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Localization in a random XY model with long-range interactions: Intermediate case
between single-particle and many-body problems
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Many-body localization in an XY model with a long-range interaction is investigated. We show that in the
regime of a high strength of disordering compared to the interaction an off-resonant flip-flop spin-spin interaction
(hopping) generates the effective Ising interactions of spins in the third order of perturbation theory in a hopping.
The combination of hopping and induced Ising interactions for the power-law distance dependent hopping
V (R) ∝ R−α always leads to the localization breakdown in a thermodynamic limit of an infinite system at
α < 3d/2 where d is a system dimension. The delocalization takes place due to the induced Ising interactions
U (R) ∝ R−2α of “extended” resonant pairs. This prediction is consistent with the numerical finite size scaling
in one-dimensional systems. Many-body localization in an XY model is more stable with respect to the long-
range interaction compared to a many-body problem with similar Ising and Heisenberg interactions requiring
α � 2d which makes the practical implementations of this model more attractive for quantum information
applications. The full summary of dimension constraints and localization threshold size dependencies for many-
body localization in the case of combined Ising and hopping interactions is obtained using this and previous work
and it is the subject for the future experimental verification using cold atomic systems.
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I. INTRODUCTION

Many-body localization-delocalization transition serves as
a natural generalization of a single-particle Anderson local-
ization concept [1] to interacting quantum systems at finite
temperature [2,3] and as a quantum-mechanical extension
of a classical transition between deterministic and chaotic
behaviors [4,5]. Localized systems show nonergodic behavior
where each small subsystem of it remembers its initial state
during an infinite time. In the delocalized state the system
serves as a thermal bath for each part of it (e.g., spin or
particle) leading them to their thermal equilibrium. Many-body
localization has been considered in a variety of physical
systems [6–11] and it attracts growing attention because of
its significance in quantum informatics [12–14]. Indeed, in
the regime of localization the system remembers its initial
state infinitely long, while in chaotic state this information
is quickly erased by irreversible dynamics. Recently it has
been suggested to investigate many-body localization using
cold atomic systems [12,15–17], which can emulate various
models for localization-delocalization transitions. Particularly
the model considered in the present paper can be realized in
diatomic alkali-metal systems [16].

Many-body interaction often leads to the single-particle
localization breakdown because it opens new channels for
energy or particle transport [2,10,11,16,18–22] (see however
Refs. [6,7,23] where the localizing effect of quasistatic
interaction has been exploited). Particularly, the long-range
interaction decreasing with the distance according to the power
law due to dipolar, magnetic, or elastic forces dramatically
enlarges the number of delocalization pathways because of
long-distance connections.

Indeed, even at zero temperature excitations are delocalized
at arbitrarily strong disorder in an infinite system if the
interaction decreases with the distance slower than R−d (see
Refs. [1,24]). At a finite temperature and in the presence
of a long-range interparticle (Ising) interaction UijS

z
i S

z
j (or

Uijninj for quasiparticles) decreasing with the distance as
Uij ∝ R

−β

ij the inevitable delocalization is expected at β < 2d

(see Refs. [11,16,22] and the analysis of delocalization in
Sec. IV C). This strong dimension constraint results from the
resonant energy exchange between the flip-flop transitions
of spin pairs caused by Ising many-body interactions (see
Fig. 1). However there is no such interaction in the XY
model containing only hopping terms VijS

+
i S−

j (below we
refer to this term as a hopping interaction emphasizing both
its hopping and interaction nature). Therefore it is unclear how
the long-range hopping would affect the localization there.

To address this fundamental question and fill the existing
gap in the dimensional constraints obtained only in the case
of dominating Ising interaction [11,16,22] we investigate the
effect of the long-range hopping interaction on the many-
body localization in a random strongly disordered XY model
for interacting spins 1/2. We show that the effective Ising
interaction between spins still exists and it is generated in the
third order of perturbation theory in the hopping interaction
Vij . This interaction decreases with the distance as R−2α and it
leads to the localization breakdown for α < 3d/2 in agreement
with the “extended pair” criterion of Ref. [16].

An XY model is relevant for a variety of phenomena
including energy transport in Josephson junction arrays [25],
exciton transport in quantum gases [15,16], and many other
problems of interest. This model is also relevant for quan-
tum informatics including quantum information processing
using quantum dot spins [14] and quantum information
transport [13]. Therefore it is important to characterize the
dynamics in this model particularly understanding the specifics
of many-body localization there.

The paper is organized as following. The model is for-
mulated in Sec. II. The effective Ising interaction is derived
in Sec. III and the many-body localization problem in the
presence of natural and induced interactions is considered
in Sec. IV. The numerical verification of the results using

1098-0121/2015/92(10)/104428(10) 104428-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.92.104428


ALEXANDER L. BURIN PHYSICAL REVIEW B 92, 104428 (2015)

i

i’

j

j’
k

R

R
r(R)

FIG. 1. (Color online) Many-body interaction of two resonant
pairs of spins (i,i ′) and (j,j ′) assisted by neighboring spin k. Wave
lines indicate significant spin-spin hopping interactions V .

the finite-size scaling method is reported in Sec. V. The
conclusions are formulated in Sec. VI.

II. MODEL

In this paper we investigate a many-body localization in an
XY model of N interacting spins 1/2,

Ĥ =
∑

i

φiS
z
i +

∑
i �=j

VijS
+
i S−

j , (1)

occupying d-dimensional hypercube with the density n. Fields
φi are not correlated in different sites i and they are uniformly
distributed within the domain (−W/2,W/2). The breakdown
of many-body localization is investigated for the hopping
interaction decreasing with the distance according to the power
law

Vij ∼ Ṽ

(n
1
d Rij )α

, (2)

where Ṽ estimates the hopping interaction at the average
distance.

We assume that the disorder is strong, Ṽ � W , so the
only long-range interaction can lead to delocalization. The
consideration is restricted to the case α � d so the single-
particle delocalization can be neglected (see the discussion in
Sec. IV D for the threshold case α = d). Accordingly there
is no mobility edge for the single-particle states which are
all strongly localized (cf. Ref. [26]). We consider the infinite
temperature limit similarly to the previous work [27,28]
because it is more convenient for analytical and numerical
considerations while its generalization to the finite nonzero
temperature is straightforward [29].

In contrast with the previously considered models of
interacting spins [11,16,22] with mixed interactions,

Ĥmixed =
∑

i

φiS
z
i +

∑
i �=j

VijS
+
i S−

j + 1

2

∑
i �=j

UijS
z
i S

z
j , (3)

Eq. (1) lacks the Ising spin-spin interaction Uij . In addition
to the pure XY model we will also discuss the general model
Eq. (3) in Sec. IV B with special attention to the regime α < β

not considered yet. To make our consideration as general
as possible we introduce the second independent interaction
parameter Ũ = Unβ/d [cf. Eq. (2)] representing the Ising
interaction at the average distance. The large strength of
disorder Ũ � W is also assumed for this interaction.

The Fermion based version of the Hamiltonian Eq. (3) can
be generated replacing spin operators S+, S−, Sz with Fermi

operators a†, a, n = a†a (see Ref. [30]) as

Ĥ =
∑

i

φini +
∑
i �=j

Vij a
†
i aj + 1

2

∑
i �=j

Uijninj . (4)

The latter model lacks many-body behavior in the absence
of interparticle interaction (Uij = 0) and it can be described
in terms of independent fermions which are localized in the
case of a large strength of disorder for α < d. The XY model
Eq. (1) behaves identically for the one-dimensional problem
with the nearest-neighbor interaction [31], but shows different
behavior if there exist triples of spins i,j,k coupled by nonzero
interactions Vij , Vjk , and Vik as shown below in Sec. III [32].

III. INDUCED ISING INTERACTION IN XY MODEL

A. Motivation and zeroth-order approximation

Here we show that the effective Ising interaction exists in
the XY model with the long-range interaction. It is generated
in the third order of perturbation theory in hopping interactions
under conditions of a large strength of disorder (see Fig. 1 and
derivation below). This interaction is relatively weak, yet it
can lead to the delocalization.

The main reason for that is the dramatic significance
of the Ising interaction for the many-body energy trans-
port [11,16,22]. Indeed the hopping interaction VijS

+
i S−

j

bounds only sites with close random fields φi ≈ φi ′ while
the Ising interaction is capable to induce the energy transport
between pairs of such sites i,i ′ and j,j ′ bound by the resonant
condition φi − φi ′ ≈ φj − φj ′ while energies φi and φj can be
very far from each other (see Fig. 1). This transport channel can
lead to the breakdown of many-body localization (see Ref. [11]
and Sec. IV). In addition it is fundamentally interesting
to investigate the appearance of the difference between the
random XY model Eq. (1) and its Fermion counterpart Eq. (4).
The third-order effect that we study is the first nonvanishing
contribution to this difference.

To find the induced Ising interaction the perturbation theory
is developed for the system Eq. (1). One can separate the
Hamiltonian into two parts including the random-field term
dominating in the case of a large strength of disorder,

Ĥ0 =
∑

i

φiS
z
i , (5)

and considered as a zeroth-order approximation and the
hopping interaction term

V̂ =
∑
i �=j

VijS
+
i S−

j (6)

treated as a perturbation. This perturbation can be separated
itself into resonant and nonresonant parts depending on
whether the change of random-field energy φi − φj due to
flip-flop transition is large or small compared to the hopping
amplitudes Vij . Under conditions of strong disordered system
Ṽ � W one can introduce an intermediate crossover energy
φ∗, such that Ṽ � φ∗ � W , and treat the interaction part

V̂off =
′∑

i �=j

V ′
ij S

+
i S−

j θ (|φi − φj | − φ∗) (7)
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as an off-resonant perturbation that cannot lead to real
transitions. Here θ (x) = 1 if x � 0 or 0 otherwise. This part of
interaction will be used below to generate the effective Ising
interaction between spins. Since we choose φ∗ � W the vast
majority of interactions belong to the off-resonant perturbation
Eq. (7). The remaining resonant interaction

V̂res =
′∑

i �=j

V ′
ij S

+
i S−

j θ (−|φi − φj | + φ∗) (8)

should be treated as it is.
In the next step we perform the approximate unitary

transformation of the Hamiltonian targeted to remove off-
resonant interactions following the procedure introduced by
Van Vleck for the interaction of molecular spin and rotational
degrees of freedom [33], and used later on by Schrieffer and
Wolff for the derivation of the Anderson model from the Kondo
model [34] (see also the textbook Ref. [35] and recent work
Refs. [36,37]). This transformation suggests the following
procedure. The new effective Hamiltonian is created using
the transformation

Heff = exp(Ŝ)H exp(−Ŝ),
(9)

Ŝ =
′∑

i �=j

VijS
+
i S−

j

φi − φj

θ (|φi − φj | − φ∗).

The matrix in exponent Ŝ is chosen to satisfy the condition [36]

[Ŝ,Ĥ0] = −V̂off . (10)

In the case under consideration of a strongly disordered system
one can treat Ŝ as a perturbation and restrict its consideration
to the few lowest-order contributions which can be written as
(cf. Ref. [33–36])

Heff = Ĥ0 + V̂res + V̂ (2) + V̂ (3);

V̂ (2) = 1
2 [Ŝ,V̂off] + [Ŝ,V̂r ]; (11)

V̂ (3) = 1
2 [Ŝ[Ŝ,V̂r ]] + 1

3 [Ŝ[Ŝ,V̂off]].

We need the third-order contribution because only in this
order is the effective Ising interaction of spins generated.
The analysis of induced interactions is performed below in
Sec. III B.

B. Calculation of induced interactions

1. Second-order contributions

Using Eq. (11) one can express the interaction induced in
the second order in the off-resonant hopping as

V̂ (2) = V̂
(2)
I + V̂ (2)

r + V̂
(2)

off ; V̂
(2)
I = 1

2

∑
i,j

[
VijS

+
i S−

j

φi − φj

,VijS
+
j S−

i

]
=

∑
i

Sz
i

∑
j

V 2
ij

φi − φj

;

V̂ (2)
r = −

∑
i �=j

S+
i S−

j θ (φ∗ − |φi − φj |)
∑

k

VijVkj (φi + φj − 2φk)

(φi − φk)(φj − φk)
θ (|φi − φk| − φ∗)θ (|φj − φk| − φ∗)

− 2
∑
i �=j

S+
i S−

j θ (φ∗ − |φi − φj |)
∑

k

VijVkj (φi + φj − 2φk)

(φi − φk)(φj − φk)
θ (φ∗ − |φi − φk|)θ (|φj − φk| − φ∗); (12)

V̂
(2)

off = −
∑
i �=j

S+
i S−

j θ (|φi − φj | − φ∗)
∑

k

VijVkj (φi + φj − 2φk)

(φi − φk)(φj − φk)
θ (|φi − φk| − φ∗)θ (|φj − φk| − φ∗)

− 2
∑
i �=j

S+
i S−

j θ (|φi − φj | − φ∗)
∑

k

VijVkj (φi + φj − 2φk)

(φi − φk)(φj − φk)
θ (φ∗ − |φi − φk|)θ (|φj − φk| − φ∗).

The results include the corrections to the random field V̂
(2)
I

and the second-order corrections to resonant and off-resonant
interactions (V̂ (2)

r and V̂
(2)

off , respectively). The correction to the
random field is much smaller than the random field itself. The
off-resonant part of the interaction can be removed applying
one more unitary transformation similarly to Eq. (10) and it
can be used to generate the Ising interaction only in the fourth
order in the hopping. The resonant interaction represents a
weak correction to the original resonant interaction Eq. (8) due
to the large strength of disordering compared to the hopping.
Thus all these interactions can be approximately neglected.

2. Induced Ising interaction

The first nonzero contribution to the Ising interaction
appears in the third order in the hopping interaction from
three spin loops (see spins i, j , and k in Fig. 1; cf.

Ref. [38]). We consider only the Ising off-resonant contribution
to the interaction as the significant third-order correction
(the resonant contribution is smaller as discussed below and
the off-resonant non-Ising contribution can be removed by
the additional unitary transformation). This contribution is
generated by the last term in the definition of the third-order
interaction V̂ (3) Eq. (11) and it can be expressed as

V̂
(3)
I = 1

3

′∑
i,j,k

[
VikS

+
k S−

i

φk − φi

,

[
VjkS

+
j S−

k

φj − φk

,VijS
+
i S−

j

]]

+ 1

3

′∑
i,j,k

[
VjkS

+
j S−

k

φj − φk

,

[
VkiS

+
k S−

i

φk − φi

,VijS
+
i S−

j

]]
, (13)

where the
∑′ notation means that the summation is over only

off resonant pairs of spins. One can evaluate the commutators
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in Eq. (13) as

[S+
k S−

i ,[S+
j S−

k ,S+
i S−

j ]] = 2Sz
j

(
Sz

k − Sz
i

)
. (14)

Then after the straightforward calculations we come up with
the following result for the generated Ising interaction of off-
resonant spins 1/2 within the XY model,

Û (3) = 1

2

′∑
i,j

U
(3)
ij Sz

i S
z
j ,

(15)

U
(3)
ij = 4

′∑
k

VijVikVjk

(φi − φk)(φj − φk)
.

There is no such correction in a one-dimensional XY model
with the nearest-neighbor interactions because it requires spin
pairs i and j , j and k, and i and k to be nearest neighbors
simultaneously which is not possible in one dimension. In
other words the product VijVikVjk is always equal to zero in
that model. Therefore it was necessary to introduce the nearest-
neighbor Ising interaction in Ref. [39] to obtain a many-body
behavior.

The result Eq. (15) is valid only if energy differences in
denominators are not very small, |φi − φk| > φ∗. However the
opposite situations occur rarely because of the large random
potential strength W compared to the spin-spin interactions.
Indeed, the dominating contribution to the Ising spin-spin
interaction of spins i and j comes from the “assisting” spins k

located in the direct vicinity of either spin i or spin j . This is
because the interaction is weak (Vik,Vjk � W ) and decreases
with the distance faster or like R−d (see Ref. [40]), so the
sign variable sums over spins k in Eq. (15) possess the Levy
statistics. This means that they are determined by the shortest
possible distance of order of the average distance between
spins.

Typical random-field differences for few involved spins
are generally given by the energy disorder range φi − φj ∼
φi − φk ∼ φj − φk ∼ W . Consequently, the Ising spin-spin
interaction U

(3)
ij Sz

i S
z
j , Eq. (15), can be estimated as

U
(3)
ij ≈ V 2

ij Ṽ

W 2
(16)

[remember that Ṽ stands for the nearest-neighbor interaction,
Eq. (2)]. Consequently the induced Ising interaction at the
average distance can be estimated as

Ũ (3) ≈ Ṽ 3

W 2
. (17)

This result will be used to investigate many-body localization
in Sec. IV occurring due to the combination of resonant
hopping and off-resonant Ising interactions. Below in Sec. III C
we briefly discuss the induced interaction in other models of
interest.

C. Other models

Consider the induced interaction for the problem of Fermi
particles Eq. (4). In the case of only nonzero hopping (Uij = 0)
there is no induced interaction containing the products of two
or more operators ni = a+

i ai . For instance the third-order

correction to the energy analogous to Eq. (13) does not
induce interaction because the commutators similar to those
in Eq. (14) lead only to the corrections to a random potential.
Indeed one has

[a+
k ai,[a

+
j ak,a

+
i aj ]] = ni − nj , (18)

and the corresponding correction to random potentials can be
expressed as

δφ
(3)
i =

′∑
j,k

VijVikVjk

(φi − φk)(φj − φk)
. (19)

This is the consequence of the single-particle nature of the
Fermion problem Eq. (4) with Uij = 0.

For the XY model with spin greater than 1/2 the spin-spin
Ising interaction is induced already in the second order of
perturbation theory, Eq. (12). This interaction takes the form

Û = −1

2

′∑
i,j

2V 2
ij S

z
i S

z
j

(
Sz

i − Sz
j

)
(φi − φj )

. (20)

Consequently it depends on the distance as R−2α
ij as for the

problem with spin 1/2, Eq. (16). However it is less sensitive
to disorder.

IV. EFFECT OF INTERACTIONS ON MANY-BODY
LOCALIZATION IN XY MODEL

A. Delocalization in XY model due to long-range interaction

Consider the joint effect of induced Ising Uij and original
hopping Vij interactions on the many-body localization using
the previously developed theory [11,16,22] in the case of the
hopping and Ising interactions decreasing with the distance
according to the power law characterized by exponents α and
β = 2α, respectively, and by interaction constants given by
Eqs. (2) and (17).

Several delocalization scenarios have been considered in
Ref. [16] and the critical dimensions (or critical power-law
interaction exponents α and β) for many-body localization
have been suggested (we consider only the anisotropic in-
teraction case). The first two scenarios including hopping
(α > d) and small pairs (β > d) constraints describe the
stability of the localized state with respect to the single-particle
delocalization [1,24].

The third scenario of “extended pairs” (see Fig. 1) is
related to large resonant pairs formed by XY interactions.
For each resonant pair of spins i,i ′ (Sz

i + Sz
i ′ = 0) the resonant

condition [41]

|φi ′ − φi | < |Vii ′ | (21)

is satisfied [in general the perturbation theory corrections to
random fields φ like Eq. (12) comparable to the interaction
Vij should be included into field definitions as discussed in
Refs. [11,24]]. Then two states Sz

i = 1/2, Sz
i ′ = −1/2 and

Sz
i = −1/2, Sz

i ′ = 1/2 are represented nearly equally in the
system eigenstates.

The Ising interaction of resonant pairs (i,i ′) and (j,j ′) can
lead to the energy hopping between them at small energy
differences (φi − φi ′) − (φj − φj ′) compared to their Ising
interaction, while the field difference between two pairs
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TABLE I. Dimension constraints for many-body localization for
N → ∞.

Model α � β α < β < 2α 2α < β

dc
β

2
αβ

α+β

2α

3

dcF
β

2
αβ

α+β

αβ

α+β

φi − φj can be as large as maximum disorder energy W [in
this case the estimate Eq. (16) is well justified]. This additional
channel of the energy transport leads to the new critical
dimension constraint [16] d <

αβ

α+β
. In the case of XY model

one can use the induced interaction Eq. (16) characterized by
the exponent β = 2α. Substituting β = 2α into the extended
pair constraint d <

αβ

α+β
we obtain the new critical dimension

constraint for the many-body localization in XY model (see
also Table I),

3d

2
< α. (22)

This is the new constraint compared to the previous
studies [11,16,22] restricted to the regime of a significant
Ising interaction (β � α), where the fourth scenario of
“iterated pairs” determines the critical dimension constraint
2d < β [11] (anisotropic interaction is assumed). In the case
of dominating hopping interaction α < β the extended pair
scenario gives the stronger restriction of the critical dimension.

Below we extend the previous consideration to the general
problem Eq. (3) in the case α < β and obtain the dimension
constraint for many-body localization (Sec. IV B) for the
arbitrary relationship of power-law interaction exponents α

and β. We also estimate the minimum system size where
the localization is still possible at dimension exceeding the
critical one (Sec. IV C). The latter study is important for real
systems having finite size where the proposed theory can serve
as a background for the analysis of the future experimental
data. These systems can be realized using the chains of cold
atoms [15,16]. The results are summarized in Tables I and II.

B. Dimension constraint for dominating hopping
interaction (α < β)

Here we discuss the dimension constraint for the general
problem Eq. (3) with α < β not addressed previously. The
induced Ising interaction Eq. (16) can become more significant

than the initial Ising interaction if it decreases with the distance
slower than the original Ising interaction, i.e., at 2α < β.
Therefore considering the dimension constraint one should
characterize the Ising interaction by the minimum power-law
exponent

β∗ = min(β,2α), (23)

and use this exponent in the dimension constraint for extended
pairs d <

αβ∗
α+β∗

[16] as it is given in Table I. This result does not
depend on the spin since the induced Ising interaction Eq. (20)
for large spins shows the same distance dependence as for the
spin 1/2, Eq. (16).

For the Fermi-particles counterpart model with mixed
interactions (α < β), Eq. (4), there is no induced many-body
interaction so the extended pair criterion should be always
applicable (see Table I).

In the case of violated dimension constraint the delo-
calization should take place at arbitrarily large strength of
disorder beginning from the sufficiently large system size. We
estimate the maximum number of spins where many-body
localization can still take place in Sec. IV C below. Although
this derivation essentially repeats the arguments of previous
work [11,16,22] there is some qualitative difference of the
case α < β compared to the previously considered case α = β

so it can be useful for better understanding of many-body
localization breakdown in this regime and for the analysis of
the future experimental data in cold atomic systems.

C. Critical size and disorder strength at large dimension d > dc

We begin with the analysis of delocalization in the general
case α < β including XY model. Assume that the dimension
constraint for extended pairs d <

αβ∗
α+β∗

is not satisfied so the
delocalization should take place at arbitrarily large strength
of disorder at sufficiently large system size. Our targets are
the dependence of critical disorder Wc on the system size
L expressed through the number of spins N = nLd and
the dependence of the number of spins Nc needed for the
delocalization to occur at the given strength of disorder W .
Our consideration follows the previous analysis of similar
problems for α � β [11,22].

The dynamics of a strongly disordered system is primarily
associated with resonant pairs Eq. (21) where the random-field
energy can be compensated by the hopping interaction. The
resonant pairs can be divided into subclasses of typical size
R and typical energy V (R) = Ṽ

(n1/dR)α . The density of resonant

TABLE II. Critical strength of disorder and number of particles determining localization threshold for violated dimension constraints Table I.

Model Specific case Nc = nRd
∗ Wc

d � β < α,2d α <
dβ

β−d
min[( Ṽ

Ũ
)d

2/[d(α+β)−αβ]( W

Ṽ
)dβ/[d(α+β)−αβ]

,( Ṽ

Ũ
)d/(2d−β)( W

Ṽ
)2d/(2d−β)] Ṽ ·max[( Ũ

Ṽ
)d/β

N [d(α+β)−αβ]/dβ ,( Ũ

Ṽ
)1/2

N (2d−β)/2d ]

dβ

β−d
< α ( Ṽ

Ũ
)d/(2d−β)( W

Ṽ
)2d/(2d−β)

Ṽ ( Ũ

Ṽ
)1/2

N (2d−β)/2d

d � α = β β < 2d ( Ṽ

Ũ
)d

2/β(2d−β)( W

Ṽ
)d/(2d−β)

Ṽ ( Ũ

Ṽ
)d/β

N (2d−β)/d

d � α < β, 3d

2 β < dα

α−d
min [( Ṽ

Ũ
)d

2/[d(α+β)−αβ]( W

Ṽ
)dβ/[d(α+β)−αβ]

,( W

Ṽ
)2d(d+α)/α(3d−2α)] Ṽ ·max[( Ũ

Ṽ
)d/β

N [d(α+β)−αβ]/dβ ,Nα(3d−2α)/2d(d+α)]

dα

α−d
< β ( W

Ṽ
)2d(d+α)/α(3d−2α)

Ṽ Nα(3d−2α)/2d(d+α)

3d

2 < α < β β < dα

α−d
( Ṽ

Ũ
)d

2/[d(α+β)−αβ]( W

Ṽ
)dβ/[d(α+β)−αβ]

Ṽ ( Ũ

Ṽ
)d/β

N [d(α+β)−αβ]/dβ
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pairs having typical size R is given by [22]

n(R) = n
Ṽ

W

1

(n1/dR)α−d
. (24)

Ising interaction characterized by the interaction strength
at the average distance Ũ creates the dynamic interaction of
resonant pairs of the typical size R leading to the simultaneous
flip-flop transition in both resonant pairs accompanied by the
energy hop between them. Since both pairs are resonant the
amplitude of this simultaneous transition is of order of their
bare Ising interaction which can be estimated as [22]

U (R) = Un(R)β/dŨ

(
Ṽ

W

)β/d
1

(n1/dR)β(α−d)/d
. (25)

One should notice that in the case of extended pairs and α < 2d

the average distance between pairs n(R)−1/d becomes smaller
than their size at sufficiently large size R [see Ref. [22],
Eq. (24)] for two resonant pairs. Therefore the coupling of
only the closest spins is important as shown in Fig. 1. Then the
isotropic or anisotropic character of Ising interaction does not
affect the estimate of Ising interaction between pairs, Eq. (25),
and consequently the delocalization transition in contrast with
the case α > β of dominating Ising interaction considered in
Ref. [16].

The interaction of resonant pairs Eq. (25) represents their
dynamic coupling that can lead to delocalization if it exceeds
the typical energy V (R) of the subsystem of pairs. Considering
power-law distance dependencies of U (R) and V (R) one can
see that if the criterion d � αβ

α+β
is not satisfied then the

interaction of pairs of the size R [U (R)] decreases with the
distance slower than the typical energy of those pairs [V (R)].
Therefore inevitable delocalization is expected at sufficiently
large system size where the pair coupling exceeds their typical
energy. The size R∗ where two energies are equal to each
other estimates the maximum system size where many-body
localization is still possible at the given strength of disorder
W . Solving the equation U (R∗) = V (R∗) we estimate this size
as

R∗ = n−1/d

(
Ṽ

Ũ

)d/[d(α+β)−αβ](
W

Ṽ

)β/[d(α+β)−αβ]

. (26)

In the case of the XY model with spin 1/2 the Ising interaction
strength Ũ depends itself on the strength of disorder Eq. (16).
In this case the dependence of the maximum system size
on disorder Eq. (26) should be modified as (remember that
β = 2α in that case)

R∗XY = n−1/d

(
W

Ṽ

)2(d+α)/α(3d−2α)

. (27)

Consider the general model with mixed interaction Eq. (3)
for α < β. If both constraints for mixed interactions [αβ/(α +
β) > d] and for XY model (α < 3d/2) are violated then one
should choose the strongest interaction out of two leading to
the lowest size constraint determined by the minimum of two
estimates in Eqs. (26) and (27). If only one of two conditions
is satisfied then one should use the corresponding criterion.
The estimates of the critical number of spins N = nRd

∗ in all
these cases is given in Table II.

Case α = β considered in Ref. [22] can be described by
Eq. (26) setting α = β. In the remaining case of α < β the
iterated pair scenario has been suggested [16] (see also [11]).
In that scenario the delocalization is determined by interacting
nearest-neighbor resonant pairs which replace spins in the
original model. For anisotropic interaction [16] the problem
can be reformulated with the modified parameters Wp =
Ṽ , np = nṼ /W , Ũp = Ṽp = Ũ (Ṽ /W )β/d and αp = βp = β.
Using these parameters in Eq. (26) one can estimate the critical
size assuming β < 2d as

R∗P = n−1/d

(
W

Ṽ

)2/(2d−β)(
Ṽ

Ũ

)1/(2d−β)

. (28)

If both extended pair and iterated pair criteria lead to the
delocalization [α > β, β < 2d, αβ/(α + β) < d] then one
should choose the minimum size determined by either Eq. (26)
or Eq. (28) corresponding to the most efficient delocalization.

In Table I we show the estimates of the maximum number
of spins (N∗ = nRd

∗ ) where many-body localization is still
possible for all possible exponents α and β and violated
dimension constraints. The critical strength of disorder Wc for
the given number of spins can be found resolving Eqs. (26)–
(28) with respect to the disorder W at fixed system size R

or number of spins N . The dependencies Wc(N ) are also
shown in Table II. The results can be easily generalized for
the interacting Fermions simply removing the parts related to
the induced Ising interaction which does not exist in that case.

D. Threshold regimes d = dc

The threshold regimes where interactions behavior corre-
sponds to the border line of the dimension constraints need
the special attention. There are two distinguishable regimes
including the cases α = d or β = d, where a single-particle
delocalization becomes important at very large system size for
arbitrarily large strength of disorder [16,24] and the cases
β = 2d, α = 3d/2, and αβ/(α + β) = d corresponding to
the border line for many-body localization breakdown. The
first regime is particularly significant because of the common
appearance of R−d interactions due to dipolar or elastic
forces [19,42].

We believe that the single-particle delocalization can be
ignored for α = d (and similarly for β = d) in the regime of
strong disorder Ṽ � W because the delocalization becomes
significant only if the logarithmic delocalization parameter
Ṽ
W

ln (N ) approaches unity [24]. This can happen only at ex-
ponentially large system size remarkably exceeding the critical
sizes from Table II for many-body localization. Therefore we
do not expect any related changes in our estimates for critical
size and disorder behaviors except for maybe additional weak
logarithmic parametric dependencies which are beyond the
scope of our qualitative analysis.

The number of resonant interactions grows logarithmically
with the system size at the many-body localization thresholds
(β = 2d, α = 3d/2, or αβ/(α + β) = d). This behavior is
similar to the single-particle localization problem with strong
disorder and R−d hopping interaction [24]. In this regime
the excitations are nearly localized: their typical localization
radius is much smaller than the system size, but it approaches
infinity in the infinite system limit (see however Ref. [30]
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where delocalization can take place under certain conditions
at exponentially large but finite radius). In our case we similarly
expect that the system remains localized until the system size
gets exponentially large ln(n1/dR) ∼ W/Ṽ while we are not
able to describe the system behavior at larger sizes. Perhaps
the experimental investigation of the implementations of this
model in cold atomic gases as suggested in Refs. [15,16] will
help to resolve this difficult issue.

Below in Sec. V the predictions of theory for the XY model
are verified for the one-dimensional model using the numerical
finite-size scaling of the ergodicity parameter [22].

V. FINITE-SIZE SCALING FOR XY MODEL

Consider a random one dimensional XY model. In the
numerical study we describe the localization-delocalization
transition using the ergodicity parameter [22,43]. In the
thermodynamic limit of the infinite system this parameter is
defined as the local spin-spin correlation function

Q = lim
t→∞

∑
m 4〈m|Sz

i (t)Sz
i (0)|m〉δ(Em)∑

m δ(Em)
(29)

taken in the infinite time limit [43] and averaged over the sys-
tem eigenstates having zero energy. The latter choices corre-
spond to the infinite temperature thermodynamic limit [27,28].
In that limit the average ergodicity parameter should approach
zero in the delocalized state where correlations are subject to
decay, while in the localized state it should be finite (unity
in an infinitely strong disorder limit). Our method is perhaps
not as efficient in the definition of the localization transition
point as the recently developed analysis of entanglement
entropy [27,44], yet it permits the easy determination of the
scaling of the localization transition with the system size that
can be compared to the theory predictions in Table II.

The numerical study is performed for the Hamiltonian
Eq. (1) describing the periodic one-dimensional chain of
N spins separated by the unit distance using the periodic
interaction

Vij = ± 1

max(|i − j |,N − |i − j |)α (30)

with random, uncorrelated signs of all interactions. This model
is similar to the models studied in Refs. [16,22] with the only
difference that the Ising spin-spin interaction is set equal to
zero here. The total spin projection to the z axis is conserved.
We restrict the numerical consideration to the states with zero
total spin projection which represents well the thermodynamic
limit.

In the numerical study the ergodicity parameter Eq. (29)
is defined as a configuration averaged spin-spin correlation
function at infinite time [43] over the narrow band of Nα

eigenstates α of the Hamiltonian Eq. (1) with zero total spin
and energy Eα belonging to the domain (−δ < Eα < δ),

Q = 4

Nα

∑
α

|〈α|δSz|α〉|2θ (δ − |Eα|). (31)

f
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0

0.5

1

α=1

FIG. 2. (Color online) Original (inset) and rescaled dependencies
of ergodicity parameter Q on disordering W for α = 1.

The domain size δ = 0.04W
√

N is determined requiring the
many-body density of states

g(E) ≈ exp
(− E2

24NW 2

)
√

24πNW 2
(32)

to change at the scale δ by 1%. The function g(E) has
been estimated using the random potential part of the system
Hamiltonian Eq. (5) employing the law of large numbers
(N � 1) and large strength of disordering Ṽ � W .

The parameter Q has been averaged over a few thousand
realizations of the system Hamiltonian to have the relative error
of 1% (5% for N = 16). The XY models with interactions
characterized by power-law exponents α = 1,1.25,1.5,1.75,2
taken around the predicted threshold α = 3/2 (see Table I)
have been considered for a strength of disorder W ranging
between W = 1 and W = 150 (we set Ṽ = n = 1). In all
systems the localization transition can be seen with increasing
disorder, i.e., Q approaches 0 at small W and tends to 1 in
the opposite limit of W → ∞ (see Figs. 2–6). However these

f
1/9

(14)W/f
1/9

(N)
0 20 40 60 80 100

Q

0

0.25

0.5

0.75

1
 N=8
 N=10
 N=12
 N=14
 N=16

W
0 50 100

Q

0

0.25

0.5

0.75

1

α=1.25

FIG. 3. (Color online) Original (inset) and rescaled dependencies
of ergodicity parameter Q on disorder W for α = 1.25.

104428-7



ALEXANDER L. BURIN PHYSICAL REVIEW B 92, 104428 (2015)

f
0
(14)W/f

0
(N)

0 20 40 60 80 100

Q

0

0.25

0.5

0.75

1
 N=8

 N=10

 N=12

 N=14

W
0 50

Q

0

0.25

0.5

0.75

1

α=1.5

FIG. 4. (Color online) Original (inset) and rescaled dependencies
of ergodicity parameter Q on disorder W for α = 1.5.

transitions behave differently for different exponents α and
numbers of spins N .

The results for the dependence of ergodicity parameter on
the strength of disorder are shown in the insets of Figs. 2–4 for
α � 3/2 and in Figs. 5 and 6 for α = 1.75 and 2, respectively.
For α < 3/2 the transition shifts towards large disorder W

with increasing the number of spins, while for α > 3/2 the
transition is almost insensitive to the system size. The situation
is inconclusive for α = 3/2 where larger system sizes should
be probed. The result of the visual inspection agrees with the
qualitative expectation for the threshold power-law exponent
αc = 3/2 separating the regimes where the delocalization is
inevitable in the large-N limit (α < 3/2) and where it is
possible.

For quantitative characterization of the critical strength of
disorder Wc dependence on the number of spins N we use the
scaling function [22]

fa(N ) = N

2(N − 1)

(
2

N/2−1∑
n=1

na−1 +
(

2

N

)a−1
)

. (33)

W
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FIG. 5. (Color online) Dependence of ergodicity parameter Q on
disorder W for α = 1.75.

W
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Q
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0.5

0.75

1

 N=8

 N=10

 N=12

 N=14

α=2

FIG. 6. (Color online) Dependence of ergodicity parameter Q on
disorder W for α = 2.

This function replaces the continuous power-law dependence
Na predicted by the qualitative consideration (Table II) with
the discrete sum of resonance probabilities which accounts
better for finite-size effects. For a > 0 this function has the
asymptotic behavior fa(N ) ∝ Na .

In Figs. 2–4 we show the modified plot of the data for
α � 3/2 with disorder strength rescaled using the function
Eq. (33) with the theoretically predicted exponents a = (α −
3d/2)/(1 + α) [see Eq. (27) and Table II]. This rescaling leads
to a reasonable match between the graphs for different numbers
of spins N indicating a good agreement of theoretically
predicted and numerically found scaling of the transition point
with the system size.

In addition to the visual inspection we performed quan-
titative estimates of rescaling parameters for the data sets
QN (W ) with the same exponent α and different N ’s using
the optimization procedure [22]. For each exponent α we
determined the set of optimum rescaling parameters cα(N )
corresponding to the minimum of the squared deviation∑

i{Q14(Wi) − QN [cα(N )Wi]}2 with Wi changing with the
step of 1 from 1 to 100. The results for different rescaling
parameters c(α,N ) are shown in Fig. 7 by symbols defined
within the graph.

To characterize the change of the rescaling factors and
consequently the critical strength of disorder Wc with the
number of spins, we fitted each data set by the function
fa(N ), Eq. (33), choosing the parameter a to attain the best
agreement of the model with the numerical results. The solid
lines in Fig. 7 show these optimum fits and the exponents a

are shown in the inset and indicated in the legend. The scaling
function f0(N ) serves as the crossover between the regimes
of finite (a < 0) and infinite (a > 0) localization thresholds
in the thermodynamic limit N → ∞. In agreement with the
theoretical expectations of the crossover at α = 3/2 we found
a > 0 for α = 1,1.25, a < 0 for α = 1.75,2, while situation
is not clear at the threshold α = 1.5 as shown in the inset to
Fig. 7. The estimated exponents a are, however, somewhat
larger than the theory predictions Eq. (27) which can be due to
finite-size effects. The logarithmic increase of the number of
resonant interactions with increasing the number of spins for
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FIG. 7. (Color online) Scaling factors c vs a number of spins N

for different interactions (α) and the fit of c(N ) dependencies using
functions fa(N ) with optimum fitting parameters a estimating scaling
exponents for localization transition size dependence. Inset shows the
dependence of exponents a on the interaction power-law exponents
α. The solid (red) line indicates the threshold case a = 0.

α = 1 (see Ref. [24] and Sec. IV D) can lead to the observed
deviations.

VI. CONCLUSION

We investigated many-body localization in the XY model
with the long-range interaction V (R) ∝ R−α in a strongly
disordered regime. In this regime the Ising interaction de-
creasing with the distance as R−2α appears in the third
order of perturbation theory with respect to the hopping
interaction. Considering the combined effect of this induced
interaction and the original hopping interaction we found
the dimension constraint α > 3d/2 required to attain the

many-body localization in the thermodynamic limit of infinite
system.

Using this result we suggested the dimension constraints
for the general problem of many-body localization in the
presence of the long-range hopping and Ising interactions
with arbitrarily power-law distance dependencies (see Table I).
In the case when the dimension constraint is violated the
maximum system size where the localization is still possible is
predicted (see Table II). Also we predicted the critical disorder
dependence on the system’s size. These results can be used to
interpret the recently proposed experiments in cold atomic
systems implementing the disordered spin systems with the
long-range interactions [15,16].

It turns out that many-body localization in XY model is
more stable with respect to the long-range interaction than
in the model of spins having both Ising and XY long-range
interactions [22]. For instance many-body localization can be
attained in a thermodynamic limit in a three-dimensional XY
model with a quadrupole interaction (α = 5) while it is not
possible in the spin system with a quadrupole Ising and XY
interactions. Thus spin systems with only XY interaction can
be more attractive for quantum informatics.

It is interesting to notice that the effective long-range
interaction of spins can be generated in periodically driven
interacting systems [26,45–47] as a part of an effective
Hamiltonian as suggested in Ref. [46]. Therefore the scaling
behaviors similar to the ones studied in the present work can
be seen in these systems as well (e.g. the scaling of the decay
time with drive parameters [46]). The detailed analysis of the
relationship between two problems is beyond the scope of the
present work and will be performed later.

ACKNOWLEDGMENTS

The author acknowledges Louisiana EPSCORE LA Sigma
and LINK Programs, and NSF Program (Grant No. CHE-
1462075) for support.

[1] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[2] L. Fleishman and P. W. Anderson, Phys. Rev. B 21, 2366

(1980).
[3] B. L. Altshuler, Y. Gefen, A. Kamenev, and L. S. Levitov, Phys.

Rev. Lett. 78, 2803 (1997).
[4] J. R. Dorfman, An Introduction to Chaos in Nonequilibrium

Statistical Mechanics (Cambridge University Press, Cambridge,
England, 1999).

[5] I. Tikhonenkov, A. Vardi, J. R. Anglin, and D. Cohen, Phys.
Rev. Lett. 110, 050401 (2013).

[6] Yu. Kagan and L. A. Maksimov, Zh. Eksp. Teor. Fiz. 88, 992
(1984) [Sov. Phys. JETP 61, 583 (1985)].

[7] A. L. Burin, K. N. Kontor, and L. A. Maksimov, Theor. Math.
Phys. 85, 1223 (1990).

[8] D. E. Logan and P. G. Wolynes, J. Chem. Phys. 93, 4994 (1990);
D. M. Leitner and P. G. Wolynes, J. Phys. Chem. A 101, 541
(1997).

[9] R. Berkovits and B. I. Shklovskii, J. Phys.: Condens. Matter 11,
779 (1999).

[10] D. Basko, I. Aleiner, and B. Altshuler, Ann. Phys. 321, 1126
(2006).

[11] A. L. Burin, D. Natelson, D. D. Osheroff, Y. Kagan, in Tunneling
Systems in Amorphous and Crystalline Solids, edited by P.
Esquinazi (Springer Verlag, Berlin, 1998), pp. 223–316; A. L.
Burin, arXiv:cond-mat/0611387.

[12] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore,
Rev. Mod. Phys. 83, 863 (2011).

[13] C. K. Burrell and T. J. Osborne, Phys. Rev. Lett. 99, 167201
(2007).

[14] A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo,
D. Loss, M. Sherwin, and A. Small, Phys. Rev. Lett. 83, 4204
(1999).

[15] M. Serbyn, M. Knap, S. Gopalakrishnan, Z. Papic, N. Y. Yao,
C. R. Laumann, D. A. Abanin, M. D. Lukin, and E. A. Demler,
Phys. Rev. Lett. 113, 147204 (2014).

[16] N. Y. Yao, C. R. Laumann, S. Gopalakrishnan, M. Knap, M.
Müller, E. A. Demler, and M. D. Lukin, Phys. Rev. Lett. 113,
243002 (2014).

104428-9

http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRevB.21.2366
http://dx.doi.org/10.1103/PhysRevB.21.2366
http://dx.doi.org/10.1103/PhysRevB.21.2366
http://dx.doi.org/10.1103/PhysRevB.21.2366
http://dx.doi.org/10.1103/PhysRevLett.78.2803
http://dx.doi.org/10.1103/PhysRevLett.78.2803
http://dx.doi.org/10.1103/PhysRevLett.78.2803
http://dx.doi.org/10.1103/PhysRevLett.78.2803
http://dx.doi.org/10.1103/PhysRevLett.110.050401
http://dx.doi.org/10.1103/PhysRevLett.110.050401
http://dx.doi.org/10.1103/PhysRevLett.110.050401
http://dx.doi.org/10.1103/PhysRevLett.110.050401
http://dx.doi.org/10.1007/BF01086851
http://dx.doi.org/10.1007/BF01086851
http://dx.doi.org/10.1007/BF01086851
http://dx.doi.org/10.1007/BF01086851
http://dx.doi.org/10.1063/1.458637
http://dx.doi.org/10.1063/1.458637
http://dx.doi.org/10.1063/1.458637
http://dx.doi.org/10.1063/1.458637
http://dx.doi.org/10.1021/jp9619088
http://dx.doi.org/10.1021/jp9619088
http://dx.doi.org/10.1021/jp9619088
http://dx.doi.org/10.1021/jp9619088
http://dx.doi.org/10.1088/0953-8984/11/3/017
http://dx.doi.org/10.1088/0953-8984/11/3/017
http://dx.doi.org/10.1088/0953-8984/11/3/017
http://dx.doi.org/10.1088/0953-8984/11/3/017
http://dx.doi.org/10.1016/j.aop.2005.11.014
http://dx.doi.org/10.1016/j.aop.2005.11.014
http://dx.doi.org/10.1016/j.aop.2005.11.014
http://dx.doi.org/10.1016/j.aop.2005.11.014
http://arxiv.org/abs/arXiv:cond-mat/0611387
http://dx.doi.org/10.1103/RevModPhys.83.863
http://dx.doi.org/10.1103/RevModPhys.83.863
http://dx.doi.org/10.1103/RevModPhys.83.863
http://dx.doi.org/10.1103/RevModPhys.83.863
http://dx.doi.org/10.1103/PhysRevLett.99.167201
http://dx.doi.org/10.1103/PhysRevLett.99.167201
http://dx.doi.org/10.1103/PhysRevLett.99.167201
http://dx.doi.org/10.1103/PhysRevLett.99.167201
http://dx.doi.org/10.1103/PhysRevLett.83.4204
http://dx.doi.org/10.1103/PhysRevLett.83.4204
http://dx.doi.org/10.1103/PhysRevLett.83.4204
http://dx.doi.org/10.1103/PhysRevLett.83.4204
http://dx.doi.org/10.1103/PhysRevLett.113.147204
http://dx.doi.org/10.1103/PhysRevLett.113.147204
http://dx.doi.org/10.1103/PhysRevLett.113.147204
http://dx.doi.org/10.1103/PhysRevLett.113.147204
http://dx.doi.org/10.1103/PhysRevLett.113.243002
http://dx.doi.org/10.1103/PhysRevLett.113.243002
http://dx.doi.org/10.1103/PhysRevLett.113.243002
http://dx.doi.org/10.1103/PhysRevLett.113.243002


ALEXANDER L. BURIN PHYSICAL REVIEW B 92, 104428 (2015)

[17] S. S. Kondov, W. R. McGehee, W. Xu, and B. DeMarco, Phys.
Rev. Lett. 114, 083002 (2015).

[18] B. L. Altshuler and A. G. Aronov, in Electron-Electron Inter-
actions in Disordered Systems, edited by A. L. Efros and M.
Pollak (North-Holland, Amsterdam, 1985), p. 1.

[19] C. C. Yu., Phys. Rev. B 32, 4220 (1985).
[20] A. L. Burin, L. A. Maksimov, and I. Y. Polishchuk, Pis’ma

Zh. Eksp. Teor. Fiz. 49, 680 (1989) [JETP Lett. 49, 784
(1989)].

[21] I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Phys. Rev. Lett.
95, 206603 (2005)

[22] A. L. Burin, Phys. Rev. B 91, 094202 (2015).
[23] M. Schiulaz, A. Silva, and M. Müller, Phys. Rev. B 91, 184202

(2015); N. Y. Yao, C. R. Laumann, J. I. Cirac, M. D. Lukin, and
J. E. Moore, arXiv:1410.7407.

[24] L. S. Levitov, Phys. Rev. Lett. 64, 547 (1990).
[25] E. Cuevas, M. Feigel’man, L. Ioffe, and M. Mezard, Nat.

Commun. 3, 1128 (2012).
[26] A. Lazarides, A. Das, and R. Moessner, Phys. Rev. Lett. 115,

030402 (2015).
[27] A. Pal and D. A. Huse, Phys. Rev. B 82, 174411 (2010).
[28] Y. BarLev and D. R. Reichman, Phys. Rev. B 89, 220201

(2014).
[29] The low-temperature regime T < W/kB in the case of strong

disorder for the problem described by the Hamiltonian Eq. (3)
(higher temperatures can be approximately described by the
infinite temperature case) can be studied restricting the relevant
spins to those which are not frozen, i.e., having the effective
random field smaller than the thermal energy |φi | < kBT . This
subsystem of thermal spins can be identified removing gradually
high energy “frozen” spins with large random fields |φi | � kBT

and replacing their interactions with other spins with the random
fields acting on those remaining spins. The relevance of this
procedure is justified by the weakness of the interaction of spins
in a strongly disordered system under consideration. Indeed,
it is much smaller than the typical spin energy Ũ ,Ṽ � W at
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