td for a
10.2 ppm 3He sample at P = 26.30 bar. This figure has the corrected
temperature scale and is a revision of the similar figure presented in
Ref. [13].

there is a sharp, hysteretic, reversible decrease of the flux at a
concentration-dependent temperature Td .

As seen in Fig. 4 for this χ = 19.5 ppm 3He impurity
sample, the flux that results from a given �T is an increasing
function of decreasing temperature until the temperature
drops below ∼105 mK, below which there is no flux. As
an illustration of just how sharp and prompt the extinction
behavior is, consider Figs. 5 and 6. These figures illustrate
that for a χ = 10.2 ppm sample, the transition from flux to no
flux is no more than ≈1.5 mK wide, with the cessation of the
flux complete within no more than ∼350 seconds. Similarly,
in Fig. 6, we see that there is no flow at a cell temperature
of 99 mK, but that an increase in the cell temperature to a

FIG. 6. (Color online) An example of the recovery of the flux
near T = Td for the same 10.2 ppm sample as in Fig. 5. No flux is
seen in the presence of an imposed �T until the cell temperature
increases above about 100 mK, after which the flux recovers in a few
hundred seconds. This figure has the corrected temperature scale and
is a revision of the similar figure presented in Ref. [13].

TABLE I. Sample characteristics. The 3He concentration (ppm)
is in two cases estimated (*) based on the ln(χ ) vs 1/T linear
dependence shown in the inset of Fig. 13. The quantities δχ and
δTd represent uncertainties in the determination of χ and Td .

χ δχ P (bar) Td (mK) δTd (mK)

0.17 25.64 72.5 7
0.17 25.90 72.5 3
1.0 0.2 25.86 80.5 5
2.0 0.2 26.10 88.5 5
4.0 0.5 26.09 91.5 5
10.2 0.5 26.30 97.0 5
15.0 3 25.92 99.5 3
19.5 1 26.40 103 3
25.5 1.2 26.12 106 3
40.0* 5 26.15 109 2
61.0 3 26.36 111 2
119.3 6 26.40 115.5 2
220.0* 30 25.90 125 2

fixed value near 100 mK results in a growth of the flux, with
a flux recovery time of ∼600 seconds. The difference in the
temperature of the sharp change in F between cooling and
warming shows a small hysteresis at this value of the 3He
concentration. The sharp gradient in the slope of F vs T near
100 mK seen in Fig. 4 is stable. That is, if the temperature
remains fixed, then the value of F remains stable at any point
in the Td transition region [17].

Now, the time noted for the flux to make the no-flow to
flow recovery (or the reverse) likely places some constraints
on scenarios for what causes the transition from a state of no
flow to a state of flow. One possibility is that it takes this long
for the temperature of the solid to change. To explore this, a
calculation for our cylindrical geometry that incorporates the
Kapitza resistance between the solid and the copper wall and
the properties of solid helium has been done by Mullin [18],
with the result that the time for this thermal equilibration to
take place is predicted to be no more than ∼50 msec. This
result is geometry dependent, but generally consistent with
the thermal equilibration experiments carried out by Huber
and Maris [19]. That work indicated that equilibration near
100 mK is achieved in ∼10 msec. These facts indicate that the
equilibration time for temperature of the solid is much faster
than the observed recovery times and thus the flux change must
be related to the movement of the 3He and not due to a thermal
time constant. We will discuss this further below.

E. Flux dependence on 3He concentration

The same procedure shown in Fig. 2 has been used for a
substantial set of solid helium samples with different 3He
impurity concentrations χ , which ranged from a low for
nominal well helium of 0.17 ppm 3He to a high of 220 ppm,
as listed in Table I. Two examples of the mass flux temperature
dependencies are shown in Figs. 7 and 8 for χ = 0.17 and 2
ppm, respectively. Data points here represent the maximum
flux values normalized to the maximum flux rate at 200 mK to
facilitate the comparison. The relevance of such normalization
will become more apparent shortly.
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FIG. 7. (Color online) An example of flux reduction and hystere-
sis near T = Td for a 0.17 ppm 3He and P = 25.64 bar sample. The
smooth curve will be discussed in the next section.

Figures 7 and 8 document hysteresis in the vicinity of Td

with the flux drop during cooling typically taking place at
slightly lower temperature than the flux rise during warming.
This hysteresis is measurable at most of the 3He concentrations
studied and may be considered as a feature of a first-order
phase transition. This suggests that phase separation may be
important and we will return to this point later. The hysteresis
is most evident at the lowest concentrations. The width of this
hysteresis for low concentrations is shown in Fig. 9. Figures 7
and 8 demonstrate that for low concentrations, the flux does
not drop to zero and recovers on cooling below T < Td . The
recovery of the flux as the temperature is lowered below
Td [13,20] suggests that the role played by the 3He saturates.
We will return to this point in Sec. IV. The dashed curves on the
figures are vertically shifted continuations of the solid smooth
curves, which serve to characterize the data. The significance
of these smooth curves will be discussed in the next section.
If χ is more than about 10 ppm, e.g., as shown in Fig. 4,

FIG. 8. (Color online) An example of flux reduction and hystere-
sis near T = Td for a 2.0 ppm 3He and P = 26.10 bar sample. The
smooth curve will be discussed in the next section.

FIG. 9. (Color online) The width of the hysteresis seen in the
vicinity of T = Td for low 3He concentrations. The width of the
hysteresis region narrows steeply with increasing concentration.

then there is no flux recovery down to ∼60 mK (the lowest
temperature for these measurements).

Data for a range of samples with different concentrations
and sample histories are shown in Fig. 10. In each case, the
maximum flux value shown is that which results from the same
value of the imposed �T . The shift in Td with concentration
is evident. Different samples with different histories at a
given concentration have somewhat different absolute values
of F , but the temperature dependence and value of Td are
reproducible for a given concentration.

III. DISCUSSION

A. Universal temperature dependence

We now present in more detail the temperature dependence
for temperatures above Td . As we will show, the temperature

FIG. 10. (Color online) The temperature dependence of the flux
observed for 4He with several 3He impurity concentrations and
experimental conditions, determined in each case with a constant
value of �T , which yields a maximum flux F that appears for �μ in
the range 5–8 mJ/g. This figure has the corrected temperature scale
and is a revision of the similar Fig. 1 presented in Ref. [13]. For each
data set, the solid pressure was in the range 26 ± 0.4 bar.
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FIG. 11. (Color online) An example of flux extinction near T =
Td for a 19.5 ppm 3He sample at P = 26.40 bar sample. For
comparison, data for cooling is shown (solid circles) after the flux
ceased at T = 0.625 K. Note that the flux values are shown in mbar/s
units.

dependence for T > Td is robust, but the absolute value of
the flux depends importantly on the sample and its history.
As an example of the sort of variability that we have found,
consider the data shown in Fig. 11 for the sample with χ =
19.5 ppm. The flux values are presented here in mbar/s units
(not normalized values) in order to compare the behavior of the
flux before and after the temperature was increased to 620 mK,
where the flux was no longer measurable. When cooled, after
the sample cell was warmed, the flux was greatly reduced
(circles). The data set for the larger values of F shown here is
the same data set shown in Fig. 4.

What is not immediately apparent in Figs. 10 and 11 is that
the temperature dependence at temperatures above the peak
flux reached is robust. To demonstrate this most clearly, we
normalize the many data sets shown in Fig. 10. We accomplish
this by use of a multiplicative factor for each data set to force
the various values of F to superimpose at T = 0.2 K. The
normalized flux temperature dependencies for the samples of
different 3He concentrations are presented in Fig. 12.

One can see again here, as was evident in Fig. 10, that the Td

values shift to higher temperatures with higher χ values. At the
same time, F (T ) for different samples at T > Td collapse to a
universal temperature dependence [13]. This figure also shows
that in the temperature range in the vicinity of the peak value
of the flux (near T = Td ), the peak becomes more rounded
with less curvature for larger χ values.

Td values determined from the data in Fig. 12 and other
data like them are shown in Fig. 13 to show how the 3He
concentration affects Td . Because there is hysteresis, we define
Td to be the average of the value of the temperature at the
foot of the cooling and warming data sets. It is natural to
compare these temperature-dependent data to the data on
phase separation in solid helium. According to Ref. [21],
extrapolated to 26 bar, the temperature of solid-solid (bcc
3He-rich inclusions form inside the hcp 4He-rich matrix)
phase-separation temperature Tps can be found from

Tps = [0.80(1 − 2χ ) + 0.14]/ ln(1/χ − 1), (4)

FIG. 12. (Color online) The temperature dependence of the nor-
malized flux observed for 4He with several 3He impurity concen-
trations and experimental conditions, with the solid 4He pressure
26 ± 0.2 bar. Fitted line: see text.

and this is represented in Fig. 13 by the dashed line. The
number 0.80 in this expression comes from the extrapolation
to the pressure of our experiment. In the case of bulk phase
separation for our pressure range, another situation is present:
liquid 3He-rich regions form inside the solid 4He matrix (the
so-called solid-liquid case). This scenario was calculated in
Ref. [13] and is shown by the solid line in the same figure. It can
be seen here that our Td vs χ dependence has a shape similar
to, but lies above, the solid-liquid case for phase separation.
This will be discussed further in Sec. III C.

In an attempt to further characterize the data, we have
utilized several functions. In recent presentations [12,13], we
have favored F = A − B exp(−E/T ), which is motivated
by the thought that some thermally activated process may
be relevant. Independent fits of this functional dependence
to all of the data sets results in the characterization of the
universal behavior of the temperature dependence. We find a

FIG. 13. (Color online) Temperature of the sharp drop in F , Td .
Inset: ln(χ ) vs 1/T ; see text. This figure has the corrected temperature
scale and is a revision of the similar Fig. 5 presented in Ref. [13].
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FIG. 14. (Color online) Pressure dependence of the parameter E.

good characterization of the data with

F = F0[1 − 1.21 exp(−E/T )]. (5)

The value of E that results from such a characterization of the
data depends weakly on pressure, as shown in Fig. 14. The
higher the pressure (density), the lower the value of E, i.e., the
F (T ) dependence gets steeper with pressure. The use of colors
for symbols in this figure is the same as in Figs. 11 and 12.
There is no apparent dependence of E on χ .

The value of F0 may be interpreted to be proportional to the
number of conducting pathways inside the solid helium, i.e.,
at T ∼ Th, conducting pathways are being partially annealed
(completely in some cases) leading to a substantial flux
decrease in the whole Td < T < Th temperature range on
subsequent cooling.

As we have pointed out earlier [16] (e.g., Fig. 9 in that
earlier work and the associated comments [16]), the entire
temperature dependence is not fully explained by thermal
activation since the flux extrapolates to zero at a finite
temperature. So, the explanation for whatever controls the
decrease in flux with increasing temperature must go beyond
simple thermal activation.

As an alternate approach to characterize the temperature
dependence, the normalized universal data for T > Td from
Fig. 12 can be inverted, (F )−1, to obtain something we might
call a flux resistance [22], as shown in Fig. 15. This approach
allows us to explore whether there might be any power-law
behavior, although the temperature range is very narrow for
such an approach. One can see in Fig. 15 that there appears to
be a crossover in the behavior of the temperature dependence.
The data for the range of samples studied can be described
reasonably well by

(F )−1 = F (0.2K)/F = AT k + BT m, (6)

where A, B, k, and m are parameters. We find that with the
choice of k = 1, a fit to the data yields m = 5.8 ± 0.3.

It is an open question as to what the origin is of those two ap-
parently distinct contributions to the temperature dependence
of the mass flux resistance. But, such behavior is not without
precedent for a quasi-one-dimensional system. Consider,
for example, the case of superconducting nanowires below
the transition temperature Tc. These nanowires demonstrate

FIG. 15. (Color online) Temperature dependence of the flux re-
sistance, (F )−1, measured through the solid sample (see Ref. [13],
Fig. 4) and presented here on a log-log scale. The solid line is a fit of
the data by Eq. (6) and the dashed and dotted lines represent linear
and T 5.8 behavior, respectively.

nonzero resistance at any finite temperature, apparently due to
the presence of phase slips in the order parameter that result
in dissipation, which destroys superconductivity. These phase
slips are due to thermal fluctuations at higher temperatures
close to but below Tc, or to quantum-mechanical tunneling
at low temperatures, the so-called quantum phase slips
(QPS). Electrical-transport measurements in single-crystal Sn
nanowires [23] and its analysis [24] showed a power-law
dependence ρ(T ) ∼ T α at T < Tc with an exponent α ≈ 5
for nanowires of diameter 20 and 40 nm, but much larger
values of α for larger wire diameters. These data were
interpreted in terms of the unbinding of quantum phase slips
with temperature. Also it was predicted [25] that in the limit
of very thin wires and low temperatures, where unbound
QPS behave as a gas, the temperature dependence of the
wire resistivity should become linear at the transition to the
disordered (i.e., nonsuperconducting) phase. As shown in
Fig. 15, the data is consistent with a linear dependence of the
flux resistance for the flux that we observe at low temperature.
The relationship that might exist between these rather different
physical systems, i.e., conducting pathways in solid helium and
very thin wires, has not been explored theoretically, but both
systems may be describable by Luttinger liquid theory.

B. Luttinger liquid

An example of the nonlinear behavior of F vs �μ shown
in Fig. 3 is reasonably well represented by Eq. (3), where b

is less than 0.5, and within our errors is independent of T .
An example of the independence of b from temperature is
shown in Fig. 16 for χ = 10.2 ppm. Here, as in our earlier
measurements for nominal-purity well helium [12], all of the
temperature dependence is contained in the amplitude A. We
have previously shown that for well helium, b depends on
pressure. As we have suggested, this nonlinear behavior and
independence of b from temperature supports the possibility
that the flux is carried by one-dimensional paths, e.g., perhaps
the cores of edge dislocations [12], and can be described by
the properties of a so-called bosonic Luttinger liquid [4].
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FIG. 16. (Color online) Temperature dependence of fit parame-
ters (a) A and (b) b for the data in Fig. 3; see Eq. (3).

As noted, the exponent b is temperature independent, but it
depends on the solid helium pressure. The higher the pressure,
the larger is the value of b. Data for b as a function of the
distance from the melting curve, δP = P − PMC , is presented
in Fig. 17 for nominally pure (170 ppb) helium as well as
for a number of concentrations. Although the number of
concentrations for which we have data adequate to determine
b for a range of pressures is limited, there is apparently no
significant dependence of b on χ .

The data for b above can be used to obtain the pressure
dependence of the Luttinger parameter, g. The parameter g

provides a measure of the strength of the interactions among
the 4He atoms in one dimension. If we presume that we have a
number of independent random scattering sites that introduce
phase slips, then the Luttinger parameter g can be obtained
from b by means of g = [(1/b) + 1]/2 [26]. The results shown
in Fig. 18 suggest that for such a scenario, we are well in the
Luttinger regime, but that with increasing pressure, g decreases
and we approach the nonsuperfluid regime. This is consistent

FIG. 17. (Color online) Pressure dependence of the fit parameter
b. Open square data points here correspond to nominally pure 4He
samples (0.17 ppm 3He) and other data points represent the data
for 3He- 4He mixtures with χ > 0.17 ppm. Here, δP is the distance
above the melting curve in bar.

FIG. 18. (Color online) Pressure dependence of the Luttinger
parameter g, presuming that g = [(1/b) + 1]/2. Again, here, δP is
the distance above the melting curve in bar.

with previous work [10,11] in which the flux disappeared at
higher pressures. The colors of symbols in Fig. 18 have the
same sense as in Fig. 17.

Based on the pressure (density) dependence of g and E,
shown in Figs. 18 and 14, respectively, one can see that 3He
impurities in the range studied do not affect these data. This
suggests that for T > Td , there is no measurable 3He role in
either the F (�μ) or the F (T ) dependencies.

C. Comments

We have discussed the effect of 3He impurities on the flux
measured and here we summarize the 3He effects that we
have observed. First of all, there is a sharp flux extinction at
a characteristic temperature Td , which itself depends on 3He
concentration, χ , and this Td (χ ) dependence (see Fig. 13)
is reminiscent of the bulk phase separation shifted to higher
temperatures. Another point is that this extinction is a slow
process compared with the thermal equilibration time for
the solid (∼10’s of msec), but a fast process (∼100’s of
seconds) compared to the time required for complete solid
phase separation (dozens of hours [27]) in samples of higher
concentrations than we have used here.

These facts suggest that the behavior of the 3He is
relevant. It is likely that only a small fraction of 3He is
responsible for the flux extinction and this phenomenon is due
to 3He redistribution in the vicinity of the phase-separation
temperature. Work by Edwards et al. [28] indicates deviations
from T 3 behavior in the specific heat for mixture solids for T >

Tps . This suggests local 3He concentration fluctuations [29]
are likely relevant to our observations; the 3He fluctuates in
position and is thereby able to block the flux at a temperature
above the bulk phase-separation temperature. It is the case that
for the very low concentrations we have for the most part used
in this work, diffusion can be quite fast. This is true whether
the 3He considered is in the solid mixture or elsewhere in a
liquid mixture. We will explore this further below.

Based on the F ∼ (�μ)b dependence, as was already
shown in Ref. [12], we suggested that the flux could be
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consistent with a one-dimensional scenario. One can envision
candidates for these 1D pathways: (1) liquid channels, e.g.,
between grain boundaries and the sample cell wall [30], or (2)
the cores of dislocations in solid helium. But a number of other
possibilities come to mind and have at times been discussed.
In an effort to be reasonably complete, we will discuss them,
at least briefly, here. In doing so, we will offer comments and
also present some qualitative numerical calculations that relate
to the 3He.

It has at times been suggested that the mass flux seen to exist
between the two reservoirs might not be an actual flux through
the solid, but instead a crystallization of the solid where mass
enters and a melting where mass leaves. We believe that this is
not likely. Substantial evidence that this is not the explanation
is found in the behavior of the flux when the history of the
sample includes an increase in temperature above 650 mK
and a subsequent cool down to low temperatures. When this
sort of protocol is followed, it is typically the case that the
warming-cooling cycle results in a substantial reduction of
the flux or its elimination. We believe that were the suggested
crystallization process at work, it should not be much modified
by such a cycle. Instead, we believe that such a cycle, i.e., an
annealing cycle, modifies the flow paths that exist.

1. Liquid channels

Although we have previously argued that liquid channels
are likely not responsible for the flux, we discuss them further
here. Were they present, the superfluid density in them could be
reduced or eliminated by the migration of 3He. Unfortunately,
there is no reasonable estimate of how many of these liquid
channels there might be. In the pressure range we have studied,
the diameter of these channels can be calculated [30] to be
6–31 nm; the higher the pressure, the smaller the channel
diameter. In the most extreme example, if one such liquid
channel were to span the distance between the Vycor rods
with diameter of 20 nm, to fill it with 3He would require
1.4 × 1011 atoms. To take a specific case, if we take a 10 ppm
3He concentration for the 3He in the solid, there are enough
3He atoms present in our solid mixture sample to fill ∼3 × 106

such channels. Although we do not have a good estimate of the
number of such channels, given the expected diffusion times, it
appears that diffusion to such channels would be a fast process.
Thus, the presence of 3He would be expected to block flow
through them.

In the work reported in Ref. [31], torsional oscillator
(TO) measurements to determine the superfluid density, ρs ,
were carried out for nanometer-size channels (folded sheet
mesoporous materials) of diameter D = 1.5–4.7 nm [31,32]
filled with superfluid helium. This study revealed a transition
from a Kosterlitz-Thouless behavior to a 1D-like temperature
dependence of the apparent superfluid density only for D <

2.2 nm. The temperature dependence they found, ρs for
D = 1.8 nm [31], can be well fit by Eq. (5), which has been
chosen to fit our flux temperature dependence, F (T ) (see
Fig. 19). A value of E ∼ 0.4 K for the parameter E is found
for the data of Ref. [31]. This functional dependence, which
is not present in the work of Ref. [31] above D = 2 nm, lends
support to the notion of a 1D scenario for our observed flux

FIG. 19. (Color online) Temperature dependence of the torsional
oscillator data from Ref. [31] for a pore diameter of 1.8 nm. Here,
�f/�f (T = 0) is the relative frequency shift seen in the torsional
oscillator as a function of temperature. The smooth curve is a fit of the
data directly to Eq. (5) that we have used to characterize the universal
temperature dependence of our flux through solid helium; we find, in
this case, E ∼ 0.4 K. If we convert to a flux resistance in this case,
the power law, given by Eq. (6), does not provide a reasonable fit.

and at least suggests that the liquid channels that are predicted
would be too large in diameter to demonstrate 1D behavior.

2. Wall effects

Instead of liquid channels that might form at grain bound-
aries, one might consider the possibility that a rough cell-wall
surface might create a percolating liquid pathway along the cell
wall that might carry a flux. We doubt that this is a possibility
because if this were the case, it is unlikely that warming the
solid and then cooling it would remove the ability of such
percolating liquid to show mass flux. These rough-valley wall
pathways should persist on thermal cycling. But, a thermal
cycle above 650 mK typically causes a substantial reduction in
the measured flux on subsequent cooling. This same reasoning
concerning the behavior in response to thermal cycles should
also apply to the possibility of liquid channels at grain
boundaries unless annealing destroyed them.

Recently, Livne et al. [33] have reported measurements of
the macroscopic relative motion of grains of solid 4He. What
relation that evolving work may have to mass flow studies is
not yet clear.

3. Dislocations

Based on the possibility of 1D conducting pathways [34],
one approach is to assume that 3He impurities bind on
dislocation cores (or their intersections) in the solid helium
and block the flux that is carried by such pathways. This
notion is supported by QMC simulations [35] that show that
3He impurities diminish the superfluid density along the core
of screw dislocations in hcp 4He by binding on them. To
illustrate this point, the inset to Fig. 13 shows ln(χ ) vs 1/T .
Straight lines here are presented by χ = exp(−R/T ), with
R approximately independent of temperature, and R = 0.94
and 1.02 K for solid-solid (dashed curve) and solid-liquid
(solid curve) bulk phase separation, respectively [13]. A fit
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of the Td data (squares, dark solid line) by χ = exp(−R/T )
gives R = 1.11 K. A model [13] that includes a small number
of binding sites for 3He or 4He atoms yields the function
form χ = exp(a − R/T ), where exp(a)/[1 + exp(a)] is the
minimum impurity concentration that blocks superflux, and
R includes the binding energy. This function form gives
better fit (solid red line), with R = 1.32 K and a = 2.18.
The numbers reported in this paragraph are revisions of those
previously reported [13] because they take into account the
temperature scale revision mentioned earlier in this report.
This energy value is higher than the measured [36–38] and
predicted [35,39] binding energy (∼0.7 K) of single 3He
atoms to dislocations. Although to our knowledge it has not
been calculated, the binding energy to dislocation intersections
should exceed this. These facts are not inconsistent with
the possibility that the flux extinction results from the 3He
binding to dislocation intersections [35], where the 3He blocks
the flux. To our knowledge, the binding energy for 3He
at the intersections of dislocations has not been considered
theoretically and is not known.

It is perhaps useful to carry out qualitative numerical
estimates that relate to the decoration of such cores (or
intersections) with 3He atoms. We will do this in this section
and again later with the recognition that at times the choices
we make will be arbitrary. There are a number of unknowns.
One of these is the number of such structures that span the
cell, Vycor to Vycor. We previously took [12] this number
to be of the order of 105. If we take the solid 4He density
to be ≈2.9 × 1022 atoms/cm3, we find that about 6 × 107

4He atoms would be along a 2 cm direct strictly 1D pathway
between the two Vycor rods; a pathway of diameter ∼1 nm
[34] would require ∼5 × 108 atoms. Thus, to fully decorate
105 such cores would require ∼1013 atoms (or ∼1014 for a
1-nm-diameter case). Since Corboz et al. [35] have shown
that the decoration of dislocation cores does not have to be
complete to influence the superfluidity on the core, we rather
arbitrarily take a smaller number, ∼1 × 1012 atoms. Of course,
a much smaller number could also be relevant since only a local
dense decoration would be needed along a short segment of
a dislocation core or at an intersection to substantially reduce
the flux. Nonetheless, we continue with this number. Now,
in our experimental geometry, a 3He concentration of 10
ppm results in the presence of about 5.4 × 1017 3He atoms
in the cell, which, if uniformly distributed, is a 3He density of
2.9 × 1017 atoms/cm3.

So, we can ask from what volume the needed number of
atoms (e.g., for the 1013 case) would have to diffuse in the
solid to decorate the dislocation cores. If we assume that these
atoms diffuse from a cylindrical region to a dislocation core
on the axis of the cylinder, we can estimate the radial distance
from the core over which they would have to travel. We find
this radial distance to be ∼1.5 × 10−4 cm. We can then ask
how long this will take. Those from a region near the core
will arrive relatively quickly, while those from further away
(an increasing number in any radial interval) will arrive later.
For this, we take the 3He diffusion constant near 26 bar and
100 mK at ∼10 ppm (extrapolating from the work of Eselson
et al. [40]) to be D ≈ 1.5 × 10−6 cm2/sec and 〈x2〉 ∼ 6Dt ,
where t is the time, and we find the time to be about 2.5 × 10−3

seconds. For higher 3He concentrations, the atoms would have

to travel less far, but for higher concentrations, the diffusion
constant is smaller. The time for flux recovery at Td is well
documented in Fig. 6, but the time for flux extinction is not yet
well determined; we can only say that it is apparently less than
∼200 seconds. In spite of the approximations involved, if we
compare the computed numbers for diffusion times with the
times cited near Figs. 5 and 6 for the flux to be extinguished or
recover, we conclude that diffusion of 3He from the solid to
dislocations or their intersections is not likely the controlling
constraint in the flux change at Td . The diffusion would likely
be a rather fast process for the concentrations that we have
studied.

4. A helium film

Another unlikely possibility is the flow of a helium film
along the surfaces of the Vycor and the experimental cell.
Were this to be the cause of the mass flux, one might expect that
the temperature dependence would behave like a Kosterlitz-
Thouless transition. This behavior is not evident in the data
shown in Fig. 4 or other similar sets of data. Nonetheless,
we might imagine a surface layer of liquid 4He at the walls
with a thickness of two atomic layers. Such a liquid 4He
layer is known to be located adjacent to a semisolid layer
next to a wall in liquid mixture situations. The number of
4He atoms involved would be ∼1.4 × 1016. At 1 ppm 3He,
this is approximately the number of 3He atoms in the cell.
Given diffusion times, it is conceivable that such a film could
be poisoned. But, the fact that annealing reduces or eliminates
the ability of the solid to carry a flux when subsequently cooled
argues strongly against a superfluid film as the carrier of the
flux.

5. Vycor pore openings

Another possibility for what causes a reduction in the flux
at Td is 3He accumulation at the openings to the Vycor
pores. This possibility has recently been emphasized by
Cheng et al. [41]. In their experiments, a variation of our
approach was used. Instead of a superfluid-solid-superfluid
geometry, they used a solid-superfluid-solid geometry. They
were able to observe some temperature dependencies that are
similar to those we have found in our various experiments,
particularly the presence of Td . In their discussion of the pore
opening scenario, which they supported by calculations of
the temperature-dependent binding of 3He to various possible
binding sites, the picture is that at Td the 3He moves to the
solid-liquid interfaces at the openings of the Vycor pores.
Cheng et al. [41] suggest that the 3He atoms decorate the
solid surface at the pore openings. Another possibility could
be accumulation of 3He at the pore ends.

For the flux to be fully blocked by 3He in this scenario,
the openings of the pores where the superfluid in the Vycor
meets the solid must be blocked by 3He. For our experimental
apparatus, each Vycor rod surface meets the solid 4He over
a macroscopic surface area of about 0.3 cm2. Given the
properties of Vycor, we estimate that the open area of this
surface that is comprised of pore openings is no less than
0.084 cm2. Each pore of diameter 7 nm will have an open area
at the surface of the Vycor no less than 3.84 × 10−13 cm2.
The number of such pore openings is estimated to be at least
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2.18 × 1011. All of these need to be blocked by 3He. How
much is needed at each pore opening? It is not clear that
one monolayer would be adequate. If accumulation in the
pore opening is responsible, more would be needed. So, as a
specific case, we take as an estimate a distance along the pore
of two pore diameters and presume that if this volume were
to fill with 3He, the pore would be blocked. This choice is
certainly arbitrary; a greater or smaller length certainly might
be appropriate. But, this choice might be appropriate for a
model in which the 3He blocks the pore itself by filling it
at the end. In the vicinity of 100 mK, the expected phase
separation for a liquid 3He- 4He mixture indicates that if the
3He were to be in the pores and blocking the flux, it would
be due to a high-concentration normal mixture in the pores.
Clearly, our numbers provide only a rough estimate, but it is
not unreasonable. As we will show, there is more than enough
3He for the pore-blocking scenario.

To fill such a volume for all of the pores would require
≈2.6 × 1015 atoms. At 10 ppm, this is about 0.5 percent of all
of the 3He available; for higher (lower) concentrations, it is a
proportionally smaller (larger) fraction. So, we can ask in this
case about how long it will take for the 3He to accumulate
at the pore openings by migration from the solid. We take
the same parameters of 26 bar, 10 ppm 3He with a diffusion
constant of ≈1.5 × 10−6 cm2/sec and note that the 3He will
have to travel macroscopic distances. For the case of 10 ppm
3He, we find that the time required is ∼20 seconds. It is much
shorter if all that is required is the appearance of a monolayer
on the solid surface. Changing the concentration changes the
time required; increasing the length of the pore that needs
to be filled with 3He increases it. These estimates are short
times compared with the times shown for recovery of the flux
documented in Fig. 6, especially when it is recognized that as
3He accumulates in the solid near a pore opening, the local
concentration may increase, which will cause the diffusion
constant to decrease [40]. Were the 3He to accumulate at
the solid-liquid interface from a liquid mixture in a pore, we
estimate that the time would be fast (∼msec). As we have
noted, flux extinction is complete in ∼200 seconds; recovery
is complete in ∼500 seconds. These equilibration times are
substantially longer than the diffusion estimates, unless, for
example, the diffusion is from the solid and a much longer
pathway in a pore must accumulate 3He for the flux to be
blocked. One fact that lends support for the mixture solid as the
source of the 3He is the fact that the Td vs χ behavior closely
resembles the phase-separation locus (solid line in Fig. 13).
There is a need for more work to better understand the duration
time for flux recovery and the details of how the 3He manages
to cause the conductance transition.

To explore the flux increase for T < Td at the lowest
concentrations, it may be that the 3He is exhausted and
incompletely effective in blocking the flux from the pores. For
the case of 0.17 ppm 3He, the filled cell will have 9.2 × 1015

3He atoms in it. As we have noted, to fill the pores to a depth
of two pore diameters will require ≈2.6 × 1015 atoms. We
have seen that the flux recovers for 3He concentrations up
to 10 ppm (in which case there are 5.4 × 1017 3He atoms in
the cell). These estimates have a number of assumptions; in
spite of them, it is not clear why there is not enough 3He to
completely block the flux. The transition to low flux for low

concentrations is not complete. One possible cause for this,
if the 3He source is the solid, is that at a given temperature,
which is Td for the concentration in the solid, once 3He atoms
begin to leave the solid matrix, the solid now contains a lower
concentration of 3He. This naturally shifts the Td to a lower
temperature and at the given temperature no additional 3He
atoms leave the matrix. This observation explains the fact,
clearly seen in, for example, Fig. 4 and evident in other data
sets, that the flux in the middle of the Td region is stable if
the temperature is fixed [17]. That is, the data taken while
cooling or warming is stable once a fixed temperature is
achieved.

6. Behavior above and below Td

It is not clear what might explain the universal temperature
dependence above Td . And, unless the estimates made here
are substantially in error, it is also not fully clear why the flux
increases for low 3He concentrations below Td . One possibility
below Td is that if the 3He has been exhausted, but the blockage
incomplete, then a lower temperature could be expected to
provide an increase in the superfluid density in the confining
conductance pathway.

In very recent work we have reported evidence that for
the region of universal temperature dependence, T > Td , the
limitation to the flux is unrelated to the Vycor interface with
the solid and takes place in the bulk solid [22]. This suggests
that this temperature dependence may be due to a temperature-
dependent superfluid density along the conducting pathways.
Additional work is currently in progress and will be discussed
more extensively in a future paper.

IV. CONCLUSIONS

We find the presence of 3He as an impurity in hcp solid
4He has a strong effect on the sharp flux reduction at a
concentration-dependent characteristic temperature Td . On the
other hand, we find that the presence of 3He does not alter
the universal temperature dependence of the limiting mass
flux above Td . The magnitude of the flux is typically sample
dependent, and sample dependent at any concentration, but
the temperature dependence is universal. The specific reason
for the universal temperature dependence for T > Td remains
unresolved. It is likely due to the physics associated with
the conducting pathways. The results also suggest that the
presence of 3He does not destroy the apparent Luttinger-like
behavior of the flux. More experimental and theoretical study
of solid helium and 1D superfluidity [7,31,42] and its pressure
dependence are certainly needed.
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[34] Ş G. Söyler, A. B. Kuklov, L. Pollet, N. V. Prokof’ev, and B. V.
Svistunov, Phys. Rev. Lett. 103, 175301 (2009).

[35] P. Corboz, L. Pollet, N. V. Prokof’ev, and M. Troyer, Phys. Rev.
Lett. 101, 155302 (2008).

[36] M. A. Paalanen, D. J. Bishop, and H. W. Dail, Phys. Rev. Lett.
46, 664 (1981).

[37] O. Syshchenko, J. Day, and J. Beamish, Phys. Rev. Lett. 104,
195301 (2010).

[38] F. Souris, A. D. Fefferman, H. J. Maris, V. Dauvois, P. Jean-
Baptiste, J. R. Beamish, and S. Balibar, Phys. Rev. B 90, 180103
(2014).

[39] S. S. Kim, C. Huan, L. Yin, J. Xia, D. Candela, and N. S.
Sullivan, Phys. Rev. Lett. 106, 185303 (2011).

[40] B. Esel’son, V. Mikheev, V. Grigor’ev, and N. Mikhin, Sov.
Phys. JETP 47, 1200 (1978).

[41] Z. G. Cheng, J. Beamish, A. D. Fefferman, F. Souris, S. Balibar,
and V. Dauvois, Phys. Rev. Lett. 114, 165301 (2015).

[42] R. Toda, M. Hieda, T. Matsushita, N. Wada, J. Taniguchi, H.
Ikegami, S. Inagaki, and Y. Fukushima, Phys. Rev. Lett. 99,
255301 (2007).

104509-12

http://dx.doi.org/10.1088/0022-3719/6/7/010
http://dx.doi.org/10.1088/0022-3719/6/7/010
http://dx.doi.org/10.1088/0022-3719/6/7/010
http://dx.doi.org/10.1088/0022-3719/6/7/010
http://dx.doi.org/10.1103/PhysRevLett.99.035301
http://dx.doi.org/10.1103/PhysRevLett.99.035301
http://dx.doi.org/10.1103/PhysRevLett.99.035301
http://dx.doi.org/10.1103/PhysRevLett.99.035301
http://dx.doi.org/10.1063/1.1704046
http://dx.doi.org/10.1063/1.1704046
http://dx.doi.org/10.1063/1.1704046
http://dx.doi.org/10.1063/1.1704046
http://dx.doi.org/10.1103/PhysRevB.82.060515
http://dx.doi.org/10.1103/PhysRevB.82.060515
http://dx.doi.org/10.1103/PhysRevB.82.060515
http://dx.doi.org/10.1103/PhysRevB.82.060515
http://dx.doi.org/10.1103/PhysRevLett.106.105303
http://dx.doi.org/10.1103/PhysRevLett.106.105303
http://dx.doi.org/10.1103/PhysRevLett.106.105303
http://dx.doi.org/10.1103/PhysRevLett.106.105303
http://dx.doi.org/10.1103/PhysRevB.88.064512
http://dx.doi.org/10.1103/PhysRevB.88.064512
http://dx.doi.org/10.1103/PhysRevB.88.064512
http://dx.doi.org/10.1103/PhysRevB.88.064512
http://dx.doi.org/10.1142/S021797921244002X
http://dx.doi.org/10.1142/S021797921244002X
http://dx.doi.org/10.1142/S021797921244002X
http://dx.doi.org/10.1142/S021797921244002X
http://online.itp.ucsb.edu/online/smatter-m06/svistunov/
http://dx.doi.org/10.1103/PhysRevLett.100.235301
http://dx.doi.org/10.1103/PhysRevLett.100.235301
http://dx.doi.org/10.1103/PhysRevLett.100.235301
http://dx.doi.org/10.1103/PhysRevLett.100.235301
http://dx.doi.org/10.1103/PhysRevB.79.224302
http://dx.doi.org/10.1103/PhysRevB.79.224302
http://dx.doi.org/10.1103/PhysRevB.79.224302
http://dx.doi.org/10.1103/PhysRevB.79.224302
http://dx.doi.org/10.1103/PhysRevLett.109.045303
http://dx.doi.org/10.1103/PhysRevLett.109.045303
http://dx.doi.org/10.1103/PhysRevLett.109.045303
http://dx.doi.org/10.1103/PhysRevLett.109.045303
http://dx.doi.org/10.1103/PhysRevLett.113.035302
http://dx.doi.org/10.1103/PhysRevLett.113.035302
http://dx.doi.org/10.1103/PhysRevLett.113.035302
http://dx.doi.org/10.1103/PhysRevLett.113.035302
http://dx.doi.org/10.1103/PhysRevLett.115.019902
http://dx.doi.org/10.1103/PhysRevLett.115.019902
http://dx.doi.org/10.1103/PhysRevLett.115.019902
http://dx.doi.org/10.1103/PhysRevLett.115.019902
http://dx.doi.org/10.1103/PhysRevB.82.012502
http://dx.doi.org/10.1103/PhysRevB.82.012502
http://dx.doi.org/10.1103/PhysRevB.82.012502
http://dx.doi.org/10.1103/PhysRevB.82.012502
http://dx.doi.org/10.1103/PhysRevB.90.134511
http://dx.doi.org/10.1103/PhysRevB.90.134511
http://dx.doi.org/10.1103/PhysRevB.90.134511
http://dx.doi.org/10.1103/PhysRevB.90.134511
http://dx.doi.org/10.1007/BF00681855
http://dx.doi.org/10.1007/BF00681855
http://dx.doi.org/10.1007/BF00681855
http://dx.doi.org/10.1007/BF00681855
http://dx.doi.org/10.1103/PhysRevLett.105.145301
http://dx.doi.org/10.1103/PhysRevLett.105.145301
http://dx.doi.org/10.1103/PhysRevLett.105.145301
http://dx.doi.org/10.1103/PhysRevLett.105.145301
http://dx.doi.org/10.1103/PhysRevB.39.4083
http://dx.doi.org/10.1103/PhysRevB.39.4083
http://dx.doi.org/10.1103/PhysRevB.39.4083
http://dx.doi.org/10.1103/PhysRevB.39.4083
http://dx.doi.org/10.1103/PhysRevB.91.180506
http://dx.doi.org/10.1103/PhysRevB.91.180506
http://dx.doi.org/10.1103/PhysRevB.91.180506
http://dx.doi.org/10.1103/PhysRevB.91.180506
http://dx.doi.org/10.1103/PhysRevB.71.104521
http://dx.doi.org/10.1103/PhysRevB.71.104521
http://dx.doi.org/10.1103/PhysRevB.71.104521
http://dx.doi.org/10.1103/PhysRevB.71.104521
http://dx.doi.org/10.1103/PhysRevB.77.104528
http://dx.doi.org/10.1103/PhysRevB.77.104528
http://dx.doi.org/10.1103/PhysRevB.77.104528
http://dx.doi.org/10.1103/PhysRevB.77.104528
http://dx.doi.org/10.1016/j.physrep.2008.04.009
http://dx.doi.org/10.1016/j.physrep.2008.04.009
http://dx.doi.org/10.1016/j.physrep.2008.04.009
http://dx.doi.org/10.1016/j.physrep.2008.04.009
http://dx.doi.org/10.1063/1.593788
http://dx.doi.org/10.1063/1.593788
http://dx.doi.org/10.1063/1.593788
http://dx.doi.org/10.1063/1.593788
http://dx.doi.org/10.1103/PhysRevLett.9.195
http://dx.doi.org/10.1103/PhysRevLett.9.195
http://dx.doi.org/10.1103/PhysRevLett.9.195
http://dx.doi.org/10.1103/PhysRevLett.9.195
http://dx.doi.org/10.1063/1.2144456
http://dx.doi.org/10.1063/1.2144456
http://dx.doi.org/10.1063/1.2144456
http://dx.doi.org/10.1063/1.2144456
http://dx.doi.org/10.1007/s10909-008-9848-9
http://dx.doi.org/10.1007/s10909-008-9848-9
http://dx.doi.org/10.1007/s10909-008-9848-9
http://dx.doi.org/10.1007/s10909-008-9848-9
http://dx.doi.org/10.1103/PhysRevB.76.144503
http://dx.doi.org/10.1103/PhysRevB.76.144503
http://dx.doi.org/10.1103/PhysRevB.76.144503
http://dx.doi.org/10.1103/PhysRevB.76.144503
http://dx.doi.org/10.1103/PhysRevB.82.104509
http://dx.doi.org/10.1103/PhysRevB.82.104509
http://dx.doi.org/10.1103/PhysRevB.82.104509
http://dx.doi.org/10.1103/PhysRevB.82.104509
http://dx.doi.org/10.1007/s10909-015-1308-8
http://dx.doi.org/10.1007/s10909-015-1308-8
http://dx.doi.org/10.1007/s10909-015-1308-8
http://dx.doi.org/10.1007/s10909-015-1308-8
http://dx.doi.org/10.1103/PhysRevLett.103.175301
http://dx.doi.org/10.1103/PhysRevLett.103.175301
http://dx.doi.org/10.1103/PhysRevLett.103.175301
http://dx.doi.org/10.1103/PhysRevLett.103.175301
http://dx.doi.org/10.1103/PhysRevLett.101.155302
http://dx.doi.org/10.1103/PhysRevLett.101.155302
http://dx.doi.org/10.1103/PhysRevLett.101.155302
http://dx.doi.org/10.1103/PhysRevLett.101.155302
http://dx.doi.org/10.1103/PhysRevLett.46.664
http://dx.doi.org/10.1103/PhysRevLett.46.664
http://dx.doi.org/10.1103/PhysRevLett.46.664
http://dx.doi.org/10.1103/PhysRevLett.46.664
http://dx.doi.org/10.1103/PhysRevLett.104.195301
http://dx.doi.org/10.1103/PhysRevLett.104.195301
http://dx.doi.org/10.1103/PhysRevLett.104.195301
http://dx.doi.org/10.1103/PhysRevLett.104.195301
http://dx.doi.org/10.1103/PhysRevB.90.180103
http://dx.doi.org/10.1103/PhysRevB.90.180103
http://dx.doi.org/10.1103/PhysRevB.90.180103
http://dx.doi.org/10.1103/PhysRevB.90.180103
http://dx.doi.org/10.1103/PhysRevLett.106.185303
http://dx.doi.org/10.1103/PhysRevLett.106.185303
http://dx.doi.org/10.1103/PhysRevLett.106.185303
http://dx.doi.org/10.1103/PhysRevLett.106.185303
http://dx.doi.org/10.1103/PhysRevLett.114.165301
http://dx.doi.org/10.1103/PhysRevLett.114.165301
http://dx.doi.org/10.1103/PhysRevLett.114.165301
http://dx.doi.org/10.1103/PhysRevLett.114.165301
http://dx.doi.org/10.1103/PhysRevLett.99.255301
http://dx.doi.org/10.1103/PhysRevLett.99.255301
http://dx.doi.org/10.1103/PhysRevLett.99.255301
http://dx.doi.org/10.1103/PhysRevLett.99.255301



