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Itinerant ferromagnetism and p + i p′ superconductivity in doped bilayer silicene
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We study the electronic instabilities of doped bilayer silicene using the random phase approximation. In
contrast to the singlet d + id ′ superconductivity at the low doping region, we find that the system is an itinerant
ferromagnet in the narrow doping regions around the Van Hove singularities, and a triplet p + ip′ superconductor
in the vicinity of these regions. Adding a weak Kane-Mele spin-orbit coupling to the system further singles out the
time-reversal invariant equal-spin helical p + ip′ pairing as the leading instability. The triplet pairing identified
here is driven by the ferromagnetic fluctuations, which become strong and enhance the superconducting critical
temperature remarkably near the phase boundaries between ferromagnetism and superconductivity.
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I. INTRODUCTION

Magnetism and unconventional superconductivity (SC) as
well as the intimate interplay between them have been the
focuses of condensed matter physics for decades due to their
rich physics and important applications. Among these subjects,
the realizations of itinerant ferromagnetism (FM) and triplet
SC are of particular importance in recent years. In general, the
triplet SC [1], which is connected with topological SC [2,3]
and has become a hot topic recently, is believed to be driven by
ferromagnetic spin fluctuations near the ferromagnetic order.
However, the realization of itinerant FM from the Stoner
criterion [4] usually requires finite and, most of the time,
strong electron interaction [5–13], which is hard to deal with
in the weak coupling perturbative approaches. One way to
overcome this difficulty is to introduce the divergent density of
states (DOS) at the Van Hove (VH) singularities of the system,
which can induce these instabilities without strong electronic
interaction. It’s proposed recently that, for a system with its
Fermi surface (FS) doped to time-reversal (TR) variant VH
saddle points, weak repulsive electron interactions can usually
drive itinerant FM and triplet SC [14].

On another front, as the Si-based counterpart of graphene,
silicene has been synthesized recently [15–19], with exper-
imental evidence showing possible SC in the doped case
[20], which has attracted a lot of research interest [21–25].
Furthermore, bilayer silicene (BLS) has also been available
[26], with the energetically most favored stacking way between
its two layers identified by first-principles calculations [27].
Based on the metallic band structure of undoped BLS, the
antiferromagnetism and the chiral d + id ′ SC tuned by strain
have been proposed [27]. This intriguing result motivates
us to further investigate the electronic instabilities in doped
BLS, specifically focusing on the VH doping levels since
the divergent DOS there favors the occurrence of electronic
instabilities. Turning our attention to VH doping, we notice
that, in VH-doped monolayer graphene whose VH saddle
points locate at TR invariant momenta, the chiral spin
density wave or the chiral d + id ′ pairing has been proposed
[28–32]. Similar results have also been found in monolayer
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silicene [33]. In contrast, the interesting property of the VH
singularities here in BLS lies in that the VH saddle points
locate at TR variant momenta. For such VH singularities, the
study based on the renormalization group theory has pointed
out the possibility of the formation of itinerant FM and triplet
SC [14].

In this paper, we perform the calculations based on the
random phase approximation (RPA) to investigate possible
electronic instabilities of doped BLS. The main results of
our calculations are as follows. In addition to the d + id ′ SC
occurring at low doping levels, the itinerant FM and the triplet
p + ip′ SC emerge as the leading instabilities of the system in
the narrow doping regions around the VH singularities and
the vicinity of these regions, respectively. In the presence
of a weak Kane-Mele spin-orbit coupling (SOC) [34,35],
the equal-spin helical p + ip′ pairing wins over the chiral
one and serves as the leading instability of the system. The
emergence of the FM and the triplet SC results from the
large DOS and the strong ferromagnetic correlation around
the VH singularities. Near the critical doping level separating
the FM and triplet SC, the strong ferromagnetic fluctuations
will greatly enhance the superconducting critical temperature,
which provides possibility to realize this triplet p + ip′ pairing
state at experimentally accessible temperatures.

The rest of this paper is organized as follows. In Sec. II,
we describe the Hubbard model of BLS, as well as the RPA
approach. In Sec. III, we calculate the susceptibilities of the
system and demonstrate the itinerant FM occurring around the
VH singularities. In Sec. IV, we study the superconducting
pairing symmetries for different doping levels and propose
that the p + ip′ pairing dominates over the d + id ′ one
in the vicinity of the ferromagnetic regions. Finally, in
Sec. V, a conclusion will be reached after discussions on
the experimental detection of the novel p + ip′ pairing state
proposed here.

II. MODEL AND APPROACH

The lattice structure of BLS is shown in Fig. 1(a), which
belongs to the D3d point group [27]. While sublattice A1 of
the upper silicene layer couples vertically to sublattice A2

of the lower layer with a bond-length lv = 2.52 Å, the two
sublattices Al and Bl within the same layer l (= 1,2) couple
to each other with a bond-length ln = 2.32 Å. Approximately
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FIG. 1. (Color online) (a) The lattice structure of BLS. (b) The
corresponding band structure. In (a), both the top view (upper) and
side view (lower) are shown. The intralayer nearest-neighbor bond
length ln, the vertical bond length lv , and the angle θ between them
are marked, together with the hopping integrals tn, t1, t2, and t3. In
(b), the black dashed, red and blue solid horizontal lines denote the
Fermi levels of the undoped, electron and hole VH-doped systems,
respectively.

equal bond lengths, together with the bond-angle θ = 106.65◦
between the two bonds describe an orbital hybridization
more like the sp3 type than the planar sp2 one. This lattice
structure leads to a strong interlayer coupling, and the resulting
strong bonding-antibonding splitting between orbitals A1 and
A2 pushes them far away from the Fermi level. Thus, the
low-energy subspace formed by orbitals B1 and B2 will take
responsibility for the main physics of the system [27]. This
feature of BLS is obviously different from that of bilayer
graphene.

According to Ref. [27], the low-energy physics of BLS near
the FS can be described by the following four-band Hubbard
model of the system:

H =
∑
kσαβ

c
†
kασHαβ(k)ckβσ + U

∑
iα

niα↑niα↓. (1)

Here σ , α (β), and i denote the spin, orbital, and unit cell
indices, respectively, and H (k) is the four-band tight-binding
(TB) Hamiltonian in the basis {|B1〉,|B2〉,|A1〉,|A2〉}. The
explicit expression of the TB Hamiltonian reads [27]

H (k) =

⎛
⎜⎜⎜⎝

� t3f (k) tnf (k)∗ −t2f (k)∗

t3f (k)∗ � −t2f (k) tnf (k)

tnf (k) −t2f (k)∗ 0 t1

−t2f (k) tnf (k)∗ t1 0

⎞
⎟⎟⎟⎠.

(2)

Here f (k) = ∑
α eik·Rα with Rα (α = 1,2,3) being the

nearest-neighbor vector, � = −0.069 eV is the effective on-
site energy difference between atoms Al and Bl , the hopping
integrals tn = 1.130 eV, t1 = 2.025 eV, t2 = 0.152 eV, and
t3 = 0.616 eV. Since the basis {|B1〉,|B2〉,|A1〉,|A2〉} is mainly
composed of the 3pz orbital of silicon [36], we set U = 1 eV
as a rough estimate of the Hubbard interaction.

The band structure for the above TB Hamiltonian Eq. (2)
is shown in Fig. 1(b). One feature of the band structure is
the 300 meV overlap between the valence and conduction
bands near the K points. For the undoped case, this overlap
causes six pairs of small electron and hole pockets around
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FIG. 2. (a)–(e) The shapes of the FS for different doping levels.
The black dots in (c) and (e) indicate the VH saddle points. (f) The
doping dependence of the DOS near the FS. The vertical dashed lines
indicate the VH singularities.

and near the K points, respectively, as shown in Fig. 2(a).
The undoped system is thus intrinsically metallic and can
enter a superconducting state [27]. When the system is doped,
regardless of electron or hole doping case, the shape of the FS
grows gradually from separated electron and hole pockets first
to six big merged pockets around the K points [Figs. 2(b) and
2(d)], which finally connect to one another at the VH saddle
points, causing the Lifshits transition of the FS [Figs. 2(c) and
2(e)]. Defining the doping level by x = ne − 1, where ne is
the number of electrons per site, we find the doping levels
for the VH singularities are x = 0.2345 for electron doping
and x = −0.1861 for hole doping, respectively. The Fermi
levels for these VH dopings are marked in Fig. 1(b), where
the flatness of the bands near the VH singularities leads to the
logarithmically divergent DOS there as shown in Fig. 2(f). We
shall focus on these VH dopings in the following study because
the divergent DOS around there urges the formation of itinerant
FM, and the resulting strong ferromagnetic fluctuations in
the vicinity of the FM regions will induce high-temperature
triplet SC.

A special feature of the VH singularities of BLS lies in that
its VH saddle points locate on the M-� axes rather than at
the TR invariant M points as in bilayer graphene as well as
monolayer graphene or silicene. Such TR variant VH saddle
points are named as “type-II” VH saddle points in Ref. [14],
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in contrast to the TR invariant “type-I” VH saddle points. The
“type-II” VH singularity is special in that it allows for the
formation of triplet SC. If the FS of a system contains TR
invariant “type-I” VH saddle points, the triplet pairing will not
be energetically favored because its odd parity gap function
will have nodes at these TR invariant VH momenta, which is
no good for the energy gain. On the contrary, the TR variant
“type-II” VH saddle points of BLS locating on the M-� axes
provide the possibility for the system to enter the triplet pairing
state.

To study the electron instabilities of the system described by
the Hubbard model Eq. (1), we adopt the standard multiorbital
RPA approach [27,37–41]. We first define and calculate the
bare susceptibility tensor χ

(0)l1,l2
l3,l4

(q,τ ). After that, the renor-

malized charge (c) or spin (s) susceptibility χ
(c(s))l1,l2
l3,l4

(q,τ ) is
obtained in the RPA level. For each doping level, there will
be a critical interaction strength Uc. For repulsive U > Uc,
the renormalized spin susceptibility diverges, implying the
formation of long-range magnetic order. For U < Uc, through
exchanging the charge or spin fluctuations, we obtain the
effective pairing potential V αβ(k,q). Solving the linearized gap
equation for V αβ(k,q) as an eigenvalue problem, we obtain the
leading pairing gap function as the eigenvector corresponding
to the largest eigenvalue.

III. ITINERANT FERROMAGNETISM

The bare (U = 0) susceptibility tensor of model Eq. (1) is
defined as

χ
(0)pq
st (k,τ ) ≡ 1

N

∑
k1 k2

〈Tτ c
†
p(k1,τ )cq(k1 + k,τ )

× c†s (k2 + k,0)ct (k2,0)〉0, (3)

Here 〈· · · 〉0 denotes the thermal average for U = 0, Tτ

denotes the time-ordered product, and p,q,s,t = 1, · · · ,4 are
the sublattice indices. Fourier transformed to the imaginary
frequency space, the bare susceptibility can be expressed by
the following explicit formulism,

χ
(0)pq
st (k,iωn) = 1

N

∑
k′αβ

ξα
t (k′)ξα∗

p (k′)ξβ
q (k′ + k)

× ξβ∗
s (k′ + k)

nF

(
ε

β

k′+k

) − nF

(
εα

k′
)

iωn + εα
k′ − ε

β

k′+k

. (4)

Here iωn is the Matsubara frequency, α,β = 1, · · · ,4 are
the band indices, nF is the Fermi distribution function, and
εα

k and ξα(k) are the eigenvalue and eigenvector of the TB
Hamiltonian Eq. (2). The Hermitian static susceptibility matrix
is defined as χ (0)

p,s(k) ≡ χ
(0)pp
ss (k,iωn = 0). For each k, the

largest eigenvalue χ (0)(k) of this matrix represents the static
susceptibility of the system in the strongest channel, and
the corresponding eigenvector describes the pattern of the
dominant intrinsic spin correlation in a unit cell of the system.

In Figs. 3(a)–3(e), we show the k-space distributions of
the zero-temperature static susceptibility χ (0)(k) for different
doping levels, which reveal the doping evolution of the static
susceptibility. In particular, when the doping level changes
gradually from zero to the VH doping, regardless of electron or

(a)  x = 0 (d)  x = −0.10

(b)  x = 0.12 (e)  x = −0.1861

(c)  x = 0.2345
(f) (g)
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FIG. 3. (Color online) (a)–(e) The k-space distributions of the
zero-temperature static susceptibility χ (0)(k) for different doping
levels. Typical (f) ferromagnetic pattern at the VH doping levels
and (g) antiferromagnetic pattern at zero doping in a unit cell of the
system.

hole doping case, the momenta of the maximum susceptibility
evolve from the � point [Fig. 3(a)] first to the points around
it [Figs. 3(b) and 3(d)], and finally back to the � point
again [Figs. 3(c) and 3(e)]. Such a doping evolution of
the susceptibility originates from the evolution of the FS
mentioned before and indicates that the intrasublattice spin
correlation of the system changes gradually with doping from
ferromagnetic first to antiferromagnetic, and finally back to
ferromagnetic again.

From the eigenvector corresponding to the largest eigen-
value of χ (0)

p,s(k), we find that the spin correlation within a unit
cell is ferromagnetic-like [see Fig. 3(f)] near the VH doping
levels, and antiferromagnetic-like [see Fig. 3(g)] near zero dop-
ing. Therefore, although the intrasublattice spin correlations in
both the VH-doped and undoped systems are ferromagnetic,
the intersublattice spin correlations in the former and latter
cases are ferromagnetic and antiferromagnetic, respectively.

When the interaction is turned on, we define the charge (c)
and spin (s) susceptibilities of model Eq. (1) as

χ
(c)pq
st (k,τ ) ≡ 1

2N

∑
k1 k2σ1σ2

〈Tτ c
†
pσ1

(k1,τ )

× cqσ1 (k1+k,τ )c†sσ2
(k2+k,0)ctσ2 (k2,0)〉, (5)
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χ
(sz)pq
st (k,τ ) ≡ 1

2N

∑
k1 k2σ1σ2

σ1σ2〈Tτ c
†
pσ1

(k1,τ )

× cqσ1 (k1 + k,τ )c†sσ2
(k2 + k,0)ctσ2 (k2,0)〉, (6)

χ
(s+−)pq
st (k,τ ) ≡ 1

N

∑
k1 k2

〈Tτ c
†
p↑(k1,τ )

× cq↓(k1 + k,τ )c†s↓(k2 + k,0)ct↑(k2,0)〉, (7)

χ
(s−+)pq
st (k,τ ) ≡ 1

N

∑
k1 k2

〈Tτ c
†
p↓(k1,τ )

× cq↑(k1 + k,τ )c†s↑(k2+k,0)ct↓(k2,0)〉, (8)

where σ1, σ2 =↑, ↓ are spin indices. For nonmagnetic states,
we have χ (sz) = χ (s+−) = χ (s−+) ≡ χ (s). For U = 0, we further
have χ (c) = χ (s) = χ (0).

In the standard RPA approach [27,37–41], the charge (spin)
susceptibility of model Eq. (1) is given by

χ (c(s))(k,iωn) = [I ± χ (0)(k,iωn)(U )]−1χ (0)(k,iωn), (9)

where (U ) is a 16 × 16 matrix, whose only four nonzero
elements are (U )μμ

μμ = U (μ = 1, · · · ,4) [27]. Clearly, the
repulsive Hubbard interaction here suppresses χ (c) and en-
hances χ (s). When the interaction parameter U is weak enough,
the RPA works well since all eigenvalues of the denom-
inator matrix [I ± χ (0)(k,iωn)(U )] in Eq. (9) are positive
and hence the matrix itself has an inverse. However, if U

exceeds a critical value Uc at which the lowest eigenvalue
of [I − χ (0)(k,iωn)(U )] touches zero, the renormalized spin
susceptibility χ (s) will diverge, which implies the formation of
long-range magnetic order.

The doping dependence of the critical interaction strength
Uc is shown in Fig. 4. The most obvious feature of Fig. 4 is that
Uc drops abruptly to zero near the VH singularities due to the
divergent DOS there. For U = 1 eV adopted in our calculation,
the Uc drops below U in narrow doping regions around the VH
singularities, which will lead to long-range magnetic order.
Furthermore, from the ferromagnetic correlation near the VH

U
c (

eV
)

x

FIG. 4. The doping dependence of the magnetic critical interac-
tion strength Uc. The horizontal solid line indicates U = 1 eV, and
the vertical dashed lines indicate the VH singularities.

singularities revealed by χ (0) shown in Figs. 3(c), 3(e), and
3(f), we conclude that long-range itinerant FM will emerge in
these narrow doping regions.

IV. TRIPLET p + i p′ SC

Away from the above introduced narrow doping regions
for itinerant FM, the interaction strength U = 1 eV is smaller
than the critical value Uc as shown in Fig. 4. Then through
exchanging short-range spin or charge fluctuations between
a Cooper pair, exotic superconducting states will emerge in
the system. More specifically, we consider the scattering of a
Cooper pair from the state (k′, − k′) in the βth (β = 1, · · · ,4)
band to the state (k, − k) in the αth (α = 1, · · · ,4) band via
exchanging spin or charge fluctuations. This scattering process
leads to the following effective interaction vertex [41]:

V αβ(k,k′) = Re
∑
pqst

�
pq
st (k,k′)ξα∗

p (k)

× ξα∗
q (−k)ξβ

s (−k′)ξβ
t (k′). (10)

Here, for the singlet channel, we have

�
pq
st (k,k′) = (U )pt

qs + 1
4 [3(U )(χ (s) − χ (c))(U )]pt

qs(k − k′)

+ 1
4 [3(U )(χ (s) − χ (c))(U )]ps

qt (k + k′), (11)

and for the triplet channel, we have

�
pq
st (k,k′) = − 1

4 [(U )(χ (s) + χ (c))(U )]pt
qs(k − k′)

+ 1
4 [(U )(χ (s) + χ (c))(U )]ps

qt (k + k′). (12)

From the effective interaction vertex Eq. (10), we obtain the
following linearized gap equation [40] near the superconduct-
ing critical temperature Tc:

− 1

(2π )2

∑
β

∮
FS

dk′
‖
V αβ(k,k′)

v
β

F (k′)
�β(k′) = λ�α(k). (13)

Here the integration is along various FS patches labeled
by α or β, v

β

F (k′) is the Fermi velocity, and k′
‖ is the

component of k′ along the FS. Solving this gap equation as
an eigenvalue problem, one obtains each pairing eigenvalue
λ and the corresponding normalized eigenvector �α(k) as the
relative pairing gap function. The leading pairing symmetry
is determined by the �α(k) corresponding to the largest λ.
The critical temperature Tc is determined by λ through Tc =
cutoff energy ·e−1/λ, where the cutoff energy scales with the
low-energy bandwidth.

Consistent with the D3d point group of the system, the
pairing symmetries obtained from Eq. (13) are s, p, d, and
f waves. More specifically, in the vicinity of the narrow
doping regions for itinerant FM around the VH singularities,
we identify the doubly degenerate px and py triplet pairings
as the leading pairing symmetries. The gap function of the
px (py) symmetry is symmetric about the x (y) axis and
antisymmetric about the y (x) axis, with gap nodes on the y (x)
axis, as shown in Fig. 5(a) [5(b)]. On the other hand, at the
low doping region, we identify the doubly degenerate dx2−y2

and dxy singlet pairings as the leading pairing symmetries. The
gap functions of the dx2−y2 and dxy symmetries are symmetric
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FIG. 5. (Color online) Distributions of the gap functions on the
FS: (a) px and (b) py symmetries for doping x = 0.24, as well as (c)
dx2−y2 and (d) dxy symmetries for doping x = 0.12.

and antisymmetric about both the x and y axes respectively,
as shown in Figs. 5(c) and 5(d).

Since the px and py pairing states are degenerate, they
will probably mix to lower the energy below the critical
temperature Tc. To determine this mixture, we set �α

k =
K1p

α
x (k) + (K2 + iK3)pα

y (k), where pα
x (k) and pα

y (k) denote
the normalized gap functions of corresponding symmetries.
Then the mixing coefficients K1, K2, and K3 are determined
by the minimization of the total mean-field energy,

E =
∑
kα

εα
k

⎡
⎣1 − εα

k − μ√(
εα

k − μ
)2 + ∣∣�α

k

∣∣2

⎤
⎦

+ 1

4N

∑
kk′αβ

V αβ(k,k′)

×
(
�α

k

)∗
√(

εα
k − μ

)2 + ∣∣�α
k

∣∣2

�
β

k′√(
ε

β

k′ − μ
)2 + ∣∣�β

k′
∣∣2

. (14)

Here the chemical potential μ is determined by the constraint
of the average electron number in the superconducting state.
Our energy minimization gives K1 = ±K3 and K2 = 0, which
leads to the fully gapped px ± ipy (abbreviated as p + ip′)
SC. This mixture of the two p-wave pairings satisfies the
requirement that the gap nodes should avoid the FS to lower
the energy. Physically, the triplet p + ip′ pairing is mediated
by the strong ferromagnetic spin fluctuations near the VH
singularities, as revealed by Figs. 3(c), 3(e), and 3(f). Similar to
the above p-wave pairings, below Tc, the degenerate dx2−y2 and
dxy pairing states will also mix into the fully gapped dx2−y2 ±
idxy (abbreviated as d + id ′) pairing to lower the energy, which
is consistent with our previous results for the undoped case
[27]. Physically, the singlet d + id ′ pairing is mediated by the

p+ip′-wave
d+id′-wave
f-wave
s-wave

λ

x

p+
ip

′

p+
ip

′

p+
ip

′

p+
ip

′

d+id′FM FM

λ

x

helical p+ip′

chiral p+ip′

FIG. 6. (Color online) The doping dependence of the pairing
eigenvalues λ of all possible pairing symmetries in the system.
The vertical bold gray lines indicate the doping regions where the
itinerant FM occurs. Inset: the typical split between the helical
(px + ipy)↑↑,(px − ipy)↓↓ pairing and the chiral (px ± ipy)(↑↓+↓↑)

pairing caused by the weak SOC term with λSO = 10 meV. The split
in other doping regions where the p + ip′ SC occurs is similar to the
one shown in the inset.

antiferromagnetic spin fluctuations suggested by Figs. 3(a),
3(b), 3(d), and 3(g).

In Fig. 6, we show the doping dependence of the pairing
eigenvalues of all possible pairing symmetries in the system,
including p + ip′, d + id ′, f , and s waves. It is interesting to
note that the pairing eigenvalue of the p + ip′ pairing diverges
in the doping regions near the phase boundaries between
FM and SC, due to the divergently strong ferromagnetic spin
fluctuations in these regions. Although this divergence is an
artifact in the RPA caused by ignorance of the renormalization
of the single-particle Green’s function, it is possible that
the strong ferromagnetic fluctuations in the critical regions
push the superconducting critical temperature Tc up to values
accessible in experiments. Taking into account that the doping
level is hard to control in practice, we can instead apply tunable
strain to the system to change the hopping parameters and the
band structure [27]. As a result, the VH doping levels and the
phase boundaries between FM and SC will shift so that a given
doping level can access the phase boundaries to produce the
high-temperature triplet p + ip′ SC.

Note that there are three different components of the triplet
p + ip′ pairing, each with a different spin Sz quantum number
of the Cooper pair labeled by ↑↑, ↓↓, or (↑↓ + ↓↑). In the
absence of SOC, the three spin components are degenerate. To
lift up this degeneracy, we need to add an extra SOC term to
Hamiltonian Eq. (1). The inversion symmetry of the system
rules out the Rashba SOC, and thus leaves the proper form of
the SOC term as the following Kane-Mele one [34,35]:

HKM = iλSO

∑
〈〈ij〉〉

νij c
†
i σ

zcj . (15)

Here νij = (2/
√

3)(b̂1 × b̂2)z = ±1 with b̂1 and b̂2 being
unit vectors along the two bonds that connect next-nearest
neighbors i and j on the same layer. Such a SOC term lifts up
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the degeneracy between the Sz = 0 component and Sz = ±1
components. Our RPA calculations (see the Appendix for
the details) reveal that the equal-spin helical (px + ipy)↑↑,
(px − ipy)↓↓ pairing wins over the chiral (px ± ipy)(↑↓+↓↑)

pairing by a small split proportional to λSO = 10 meV as
shown in the insets of Fig. 6. Such a helical triplet pairing
leads to TR invariant weak topological SC of the system.

V. DISCUSSION AND CONCLUSION

The unconventional triplet p + ip′ SC proposed here can
be detected by various experiments. First of all, as an uncon-
ventional superconducting state with the phase of its pairing
gap function changing on the FS, the p + ip′ pairing state
should show no Hebel-Slichter peak in the NMR relaxation
rate 1/T1T upon the superconducting phase transition [42].
Second, in this triplet pairing state, the Knight shift should
not obviously change below the Tc [43]. To further identify the
phase structure of this pairing experimentally, we can fabricate
a slice of BLS into a hexagon, and use a dc SQUID to detect
the relative phase among different directions in the system
[44]. In particular, determined by the p + ip′ symmetry, the
phase difference between the opposite (adjacent) edges of the
hexagon should be π (π/3).

Although the p-wave SC is unconventional, the mixing of
the px and py pairings into the complex p + ip′ one leads to a
fully gapped superconducting state, which looks similar to the
conventional s-wave one in many aspects. For example, near
zero temperature, the specific heat, the penetration depth, and
the NMR relaxation rate of both fully gapped pairing states
decay exponentially with temperature. What’s more, the STM
spectra of both fully gapped superconducting states should
exhibit U-shaped dI/dV − V curves. However, all these
expected experimental results can be changed by a uniaxial
strain applied on the system. More specifically, the p + ip′
mixing proposed here is based on the degeneracy between the
px and py pairing states, and the degeneracy itself originates
from the D3d point group of the system [27]. Thus, by applying
a uniaxial strain to break the D3d symmetry, we can eliminate
the p + ip′ mixing, and leave a single real p-wave pairing as
the leading instability. Such a p-wave pairing can be the px or
py one, which is determined by the axis of the applied strain.
Because the resulting px or py pairing has gap nodes on the
FS, the above-mentioned exponential temperature dependence
of the experimental observables of the system will be replaced
by a power-law one. Meanwhile, the U-shaped STM spectrum
of the system will be replaced by a V-shaped one.

In conclusion, we have systematically studied the possible
electronic instabilities of doped BLS. The results of our RPA
calculations predict that the system is an itinerant ferromagnet
in the narrow doping regions around the VH singularities, and
a triplet p + ip′ superconductor with a possible high Tc in the
vicinity of these regions. With an extra weak Kane-Mele SOC,
we further single out the equal-spin helical p + ip′ pairing
state as the leading one. This intriguing triplet superconducting
state has TR-invariant weak topological property and can
harbor the Majorana zero-mode at its boundary [3,45–47],
which is useful in the topological quantum computation.
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APPENDIX: RPA WITH THE KANE-MELE SOC

The Kane-Mele SOC term breaks the SU (2) spin-rotation
symmetry but keeps the U (1) spin-rotation symmetry around
the Sz axis [34,35]. Since the Sz component of the total spin is a
good quantum number, we define the following susceptibility
tensors:

χ
(1)pq
st (k,τ ) ≡ 1

N

∑
k1 k2

〈Tτ c
†
p↑(k1,τ )cq↑(k1 + k,τ )

× c
†
s↑(k2 + k,0)ct↑(k2,0)〉, (A1)

χ
(2)pq
st (k,τ ) ≡ 1

N

∑
k1 k2

〈Tτ c
†
p↑(k1,τ )cq↑(k1 + k,τ )

× c
†
s↓(k2 + k,0)ct↓(k2,0)〉, (A2)

χ
(3)pq
st (k,τ ) ≡ 1

N

∑
k1 k2

〈Tτ c
†
p↓(k1,τ )cq↓(k1 + k,τ )

× c
†
s↑(k2 + k,0)ct↑(k2,0)〉, (A3)

χ
(4)pq
st (k,τ ) ≡ 1

N

∑
k1 k2

〈Tτ c
†
p↓(k1,τ )cq↓(k1 + k,τ )

× c
†
s↓(k2 + k,0)ct↓(k2,0)〉, (A4)

χ
(5)pq
st (k,τ ) ≡ 1

N

∑
k1 k2

〈Tτ c
†
p↑(k1,τ )cq↓(k1 + k,τ )

× c
†
s↓(k2 + k,0)ct↑(k2,0)〉, (A5)

χ
(6)pq
st (k,τ ) ≡ 1

N

∑
k1 k2

〈Tτ c
†
p↓(k1,τ )cq↑(k1 + k,τ )

× c
†
s↑(k2 + k,0)ct↓(k2,0)〉. (A6)

For U = 0, we have the bare susceptibility tensors χ (2)(0) =
χ (3)(0) = 0 and

χ
(1)(0)pq
st (k′,iωn) = 1

N

∑
k′αβ

ξα
t↑(k′)ξα∗

p↑(k′)ξβ

q↑(k′ + k)

× ξ
β∗
s↑ (k′ + k)

nF

(
ε

β↑
k′+k

) − nF

(
ε

α↑
k′

)
iωn + ε

α↑
k′ − ε

β↑
k′+k

,

(A7)
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χ
(4)(0)pq
st (k,iωn) = 1

N

∑
k′αβ

ξα
t↓(k′)ξα∗

p↓(k′)ξβ

q↓(k′ + k)

× ξ
β∗
s↓ (k′ + k)

nF

(
ε

β↓
k′+k

)−nF (εα↓
k′ )

iωn + ε
α↓
k′ −ε

β↓
k′+k

, (A8)

χ
(5)(0)pq
st (k,iωn) = 1

N

∑
k′αβ

ξα
t↑(k′)ξα∗

p↑(k′)ξβ

q↓(k′ + k)

× ξ
β∗
s↓ (k′ + k)

nF

(
ε

β↓
k′+k

)−nF

(
ε

α↑
k′

)
iωn+ε

α↑
k′ −ε

β↓
k′+k

, (A9)

χ
(6)(0)pq
st (k,iωn) = 1

N

∑
k′αβ

ξα
t↓(k′)ξα∗

p↓(k′)ξβ

q↑(k′ + k)

× ξ
β∗
s↑ (k′ + k)

nF

(
ε

β↑
k′+k

) − nF

(
ε

α↓
k′

)
iωn + ε

α↓
k′ − ε

β↑
k′+k

.

(A10)

In the RPA, we have

(
χ (1)

χ (3)

)
=

(
I χ (1)(0)(U )

χ (4)(0)(U ) I

)−1(
χ (1)(0)

0

)
, (A11)

(
χ (2)

χ (4)

)
=

(
I χ (1)(0)(U )

χ (4)(0)(U ) I

)−1(
0

χ (4)(0)

)
, (A12)

χ (5) = [I − χ (5)(0)(U )]−1χ (5)(0), (A13)

χ (6) = [I − χ (6)(0)(U )]−1χ (6)(0), (A14)

where (U ) is the same as that in Eq. (9).
With the above expressions of χ (1∼6), we consider the

scattering of a Cooper pair from the state (k′, − k′) in the
βth (β = 1, · · · ,4) band to the state (k, − k) in the αth
(α = 1, · · · ,4) band. This scattering process leads to the

following effective interaction vertices:

V
αβ

↑↓ (k,k′) =
∑
pqst

�
pq↑
st↓ (k,k′)ξα∗

p↑(k)ξα∗
q↓ (−k)ξβ

s↓(−k′)ξβ

t↑(k′),

(A15)

V
αβ

↑↑ (k,k′) =
∑
pqst

�
pq↑
st↑ (k,k′)ξα∗

p↑(k)ξα∗
q↑ (−k)ξβ

s↑(−k′)ξβ

t↑(k′),

(A16)

where

�
pq↑
st↓ (k,k′) = (U )pt

qs − [(U )χ (3)(U )]pt
qs(k − k′)

+ [(U )χ (6)(U )]ps
qt (k + k′), (A17)

�
pq↑
st↑ (k,k′) = − 1

2 [(U )χ (4)(U )]pt
qs(k − k′)

+ 1
2 [(U )χ (4)(U )]ps

qt (k + k′). (A18)

The inversion symmetry, together with the U (1) spin-rotation
symmetry of the system, enables us to symmetrize the effective
interaction vertices into the following channels:

V
αβ

(e,0)(k,k′) = 1
2

[
V

αβ

↑↓ (k,k′) + V
αβ

↑↓ (k, − k′)
]
, (A19)

V
αβ

(o,0)(k,k′) = 1
2

[
V

αβ

↑↓ (k,k′) − V
αβ

↑↓ (k, − k′)
]
, (A20)

V
αβ

(o,±1)(k,k′) = V
αβ

↑↑(↓↓)(k,k′), (A21)

where the index e is for the even parity pairing, and o is for
the odd one. From these symmetrized effective interaction
vertices, we obtain the following linearized gap equation near
the superconducting critical temperature Tc:

− 1

(2π )2

∑
β

∮
FS

dk′
‖
V

αβ

(P,Sz)(k,k′)

v
β

F (k′)
�β(k′) = λ�α(k), (A22)

which replaces Eq. (13) to determine the Tc and the leading
pairing symmetry of the system in the presence of the Kane-
Mele SOC.
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