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Kerr coefficients of plasma resonances in Josephson junction chains
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We present an experimental and theoretical analysis of the self- and cross-Kerr effect of extended plasma
resonances in Josephson junction chains. We calculate the Kerr coefficients by deriving and diagonalizing the
Hamiltonian of a linear circuit model for the chain and then adding the Josephson nonlinearity as a perturbation.
The calculated Kerr coefficients are compared with the measurement data of a chain of 200 junctions. The Kerr
effect manifests itself as a frequency shift that depends linearly on the number of photons in a resonant mode. By
changing the input power on a low signal level, we are able to measure this shift. The photon number is calibrated
using the self-Kerr shift calculated from the sample parameters. We then compare the measured cross-Kerr shift
with the theoretical prediction, using the calibrated photon number.
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I. INTRODUCTION

One-dimensional arrays of Josephson junctions, or Joseph-
son junction chains, have received considerable interest for
more than three decades. They were originally introduced
as a theoretical model system for the study of the zero-
temperature superconductor-insulator transition in supercon-
ducting granular films [1,2]. Josephson junction chains con-
sist of superconducting islands with a small capacitance to
ground C0, connected to each other by Josephson junctions.
The superconductor-insulator transition originates from the
Josephson potential energy EJ cos(φ) as this allows the
winding by 2π of the phase difference φ between neighboring
islands. At zero temperature, these phase slips are driven by
the quantum fluctuations of the phase induced by Coulomb
charging effects. As a result, the transition occurs as a function
of the parameter EJ /E0, where E0 = e2/2C0 the Coulomb
charging energy of the island. Since the quantum fluctuations
of the phase actually correspond to the zero-point fluctuations
of propagating electromagnetic modes along the chain [3],
the transition can also be characterized in terms of the
impedance Z/RQ = √

E0/EJ associated with the propagation
of these modes, where RQ is the superconducting resistance
quantum RQ = h/4e2. Indeed, the transition to the insulating
state occurs when Z/RQ becomes larger than ∼ π/2. The
superconductor-insulator transition has been observed in gran-
ular films [4] and wires [5], as well as in Josephson junction
chains [6,7].

More recent work focused on Josephson junction (JJ) chains
of finite length for which the junction capacitance C is much
larger than the capacitance C0 to ground. In such chains, the
above mentioned 2π phase windings occur in the form of co-
herent quantum phase slips (QPSs). It has been shown [8–10]
that coherent QPSs occurring locally at each junction of the
chain induce a nonlinearity related to the global charge q on the
chain U0 cos(πq/e), dual to the usual Josephson nonlinearity.
Here, the amplitude U0 = Nu0 scales with the length N of the
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chain. The amplitude u0 � (E3
J EC)1/4 exp −√

8EJ /EC is the
amplitude for a single QPS to occur on one of the junctions of
the chain, where EC = e2/2C. In this limit, the chain behaves
as a so-called quantum phase slip junction (QPSJ), a device
dual to the usual Josephson junction and whose properties
have been discussed since the pioneering work by Likharev and
co-workers [11,12]. For instance, a QPSJ is expected to sustain
Bloch oscillations, dual to Josephson oscillations. Evidence of
Bloch oscillations has been found in Refs. [13–15]. The actual
realization of a QPSJ could have far-reaching consequences
in quantum metrology and quantum information processing
[16–18].

The effect of the propagating modes of the chain on
the properties of the QPSJ has not been taken into account
in Refs. [8–10]. This is correct for relatively short chains,
with N < 2C/C0. Yet for longer chains, these modes appear
and their effect on the phase-slip amplitude is nonnegligi-
ble [19,20]. Indeed, in the thermodynamic limit, it is the
interplay between the modes and the phase slips that leads
to the superconductor-insulator transition. In view of possible
QPSJ applications, it is therefore important to study the
modes directly, in the presence of the chain’s nonlinearity.
This is the subject of the present paper, where we present
two-tone spectroscopy measurements of the modes for a chain
containing 200 junctions and tuned in the weakly nonlinear
regime. We show that the results can be interpreted in terms
of a model Hamiltonian that takes the weak nonlinearity into
account via self-Kerr and cross-Kerr interaction terms of the
propagating modes.

The paper is organized as follows. In Sec. II, we introduce
the sample and the experimental setup and show spectroscopy
measurements of the harmonic modes of a chain of 200
junctions. In Sec. III, we derive the Hamiltonian of a Josephson
junction chain and its eigenvalues and eigenvectors in the
linear limit. We also introduce the lowest order nonlinear
terms as a perturbation to the linear Hamiltonian. The two
most prominent terms are the self-Kerr and cross-Kerr terms
that appear. In Sec. IV, we first use the measured self-Kerr
frequency shift to calibrate the photon numbers in the resonant
modes of the Josephson junction chain. We then use this
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FIG. 1. (Color online) (a) Schematic of the measurement setup.
(b) SEM-image of the sample. On the top and bottom sides, one can
see the ends of the microstrip transmission lines. The SQUID chain
in between is barely visible on this scale. (c) Zoom on one of the
coupling capacitors. The image is rotated 90◦ with respect to the top
image. The insets show zoom on the chain and on a single SQUID.

calibration to measure the cross-Kerr shifts. We find cross-Kerr
shifts of the same order as the ones predicted by theory. In the
last section, we summarize our results and conclude.

II. EXPERIMENT

A. Sample

We have measured the resonances associated with the
propagating modes of a Josephson junction chain containing
200 SQUIDs (superconducting quantum interference devices).
The sample is cooled to 20 mK in a dilution refrigerator. The
resonant modes are measured with a vector network analyzer
(VNA). A scheme of the measurement setup is drawn in
Fig. 1(a). The input line is attenuated by −20 dB at 4 K and
−40 dB at base temperature. The input bandwidth is limited
by the coaxial cables which are specified up to 18 GHz but still
show transmission up to higher frequencies. The output line of
the measurement setup comprises two cryogenic broadband
isolators (Pamtech CW1019-K414), a cryogenic amplifier
(Caltech Cryo 1-12 SN262D), and three room temperature
amplifiers. The output line has a gain of about 85 dB over a
frequency band between 4 and 12 GHz.

A scanning electron microscopy (SEM) image of the
sample is shown in Fig. 1(b). The chain is coupled to 50 �

TABLE I. Device parameters of the sample.

EJ (GHz) EC (GHz) ωp

2π
(GHz) C (fF) LJ (nH)

40.1 ± 2 4.7 ± 0.5 38.4 ± 3 4.2 ± 0.4 4.1 ± 0.2

Ic (nA) Cin(fF) Cout(fF) C/C0 C0 (aF)

81 ± 4 8 ± 2 24 ± 6 35 ± 3 120 ± 15

microstrip transmission lines at both ends through coupling
capacitors. In Fig. 1(c) we show a zoom on the input coupling
capacitor. Input and output capacitor have different sizes, so
the chain is coupled to the output line stronger than to the
input line. Junctions and transmission lines are fabricated in
the same fabrication step by shadow evaporation of aluminum
on a silicon substrate. We use 100 keV electron beam lithog-
raphy with an asymmetric undercut in the two-layer resist
poly methyl methacrylate/methacrylic acid (PMMA/MAA,
PMMA) to deposit all unwanted structures on the resist
walls [21,22].

The sample parameters are summarized in Table I. The
Josephson energy was determined by measuring the resistance
of test junctions on the same chip at room temperature and
by assuming an increase of the resistance of 30% during
cooldown, which is what is typically observed for our samples.
The junction capacitance is determined from the junction size
obtained by SEM-observation of the test junctions. We use a
capacitance to surface ratio of 48 fF/μm2 [23,24].

B. Measurements

Three of the modes of the chain lie within the band-
width of the amplification chain and can be observed di-
rectly by applying a single microwave tone and measuring
the transmission coefficient S21 between ports 1 and 2
of the VNA. The frequencies of the other modes lie outside
the measurement bandwidth.

As an example for the direct spectroscopy of resonances
within the experimental accessible bandwidth, we plot the
transmission magnitude S21 in Fig. 2 for the mode corre-
sponding to j = 3. The spectrum is divided by a reference
spectrum recorded at half flux frustration of the SQUID loop.
In this way, the transmission background is normalized to
1. Due to a parasitic coupling between the two transmission
lines (input and output lines) the resonances show a Fano line
shape [21,25,26]. We thus fit the resonances with the Fano
formula [25] for the transmitted amplitude y(f ),

y(f ) = y0
[qF + 2(f − f0)/γ ]2

1 + 4(f − f0)2/γ 2
. (1)

Here f0 is the resonance frequency, γ the width of the
resonance [full width half maximum (FWHM)], y0 the
amplitude related with the parasitic coupling between the two
transmission lines, and qF the Fano factor that is given by the
ratio between the amplitudes transmitted at resonance through
the chain and the parasitic transmission.

Modes outside the band can nevertheless be observed
using two-tone spectroscopy. The transmission through one
of the resonances inside the band is measured, while sweeping
a second probe tone that is applied by an additional mi-
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FIG. 2. (Color online) Transmitted amplitude through the j = 3
resonance. The red curve shows a fit with the Fano formula Eq. (1)
using the following fit parameters: y0 = 0.89, qF = −3.17, γ =
77.3 MHz, and f0 = 7.91 GHz. The inset shows the transmitted phase
as a function of frequency for the same resonance.

crowave source (Agilent 8257D) through a power combiner
(Mini-Circuits ZFRSC-183-S). This detection method is based
on the nonlinear interaction between the modes. We plot the
phase of the transmitted signal through the j = 2 resonance as
a function of the probe frequency in Fig. 3. We observed the
first 14 modes out of the 199 predicted modes of the chain.

In Fig. 4, we show the dispersion relation (frequency as
a function of the mode index) extracted from the two-tone
spectroscopy in Fig. 3. As will be shown in detail below,

FIG. 3. (Color online) Two-tone spectroscopy: phase of the
transmission through the j = 2 resonance as a function of the
frequency of an additional probe tone applied by an external
microwave source. We observe the lowest 14 resonant modes of the
chain. The blue data points at higher frequencies were measured
with the higher excitation power of the probe tone. The black arrows
indicate the positions of resonances that are difficult to see on this
phase scale.

FIG. 4. (Color online) Measured frequencies (extracted from the
measurement shown in Fig. 3) of the resonances of a chain of 200
SQUIDs compared to the theoretical prediction. The values of the
ground capacitance as well as the coupling capacitors were used
as fit parameters in order to find best agreement with the data.
The highlighted area corresponds to the band in which a direct
spectroscopy is possible with our measurement setup.

the observed frequencies are in good agreement with the
theoretical prediction.

III. THEORY

In this section, we will analyze our experiments based on
the circuit model depicted in Fig. 5. It consists of a chain of
N junctions (the SQUIDs are modeled as single junctions)
with Josephson energy EJ and capacitance C. The ground
capacitance of the superconducting islands is C0. The chain is
coupled to the outside world via input and output capacitors
Cin and Cout at the two ends of the chain. The corresponding
Lagrangian reads

L =
N−1∑
n=1

(
�̇2

nC0

2

)
+ Cin

2
�̇2

0 + Cout

2
�̇2

N

+
N−1∑
n=0

1

2
(�̇n+1 − �̇n)2C −

N−1∑
n=0

EJ cos(φn+1 − φn),

FIG. 5. Circuit diagram considered for the derivation of the
Hamiltonian. A series array of Josephson junctions with Josephson
energy EJ , capacitance C, and ground capacitance C0 coupled to the
external circuitry via the capacitors Cin and Cout.
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(2)

where we denoted the superconducting phase of the nth island
as φn, and the corresponding node flux �n = �φn/2e. In the
absence of a voltage bias, the input and output capacitors are
grounded; we then set �in = �out = 0, the reference phase
for ground being chosen equal to zero. Below, we will first
analyze Lagrangian (2) by linearizing the Josephson term, i.e,.
expanding it up to the second order in (φn+1 − φn)2. Then we
will study the effect of weak nonlinearity perturbatively by
including fourth order corrections ∝ (φn+1 − φn)4.

A. Linear modes

In the linear limit, Lagrangian (2) of the system can easily
be written down as a sum over the islands of quadratic terms
only:

L =
N−1∑
n=1

(
�̇2

nC0

2

)
+ Cin

2
�̇2

0 + Cout

2
�̇2

N

+
N−1∑
n=0

1

2
(�̇n+1 − �̇n)2C −

N−1∑
n=0

1

2L
(�n+1 − �n)2

= 1

2
�̇�T Ĉ �̇� − 1

2
��T L̂−1 ��, (3)

where we introduced the Josephson inductance L =
(�/2e)2/EJ . In the last line, we introduced the matrix form
with the flux vector �� and its transpose ��T defined as
��T = (�0,�1, . . . ,�N ) and the capacitance matrix Ĉ and the
inverse inductance matrix L̂−1.

From Lagrangian (3) the Hamiltonian can be derived via
Legendre transformation

H0 = �QT �̇� − L = 1
2

�QT Ĉ−1 �Q + 1
2
��T L̂−1 ��, (4)

where the components of the charge vector are defined by
Qn = ∂L

∂�̇n
.

The Hamiltonian (4) can be quantized and expressed in
terms of the usual bosonic creation and annihilation operators.
Details are presented in Appendix A. The Hamiltonian (4) then
reads

Ĥ0 =
N∑

j=1

�ωj

(
â
†
j âj + 1

2

)
, (5)

where the eigenfrequencies are given by the eigenvalue
problem

Ĉ−1/2L̂−1Ĉ−1/2 �ψj = ω2
j

�ψj , (6)

with Ĉ−1/2Ĉ−1/2 = Ĉ−1. The eigenvectors �ψj of the matrix
Ĉ−1/2L̂−1Ĉ−1/2 are related with the eigenmodes of the
Hamiltonian (4) via

�̂� =
∑

j

Ĉ−1/2 �ψj

√
�

2ωj

(âj + â
†
j ). (7)

The eigenvalues ωj of the Hamiltonian (5) are very sensitive
to the values of the coupling capacitors Cin and Cout. This is
because these capacitances determine the boundary conditions
for the allowed eigenfunctions. To illustrate this, we plot

FIG. 6. (Color online) Eigenfrequencies as a function of the
coupling capacitor. We fixed Cout = 3Cin. All other parameters were
taken from the sample parameters listed in Table I. The eigenvalues
were calculated using Eq. (6). The black vertical line indicates the
coupling capacitances realized in the experiment. The solid dots
indicate the analytical values for small (Cin = 0) and large (Cin → ∞)
coupling capacitors.

the eigenfrequencies of the lowest modes as a function
of the input capacitance in Fig. 6. We keep a fixed ratio
between output and input capacitors; the other parameters
were chosen according to the sample parameters listed in
Table I. We see that, upon increasing Cin, the eigenfrequencies
decrease monotonically. Indeed, when Cin = Cout = 0, the
chain is effectively isolated; as a result the allowed eigenfunc-
tions satisfy the zero-current boundary condition �0 − �1 =
�N−1 − �N = 0. The corresponding N − 1 allowed modes
are given by �n = Ak cos[k(n − 1/2)], where the constant Ak

fixes the normalization and the dimensionless wave vector
k = jπ/(N − 1) with j = 0,1, . . . ,N − 2. In the opposite
limit of large Cin, and hence Cout, islands 0 and N are perfectly
coupled to the outside electrodes connected to ground; thus the
boundary condition reads �0 = �N = 0. The corresponding
N − 1 modes are now given by �n = Bk sin(kn), where the
constant Bk fixes again the normalization and the dimension-
less wave vector k = jπ/N with j = 1,2, . . . ,N − 1. The
modes frequencies follow from the usual dispersion relation,
valid for homogeneous chains [3],

ωk = ωp

√
1 − cos k

1 − cos k + C0/2C
. (8)

Their limiting values are indicated in Fig. 6, both for Cin =
0 and for Cin = ∞. The numerical solution for finite Cin

smoothly interpolates between these limiting values. The
gradual change of the nature of eigenfunctions as Cin is
increased is shown in Fig. 7. One sees that the eigenfunctions
indeed have zero slope at the entrance and exit of the chain
for small Cin, whereas they satisfy the zero-phase boundary
condition for large Cin.

When comparing the theory with the experimental data,
we have adjusted the values of the ground capacitance C0

and the coupling capacitances Cin and Cout in order to find
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FIG. 7. (Color online) Space dependent part of the eigenfunction
for the j = 2 mode for different values of the coupling capacitance
Cin; Cout = 3Cin.

best agreement with the experimentally observed resonance
frequencies. The result is shown in Fig. 4, where we plot
the observed frequencies as a function of the mode index
j . The observed frequencies are in good agreement with the
theoretical prediction.

B. Weak nonlinearity

We now include the weak nonlinearity, namely, the quartic
term of the Josephson energy −EJ (φn+1 − φn)4/24 in the
Hamiltonian and treat it as a perturbation to the linear
Hamiltonian (4) [27]. The perturbative approach is justified
if the mode frequency ωj 
 EJ /� which is the case for the
low frequency modes of our sample.

Using the mode expansion (7), the modified Hamiltonian
ĤNL = Ĥ0 + ÛNL can be found, with a nonlinear contribution
ÛNL,

ĤNL =
∑

j

�ω′
j â

†
j âj −

∑
j

�

2
Kjj â

†
j âj â

†
j âj

−
∑

j,k (j �=k)

�

2
Kjkâ

†
j âj â

†
kâk

−
∑

j,k (j �=k)

�

2
ζjjk

(
â
†
j âj + 1

2

)
(â†

j âk + â
†
kâj )

−
∑

j,k,l (j �=k �=l)

�

2
ζjkl

(
â
†
j âj + 1

2

)
(â†

kâl + â
†
l âk). (9)

The coefficient Kjj is called self-Kerr coefficient and the
corresponding self-Kerr term of the Hamiltonian (9) gives a
frequency shift of the frequency of the mode j that scales
linearly with the photon number â

†
j âj in the mode j . At

higher photon number, this term can give rise to photon
blockade [27,28] and bistability of the resonator. The term
containing the cross-Kerr coefficient Kjk causes a shift of the
frequency of the mode j that depends linearly on the photon
number in the mode k. As will be discussed in more detail
below, the cross-Kerr effect can be used to probe the photon

TABLE II. Kerr coefficients for the modes j = 2,3, and 4 pre-
dicted by our theory. All values are given in MHz. The errors were
estimated assuming the maximum errors for C and C0.

Mode index 2 3 4

2 2.8 ± 0.4 6.6 ± 0.9 9.4 ± 1.4
3 6.6 ± 0.9 8.3 ± 0.7 15.9 ± 2.4
4 9.4 ± 1.4 15.9 ± 2.4 16.7 ± 2.5

numbers. The cross- and self-Kerr coefficients calculated with
Eqs. (10) and (11) for the parameters of the sample studied
in this paper are listed in Table II. Finally, the two terms
containing the coefficients ζjkl give rise to a coupling between
two different modes that depends on photon numbers in a third
mode. These terms can also give small corrections to the self-
and cross-Kerr coefficients in second order. These corrections
are small by a factor K/�, where K is the relevant Kerr
coefficient and � the difference between the mode frequencies
involved in the second order process.

The nonlinear coefficients are given by

Kjj = 2�π4EJ ηjjjj

�4
0C

2ω2
j

, (10)

Kjk = 4�π4EJ ηjjkk

�4
0C

2ωjωk

, (11)

ζjkl = 4�π4EJ ηjjkl

�4
0C

2ωj

√
ωkωl

, (12)

and the renormalized mode frequency is given by

ω′
j = ωj − Kjj/2 −

∑
k

Kjk/4. (13)

Here we introduced the dimensionless quantities

ηjklp =
∑

n

[∑
m

((√
CĈ−1/2

n,m −
√

CĈ
−1/2
n−1,m

)
ψm,j

)
×

∑
m

((√
CĈ−1/2

n,m −
√

CĈ
−1/2
n−1,m

)
ψm,k

)
×

∑
m

((√
CĈ−1/2

n,m −
√

CĈ
−1/2
n−1,m

)
ψm,l

)
×

∑
m

((√
CĈ−1/2

n,m −
√

CĈ
−1/2
n−1,m

)
ψm,p

)]
(14)

that take into account the spatial variation of the modes.ψm,j

is the mth component of the vector �ψj defined by Eq. (6).
The details of the derivation of Eqs. (9), (14), and (13)

can be found in Appendix B. It is noteworthy that although
the expressions for the Kerr coefficients [Eqs. (10), (11),
and (12)] explicitly contain the Josephson energy EJ , the
Kerr coefficients actually do not depend on EJ . Indeed the
mode frequencies ωj also contain a factor

√
EJ so that the

dependence on the Josephson energy cancels out.
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IV. EXPERIMENTS IN THE NONLINEAR REGIME

A. Photon number calibration with the self-Kerr shift

The self-Kerr shift can be used to calibrate the photon
number in a resonant mode by measuring the resonance
frequency as a function of the drive power. The resonance
frequencies as a function of power are obtained by fitting the
resonance curves for each excitation power.

If only one mode of the chain is excited, the Hamiltonian
Eq. (9) reduces to

ĤSK =
(

�ω′
j − �

2
Kjj n̄j

)
â
†
j âj . (15)

The mean photon number n̄j of a mode is related with the
incident power Pin via the relation [29]

n̄j = 4γj,in

�ωjγ
2
j,tot

Pin. (16)

Here γj,tot is the total decay rate of the mode related with
the width of the resonance, γj,in is the decay rate through
the input capacitor, Pin is the incident power to the sample.
Equation (16) can be rewritten in terms of the input power at
room temperature:

n̄j = 4

�ωjγj,tot
AP

1

αj

, (17)

where A is the attenuation of the input line of the cryostat, P

is the input power at room temperature, and αj is a numerical
factor that takes into account the uncertainty of the attenuation
A, reflections at the input of the sample as well as the ratio
γj,in/γj,tot.

We use the self-Kerr measurements to extract the parameter
αj for each of the modes. In Fig. 8 we plot the experimentally
observed self-Kerr shifts together with the theoretical predic-
tion.

The values of αj that were used to adjust the photon num-
bers in the modes are shown in the figures. The nonuniform
variation of αj with the mode index is related to spurious
resonances in the sample holder. Indeed the transmission
background (off resonance) is highest for the j = 3 resonance
and smallest for the j = 2 resonance.

In the low power region (the few photon limit) the line shape
of the resonance is altered very little by the presence of the
nonlinearity so that the fitting with the Fano formula Eq. (1)
is possible. In the limit of high drive powers the fitting with
the linear model Eq. (1) becomes less accurate. The vertical
error bars in Figs. 8 and 9 represent the error of the fit to the
resonance curve.

The perturbation approach breaks down at higher photon
number as the terms Kjjnj or Kjknk are no longer small
compared to the mode frequency ωj . For the high excitation
amplitudes the power dependent frequency shift is reversed so
that an increase of the resonance frequency with drive power
is observed. The onset of this upwards shift is nevertheless
visible in Fig. 8 at high photon numbers.

The errors on the photon number calibration, αj , dominate
over the uncertainty of the theoretical prediction caused by the
uncertainty of the sample parameters (Table II). αj depends on
the range of drive powers that is used for the calibration. We

FIG. 8. (Color online) Experimental self-Kerr shift compared to
theory. We used a factor αj to adjust the experimental photon number.
The three graphs correspond to the three modes of the chain j = 2
(top), j = 3 (center), and j = 4 (bottom) that lie within the bandwidth
of the measurement setup.

estimated the errors of αj by performing the photon number
calibration for different power ranges.

B. Measurement of the cross-Kerr effect

With the photon number calibrated we are now able
to measure the cross-Kerr shifts. For two-tone driving the
Hamiltonian Eq. (9) now takes the form

ĤCK =
(

�ω′
j − �

2
Kjj n̄j − �

2
Kjkn̄k

)
â
†
j âj . (18)
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FIG. 9. (Color online) Cross-Kerr shift Kjk between the j = 2, j = 3, and j = 4 modes as a function of the photon numbers in the modes
k = 2, k = 3, and k = 4. The photon number in the mode k was calibrated with the self-Kerr shift. For two drives the Kerr Hamiltonian takes
the form ĤCK = (�ω′

j − �

2 Kjj n̄j − �

2 Kjkn̄k)â†
j âj .

To experimentally investigate the cross-Kerr shifts, we mea-
sured the transmission through the mode j with the network
vector analyzer with fixed excitation power, and varied the
excitation power of the mode k with an additional microwave
source. As the excitation power of the mode j is kept
fixed, n̄j is constant and the self-Kerr effect only gives
a global offset. To convert the excitation power of the
mode k to the photon number, we used the value of the
αk that we previously calibrated with the self-Kerr shifts.
The bare resonance frequencies ω′

j − (1/2)Kjj n̄j were also

extracted from the self-Kerr measurement. The measurement
of the cross-Kerr coefficients therefore does not contain free
parameters.

The measurements and the predicted shifts are plotted in
Fig. 9. The vertical error bars correspond to the errors of
the resonance fit whereas the horizontal error bars represent
the estimated errors of the photon calibration. We observe
frequency shifts that are of the same order as the shifts
predicted by the theoretical model. The K32 could not be
extracted from our measurements.

104508-7



T. WEIßL et al. PHYSICAL REVIEW B 92, 104508 (2015)

The cross-Kerr shifts were measured with a fixed drive
frequency for the mode k. Although the self-Kerr shift of the
mode k is smaller than the line width of the resonance, this
can cause deviations of the linear dependence of the photon
number with drive power (as the drive can become slightly
off-resonant) and thus to deviation from the linear frequency
shift for the mode j . This could explain the curvature observed
in some of the cross-Kerr measurements. Errors in the chain
parameters C and C0 affect self- and cross-Kerr coefficients
in the same way. As our method of using the self-Kerr shift to
calibrate the photon number and the measuring the cross-Kerr
shift probes the ratio between self- and cross-Kerr coefficients,
our result is only weakly affected by such errors. We have
also investigated the effect of disorder on the mode structure
of the chain (not shown) [21]. The low frequency modes
turn out to be robust against disorder as these long wave
length modes average over a large number of junctions. For
the same reasons also their Kerr coefficients are immune to
disorder.

V. SUMMARY AND CONCLUSION

We have investigated extended plasma resonances in chains
of Josephson junctions. We have measured a SQUID chain
containing 200 junctions and were able to measure the 14
lowest resonant modes of the chain in a two-tone scheme. The
observed resonance frequencies are in excellent agreement
with the theoretical prediction that we obtained by diagonaliz-
ing the Hamiltonian in the linear limit. Three of these plasma
modes lie within our measurement band and can be accessed
directly in the experiment.

We have presented a derivation of the Kerr coefficients
of the extended plasma resonances of Josephson junction
chains. The nonlinearity of the Josephson inductance was
therefore treated in perturbation theory. To compare the
theoretically predicted frequency shifts to the shifts observed
in the experiment, we use the self-Kerr effect to calibrate the
photon numbers of the plasma modes as a function of the drive
power. Then we compared the cross-Kerr shifts with the theo-
retical prediction and find reasonable agreement.

When studying the superconductor insulator transition in
Josephson junction chains, the low frequency plasma modes
constitute the electromagnetic environment of the junctions.
This environment provides quantum fluctuations that enables
quantum phase slips on the junctions. It is the interplay
between the plasma modes and the quantum phase slips
which depends on the ratio EJ /E0, that characterizes the
superconductor-insulator transition.

Here we have studied the nonlinear interaction between
the plasma modes. The signature of the superconducting-
insulating transition on the microwave transmission spectrum
of a JJ chain is currently under theoretical investigation. The
theoretical description as well as the experiments presented
in this work focus on uniform Josephson junction arrays but
an extension to nonuniform arrays is straight forward. Indeed
recent works [30] discuss mode engineering of the resonant
modes of a chain by varying the junction parameters. This
approach might be extended to also engineer the nonlinear
interaction between the modes and thus tailor an active

medium for the use in traveling wave parametric amplifiers
[31,32].
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APPENDIX A: LINEAR HAMILTONIAN, EIGENVALUES,
AND EIGENFUNCTIONS

In this Appendix we give a rigorous derivation of the
theoretical model presented above. Let us start from the
Lagrangian Eq. (3) which can be written in the compact form

L = 1
2
�̇�T Ĉ �̇� − 1

2
��T L̂−1 ��, (A1)

with the flux vector

��T = (�0,�1, . . . ,�N ), (A2)

and the capacitance and inverse inductance matrices defined
as

Ĉ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C + Cin −C 0 . . .

−C C0 + 2C −C 0 . . .

0 −C C0 + 2C −C 0 . . .

... 0
. . .

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(A3)

and

L̂−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
L

−1
L

0 . . .

−1
L

2
L

−1
L

0 . . .

0 −1
L

2
L

−1
L

0 . . .

... 0
. . .

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (A4)

The momentum vector associated with the flux vector has
the units of a charge and is given by

�Q = Ĉ �̇�. (A5)

With this, the Legendre transformation gives the Hamilto-
nian (4).

In order to derive the eigenvalues and eigenfunctions of this
Hamiltonian, let us write the total energy of the system as

E = 1
2
�̇φ2 + 1

2
�φĈ−1/2L̂−1Ĉ−1/2 �φ, (A6)

where

�φ = Ĉ−1/2 �� (A7)
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and Ĉ−1/2Ĉ−1/2 = Ĉ−1. A Fourier decomposition gives

�φ(t) =
∑

j

�ψj (ϕ∗
j e

iωj t + ϕje
−iωj t ). (A8)

�ψj and ωj satisfy the eigenvalue equation

Ĉ−1/2L̂−1Ĉ−1/2 �ψj = ω2
j

�ψj . (A9)

Inserting Eqs. (A8) and (A9) back into Eq. (A6) we find

E = 2
∑

j

ω2
j |ϕj |2. (A10)

The energy of the normal modes and thus also the Hamiltonian
can be expressed in terms of creation and annihilation

operators Ĥ0 = ∑
j �ωj (â†

j âj + 1/2), where

ϕj =
√

�

2ωj

âj . (A11)

The flux operator for the fluxes on the islands can be obtained
by inverting Eq. (A7) and inserting Eqs. (A8), (A9), and (A11):

�̂� =
∑

j

Ĉ−1/2 �ψj

√
�

2ωj

(âj + â
†
j ). (A12)

APPENDIX B: NONLINEAR HAMILTONIAN

We include the lowest order nonlinear term of the Josephson energy, −EJ

∑N−1
n=0 (φn+1 − φn)4/24 as a perturbation to the

linear Hamiltonian Eq. (4). We expand this nonlinear term using the eigenfunctions Eq. (A12). As a result we obtain the weak
nonlinear contribution

ÛNL = − 1

24

(
2e

�

)4

EJ

N−1∑
n=0

(�n+1 − �n)4 = − 1

24

16π4

�4
0

EJ

N−1∑
n=0

⎡⎣∑
m,j

(
Ĉ

−1/2
n+1,m − Ĉ−1/2

n,m

)
ψm,j

√
�

2ωj

(âj + â
†
j )

⎤⎦4

= −�
2π4EJ

6�4
0C

2

∑
j

ηjjjj

ω2
j

(âj + â
†
j )4 − �

2π4EJ

2�4
0C

2

∑
j,k (j �=m)

ηjjkk

ωjωk

(âj + â
†
j )2(âk + â

†
k)2

−2�
2π4EJ

3�4
0C

2

∑
j,k (j �=k)

ηjjjk

ωj
√

ωjωk

(âj + â
†
j )3(âk + â

†
k)

−�
2π4EJ

�4
0C

2

∑
j,k,l (j �=k �=l)

ηjjkl

ωj

√
ωkωl

(âj + â
†
j )2(âk + â

†
k)(âl + â

†
l )

−�
2π4EJ

6�4
0C

2

∑
j,k,l,m (j �=k �=l �=m)

ηjklm√
ωjωkωlωm

(âj + â
†
j )(âk + â

†
k)(âl + â

†
l )(âm + â†

m), (B1)

where we introduced the superconducting flux quantum �0 = h/2e. Equation (9) in the main text is then obtained by using

(âj + â
†
j )4 = 6â

†
j âj â

†
j âj + 6â

†
j âj + 3, (B2)

(âj + â
†
j )2(âk + â

†
k)2 = 4â

†
j âj â

†
kâk + 2â

†
j âj + 2â

†
kâk + 1, (B3)

(âj + â
†
j )3(âk + â

†
k) = (3â

†
j âj )(â†

j âk + â
†
kâj ) + 3â

†
kâj , (B4)

(âj + â
†
j )2(âk + â

†
k)(âl + â

†
l ) = (2â

†
j âj + 1)(â†

kâl + â
†
l âk), (B5)

(âj + â
†
j )(âk + â

†
k)(âl + â

†
l )(âm + â†

m) = â
†
j âkâ

†
l âm + . . . . (B6)
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