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We report experimental and theoretical studies of spin wave eigenmodes in transversely magnetized thin film
Permalloy wires. Using broadband ferromagnetic resonance technique, we measure the spectrum of spin wave
eigenmodes in individual wires as a function of magnetic field and wire width. Comparison of the experimental
data to our analytical model and micromagnetic simulations shows that the intrinsic dipolar edge pinning of spin
waves is negligible in transversely magnetized wires. Our data also quantify the degree of extrinsic edge pinning
in Permalloy wires. This work establishes the boundary conditions for dynamic magnetization in transversely
magnetized thin film wires for the range of wire widths and thicknesses studied, and provides a quantitative
description of the spin wave eigenmode frequencies and spatial profiles in this system as a function of the wire

width.

DOI: 10.1103/PhysRevB.92.104424

I. INTRODUCTION

Ferromagnetic nanowires is an important experimental
platform for observation of magnetotransport and magneto-
dynamic phenomena emerging at the nanometer length scale.
Studies of these effects such as field- and current-induced
domain-wall motion [1-7], domain-wall magnetoresistance
[8-10], and the interaction of spin waves with nanoscale
spin textures such as domain walls, vortices, and skyrmions
[11-17] heavily rely on the understanding of transport and
magnetization dynamics in ferromagnetic nanowires. More
recently, ferromagnetic nanowires proved to be useful for
studies of inverse spin Hall effect [18] and spin-orbit torques
[19-22]. Furthermore, several realizations of spintronic logic
gates [23-28] and spin wave guides [29] based on ferromag-
netic nanowires have been recently proposed. Detailed under-
standing of magnetotransport and magnetodynamic effects in
ferromagnetic nanowires relies on the quantitative description
of spin waves in this important confined geometry.

While the spectrum of spin waves in nanowires magnetized
parallel to the wire axis is well understood [30], the situation
is less clear for nanowires magnetized perpendicular to the
wire axis. For example, the boundary conditions describing
dynamic magnetization at the nanowire edges (and therefore
the spin wave eigenmode frequencies) remain to be estab-
lished. The main complication in this magnetic configuration
is the strong spatial nonuniformity of the demagnetizing fields,
which prevents derivation of simple analytical expressions
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describing the spectrum of spin wave eigenmodes. This task
is especially difficult when both the exchange and the dipole-
dipole interactions significantly contribute to the spin wave
energies [31,32].

In this paper, we describe experimental and theoretical
studies of spin waves in thin film ferromagnetic wires that
are magnetized transversely to the wire axis in the plane of
the film. In order to simplify the problem, we choose ferro-
magnetic wires made of Permalloy (Py = NiggFe,) which has
a negligible bulk magnetic anisotropy. We use the resistively
detected broadband ferromagnetic resonance (FMR) technique
[22,33—-37] to measure the spectrum of spin wave eigenmodes
in individual wires as a function of transverse magnetic
field. This technique eliminates inhomogeneous broadening
and interwire interaction effects inherently present in studies
of magnetization dynamics in large arrays of nanowires
[38,39]. We develop an analytical model describing the spin
wave frequencies in this system, and establish the boundary
conditions for dynamic magnetization in Py wires studied in
this work via comparison of the experimental data, analytical
model, and micromagnetic simulation results.

II. EXPERIMENT

A series of Py(20-25 nm)/Pt(2 nm) wires of rectangular
cross section such as that shown in Fig. 1(a) are patterned
on top of a GaAs substrate via e-beam lithography, e-beam
evaporation, and liftoff. The thin Pt capping layer is employed
to prevent oxidation of the Py wire. Shorted coplanar strips
(CPS) shown in Fig. 1(a) are patterned in close proximity
to each wire and are used for application of a microwave
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FIG. 1. (Color online) (a) Scanning electron micrograph of wire
A. (b) FMR spectrum of wire B measured at the microwave drive
frequency of 9 GHz. QM: quasiuniform mode; WM: width modes;
EM: edge mode.

magnetic field H,r to the wire. In this paper, we discuss three
wire samples with similar Py thicknesses and different widths:
(i) 1.18 um x 25 nm (wire A), (ii) 620 nm x 25 nm (wire B),
and (iii) 270 nm x 20 nm (wire C). The length of these wires
is approximately 60 wm. We employ an electrically detected
ferromagnetic resonance technique (FMR) [22] to study the
spectral properties of spin wave eigenmodes of these samples
as a function of magnetic field H applied in the plane of
the sample perpendicular to the wire axis. In this technique,
a microwave current [,. in the CPS generates a microwave
magnetic field nearly perpendicular to the sample plane at
the nanowire location and excites spin wave eigenmodes in
the Py wire when the frequency of I,. coincides with its
spin wave eigenmode frequencies. Excitation of the spin wave
eigenmodes results in a small change §R in the time-average
wire resistance that arises from anisotropic magnetoresistance
(AMR) of Py [22,40,41]. This resistance variation is then
measured as a function of H. Peaks in § R(H) such as those
shown in Fig. 1(b) represent the resonance fields of the spin
wave eigenmodes.

The spin wave eigenmodes of in-plane transversely mag-
netized thin film ferromagnetic wires can be treated as width
eigenmodes [22,30,42—44] due to the geometric confinement
of the spin wave spectrum in the wire width direction. One
particular mode that displays its maximum amplitude at the
wire edges is called the edge mode (EM). Another mode that
shows the lowest number of nodes along the wire width is
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usually called the quasiuniform mode (QM). To simplify the
discussion, the rest of the eigenmodes will be simply called
width modes (WMs) throughout this paper. Figure 1(b) shows
a typical FMR spectrum measured for wire B at the microwave
drive frequency of 9 GHz. The peaks that appear at the lowest
and highest fields are QM and EM [22,42,45,46], respectively.
Between the two peaks a few width modes can also be clearly
identified [30]. In our measurements, care was taken to keep
the amplitude of 7,. small enough to remain within the linear
regime of FMR. All measurements reported in this paper are
performed at room temperature.

Figure 2 displays a color plot summary of FMR spectra such
as that shown in Fig. 1(b) measured at multiple microwave
drive frequencies. In this plot, the blue and red colors
correspond to negative and positive values of § R, respectively.
Figure 2 shows the dependence of spin wave mode frequencies
on the applied field for all three samples studied in this work.
This figure demonstrates that the frequency of each spin wave
eigenmode exhibits a minimum as a function of the applied
field. For a given sample, the frequency minimum is found at
the same field H, for all modes except EM. As we discuss
below, H, is the field, at which the magnetization in the
interior of the wire becomes aligned along the applied field
direction. Therefore, H, can be called the bulk saturation field.
Magnetization at the edges of the wire is more difficult to align
with the external field because of the large demagnetizing
field near the wire edges [47]. For this reason, the minimum
frequency of the edge mode is achieved at the edge saturation
field H, that significantly exceeds H,. For fields H > H,(H,),
the bulk (edge) spins become aligned with the applied field
direction and the spin wave eigenmodes in this regime are
called aligned width (edge) modes. For H < H,(H,), the
eigenmodes can be called nonaligned width (edge) modes.

III. THEORY

In order to analyze our experimental results, we develop a
model describing the spin waves in transversely magnetized
thin film wires. In this analytical model, we use a Cartesian
coordinate system shown in the inset of Fig. 1(a), in which
the external field is applied along the wire width H=H%.
The cross section of the Py wire (excluding the Pt layer) has
dimensions of 2a x 2b, with 2b being the thickness and b <«
a. In our model, we make the following assumptions: (i) the
applied field is strong enough that the wire in equilibrium is
magnetized uniformly along the direction of the applied field,
(ii) the wire is thin enough that the dynamic magnetization
is considered uniform over the thickness (y axis), and (iii)
the wire is long enough that translational invariance along the
wire length (z axis) can be assumed. Assumptions (ii) and (iii)
lead to the following form of magnetization of the wire driven
by a small-amplitude alternating magnetic field with angular
frequency w: M(?,Z) ~ M,% + Re(i(x)e™®), where M, is
the saturation magnetization of Py and #1,,(x) is the amplitude
of dynamic magnetization transverse to X.

For the wires studied in this work, the first assumption of
our model is met when the applied magnetic field exceeds the
edge saturation field H > H,. The second assumption is met
because the thickness of the Py wire is comparable to the Py
exchange length [48] and the frequencies of the spin wave
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FIG. 2. (Color online) The measured spin wave mode spectra (blue-red color plots) compared to the analytical calculation using the partially
pinned boundary condition [lines in (a), (c), and (e)] and to the micromagnetic simulation results [circles in (b), (d), and (f)]. (a),(b) Wire A;

(c),(d) wire B; (e),(f) wire C.

eigenmodes discussed in our work are well below the lowest
branch of perpendicular standing spin waves (PSSWs) [30,47].
The third assumption is met because the wavelength of the
excited spin waves along the wire width is long (comparable
to the CPS short length ~10 um).
The starting point of our model is the Landau-Lifshitz (LL)

equation:
am M x H, 1
7 —|7IM X Hey, (1)
where y is the gyromagnetic ratio and Heff is the effective
field defined as Hel‘f = H+ HD + Hex, with HD(M) and

Hy = 2A/M 2)VZM being the demagnetizing field and the
exchange field (A is the exchange stiffness), respectively. The
linearized LL equation for the y and z components of the
dynamic magnetization takes the form

2,0
k4

d
0x

iom;” [h — ne(x)Im? —

2 9
2
iom? = —[h —nx(x)]m‘;’ +d 5 2

+ (hp())y(x), )

where o= (w/|y)/@r M), h=H/AxM;), n.(x)=
—(Hp(MX%)),/ (47TM ) is the x- dependent demagnetizing
factor along X, (hD(m)) (x) = (HD(m)),,(x)/(4nM ) is
the y component of the reduced dynamic demagnetizing
field. Here () denotes the average over the thickness, and
d = A/Q2mM?) = I2_(le is the exchange length of Py).

The detailed derlvatlon of the expressions for n,(x) and
(hD(m)) ,(x) is given in the Appendix. Equation (2) together
with boundary conditions for the dynamic magnetization set
up an eigenvalue problem for the spin wave mode frequencies
in the wire. The general form of the boundary conditions used
for solving Eqgs. (2) takes the following form [49,50]:

( om j ) .
— +Am; =0 (Jj =x,y,2), 3)
dx x==a
where A is the parameter describing the partial pinning of
the dynamic magnetization at the sample edge (the pinning
parameter).

The value of the pinning parameter is determined by
a number of factors, including the magnitude of magnetic
surface anisotropy at the wire edge, edge roughness, edge
surface profile, and the direction of magnetization with respect
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to the edge normal [44]. For A = 0, these boundary conditions
reduce to the so-called free boundary conditions, which
correspond to null normal derivatives of the magnetization at
the edge surfaces. In this paper, we show that the free boundary
conditions are appropriate for fully saturated transversely
magnetized thin film wires without edge roughness, edge
surface anisotropy, or irregular edge surface profiles (e.g.,
rounded or slanted edge surfaces). We also demonstrate
that nonzero values of A have to be used to quantitatively
describe the experimental data (which implies non-negligible
surface anisotropy, irregular edge surface profiles, and/or edge
damage for our Py wires). Via comparison to the experimental
data, we determine the value of A appropriate for our
system.

By representing the dynamic magnetization as a function of
a specific Fourier series that satisfies the boundary conditions
of Eq. (3) at the edges x = +a, the linearized Eq. (2) is
reduced to a linear eigenvalue problem that can be easily
solved by the standard linear algebra techniques as described
in the Appendix. From these eigensolutions we obtain the
frequencies and spatial profiles of the spin wave eigenmodes.
We calculated the spin wave mode frequencies versus H
for H > H, for several values of the pinning parameter A,
and found good agreement with the experimental data for all
three samples for A = 0.05 nm~! as shown in Figs. 2(a), 2(c),
and 2(e).

In order to test our analytical approach and gain understand-
ing of the boundary conditions for the dynamic magnetization
appropriate for our system, we performed micromagnetic
simulations [51] of FMR spectra for the Py wires studied in
this paper. The wires are divided to 1024 (along the length) x
256 (along the width) x 1 (along the thickness) cells. Since the
dynamic magnetization is expected to be width dependent only,
the numbers of cells along the wire length and thickness are not
critical. In these simulations, we applied a spatially uniform
continuous-wave magnetic drive field to the wire [52-54].
The simulation results were analyzed after the system had
reached the dynamic equilibrium. The eigenmode resonance
fields for a given drive frequency were extracted by examining
the dependence of the dynamic magnetization amplitudes on
the static external field.

The micromagnetic simulations also allow us to calculate
the spectrum of nonaligned spin wave eigenmodes in the low-
field regime (H < H,). The aligned (nonaligned) spin wave
modes can be clearly distinguished by the dependence of their
frequencies on H [31]: the aligned mode frequency increases
with H while the nonaligned mode frequency decreases with
H. Therefore, the fields of the minimum frequency H, and H,
mark transitions from the aligned to the nonaligned regimes
of the spin wave modes. Figures 2(b), 2(d), and 2(f) compare
the field dependence of spin wave eigenfrequencies obtained
from the micromagnetic simulations to the experimental data
for all three samples. It is clear from this figure that the
micromagnetic simulations describe the spectrum of QM and
WM with a high degree of accuracy. However, there are
significant discrepancies for the edge mode. As we discuss
in detail below, these discrepancies result from the extrinsic
pinning of the dynamic magnetization at the wire edges by
magnetic surface anisotropy, edge dilution, edge roughness,
and/or irregular edge surfaces [44].

PHYSICAL REVIEW B 92, 104424 (2015)

IV. RESULTS AND DISCUSSION

We employed our resistively detected FMR technique to
measure the saturation magnetization M of each individual Py
wire. As discussed in Ref. [22], M, can be reliably determined
via measurement of the quasiuniform mode frequency versus
external field applied parallel to the wire axis. From these
measurements we determined the saturation magnetization M,
of each wire: 790 & 1 emu/cm?® (wire A), 785 £ 1 emu/cm?
(wire B), 850 #+ 3 emu/cm? (wire C), which are typical for Py
thin films [55-59]. These values of M together with a g-factor
of 2.1 [59,60] and an exchange stiffness of 1.3 perg/cm [55,57]
are used as material parameters for our analytical calculations
and micromagnetic simulations. We also note that the out-of-
plane saturation field of our thin film wires was measured to
be similar to 4 M, which indicates that the Py/Pt interfacial
anisotropy is small.

The analytical calculation typically provides a large number
of eigensolutions that have spin wave mode profiles either
symmetric or antisymmetric with respect to the wire center.
We calculated the coupling coefficients of the microwave field
profile [<£15% amplitude variation across the widest wire
as shown in Fig. 5(d)] to both types of modes and found
that the coupling to the antisymmetric modes is one order of
magnitude smaller than that to the symmetric modes. This
makes the signal arising from excitation of the antisymmetric
modes comparable to the noise level of our measurement. For
this reason, we only consider the modes with symmetric mode
profiles across the wire width throughout this paper.

Figure 3 provides a comparison of our micromagnetic
simulations to the analytical calculations for the three studied
wires. Analytical results for two values of the pinning
parameter are shown: A = 0 (free boundary conditions) and
A =0.05 nm~! (partially pinned boundary conditions). Both
types of boundary conditions give similar eigenfrequencies for
QM and WM, which are also similar to the micromagnetic
simulation results and the experimental data (see Fig. 2).
For the edge mode, however, the micromagnetic simulations
only agree with the analytical calculation that employs the
free boundary conditions. Since the simulations automatically
account for the dipolar interaction at the wire edges, this
indicates that the intrinsic dipolar edge pinning of spin
waves [01] is negligible in transversely magnetized wires
for the range of wire thicknesses and widths studied in
present work. This is an important result as it proves that
the free boundary conditions for the dynamic magnetization
are appropriate for the description of spin wave eigenmodes in
ideal (i.e., zero edge roughness, no edge dilution, zero surface
anisotropy, and absence of rounding or slanting of the edge
surfaces) ferromagnetic thin film wires that are transversely
magnetized to full saturation. In other words, the edge pinning
of magnetization in wires transversely magnetized to full
saturation must have extrinsic character. This situation is to
be contrasted with the case of ideal wires magnetized parallel
to the wire edge, where demagnetizing fields lead to intrinsic
partial pinning of the dynamic magnetization at the wire edges
[61]. It has also been previously shown that the effective
boundary conditions for wires that are not fully magnetized
by a transverse magnetic field H < H, are different from the
free boundary conditions [30]. Figures 3(c), 3(f), and 3(i)
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FIG. 3. (Color online) Comparison of spin wave eigenmodes calculated via the micromagnetic simulations (circles) to the analytical
calculation (lines) using both boundary conditions: (a), (d), and (g) are free boundary conditions (A = 0) for wires A, B, and C respectively; (b),
(e), and (h) are partially pinned boundary conditions (A = 0.05 nm™") for wires A, B, and C respectively. Panels (c), (), and (i) show the edge
spin wave mode spatial profiles along the wire width at H = 2.7 kG for wires A, B, and C respectively. Blue solid line: analytical calculation
using free boundary conditions (A = 0); red open squares: micromagnetic simulations. The insets show the zoom-in view near the wire edges.

compare the edge spin wave mode profiles in the studied
wires calculated analytically with the free boundary conditions
(A = 0) to the profiles given by micromagnetic simulations.
The nearly perfect agreement between the two approaches
also lends support to our conclusion that the free boundary
conditions are appropriate for transversely magnetized wires
for the range of wire thicknesses and widths studied in this
work.

The left panel of Fig. 2 compares the experimentally
measured FMR eigenmodes to the analytical calculation using
the partially pinned boundary condition with A = 0.05 nm~!
The calculated frequencies of all eigenmodes are in good
agreement with the experimental data, especially in the high-
field limit. This is illustrated in Fig. 4, which compares the
measured eigenmode frequencies to those calculated by using
the free and the partially pinned boundary conditions for wire
B at H =2.7 kG. It is also clear from this figure that the

free boundary conditions fail to describe the edge mode, and,
therefore, extrinsic edge pinning must be invoked to explain
the experimental data.

Figure 5 shows the spin wave mode profiles (spatial
dependencies of the mode amplitudes across the wire width)
calculated for both the free (A = 0) and the partially pinned
(A = 0.05 nm~!) boundary conditions at H = 2.7 kG. The
general behavior of the spin wave mode profiles is a gradual
shift of the maximum spin wave amplitude from the wire
center towards the wire edge with decreasing mode frequency.
We also note that there is no direct correlation between the
mode index and the number of nodes in the mode profile
along the wire width, which is a consequence of the complex
interplay between the exchange and dipolar interactions for
these spin waves. It is clear from Fig. 5 that the edge pinning
(A > 0) increases the curvature of the mode profiles near
the edges, which leads to increase of the exchange energy
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and the associated increase in the mode frequency. Figure 4
clearly shows that the mode frequency difference between the
free and partially pinned boundary conditions increases with
decreasing mode frequency, which results from the shift of the
mode profile towards the wire edge.

The dependence of the spin wave eigenmode properties
on the wire width is best exemplified by the quasiuniform
and the edge modes. Figure 6(a) shows the dependence of
the bulk saturation field H, and the quasiuniform mode
frequency on the wire width. This figure demonstrates that

(@) (b)
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the bulk saturation field rapidly increases with decreasing
wire width. This increase in H, results from the increase
of the demagnetizing field inside the wire. Figure 6(b)
shows the spatial profile of the demagnetizing field 47 M n, (x)
in the wire interior as derived in the Appendix. It is clear from
this figure that the bulk saturation field shown in Fig. 6(a)
is similar to the demagnetizing field in the center region of
the wire. For a given value of the applied field, the higher
demagnetizing field in narrower wires results in a smaller net
magnetic field in the wire interior, and hence leads to lower spin
wave mode frequencies in narrower wires as shown in Fig. 6(a).

While the demagnetizing field is a strong function of the
wire width in the center region of the wire, it is nearly width
independent at the wire edge as illustrated in Fig. 6(c). For this
reason, the edge saturation field H, is expected to be nearly
independent on the wire width. This indeed is the case as shown
in Fig. 7(a). Since the edge demagnetizing field profile is nearly
independent on the wire width, the edge mode frequencies and
spatial profiles are also expected to be the same. Figure 7(a)
shows that both the measured and the calculated edge
mode frequencies are indeed nearly independent on the wire
width.

While taking into account extrinsic pinning is needed
to explain the observed frequencies of the edge mode, we
expect this extrinsic pinning to be nearly the same for all
three wire samples studied because these wires were prepared
via the same fabrication protocol. This is indeed the case,
because the same pinning parameter (A = 0.05 nm~!) gives
the eigenfrequency values very similar to those observed in
the experiment. Figures 7(b) and 7(c) show the calculated edge
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across the wire width (b) and at the wire edge (c).

mode profiles for the free and the partially pinned boundary
conditions. These figures illustrate that the edge mode profiles
are indeed nearly independent on the wire width for both types
of the boundary conditions used in this study.

It is important to note that the maximum demagnetizing
field occurs at the wire edges [~2m M, see Fig. 6(c)] and
is larger than the calculated edge saturation field assuming
ideal wires with no extrinsic edge pinning (2.4 ~ 2.5 kG; see
Fig. 3). In other words, for an external field not too much larger
than the edge saturation field H,, there is a small region near
the wire edges where the net field opposes the external field.
The length scale of this region is comparable to the exchange
length [see Fig. 6(c)]. The negative net field will not cause
noticeable misalignment of the edge spins from the external
field, which otherwise would introduce a significant exchange
energy increase. As a result, the equilibrium magnetization is
stabilized by the exchange interaction close to edges, as also
noted in Ref. [44]. In nonideal wires, extrinsic parameters such
as the edge surface anisotropy also play a stabilizing role for
the equilibrium magnetization.

In summary, we present detailed experimental and the-
oretical studies of spin wave eigenmodes in transversely
magnetized thin film Py wires as a function of the wire width.
Using resistively detected ferromagnetic resonance technique,
we measure the spectrum of spin waves in individual Py wires

as a function of magnetic field applied perpendicular to the
wire axis. We observe several spin wave modes and compare
their frequencies to the predictions of our analytical model
and micromagnetic simulations. Comparison of the analytical
model and micromagnetic simulations demonstrates that the
free boundary conditions for dynamic magnetization provide
an adequate description of the spin wave eigenmode spectrum
in transversely magnetized wires in the absence of extrinsic
edge pinning. Comparison of our theoretical model to the
measured spin wave frequencies reveals that the extrinsic
edge pinning is present at the wire edges and that the pinning
parameter A 2 0.05 nm~' is nearly independent on the wire
width. Using our analytical model, we calculate the spin wave
mode profiles across the nanowire width and show how the
maximum of the mode amplitude progressively shifts from
the wire center to the wire edge as a function of the eigenmode
frequency. We find that the frequency of the quasiuniform
mode decreases with decreasing width of the wire while the
frequency of the edge mode is nearly independent of the wire
width. These trends are explained by the width dependence of
the static demagnetizing fields in the bulk of the wire and near
the wire edges. Our work establishes the boundary conditions
for the dynamic magnetization for transversely magnetized
thin film Py wires for the range of wire thicknesses and widths
studied, and provides quantitative explanation of the spin wave

(a) . . . (b) (c)
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FIG. 7. (Color online) (a) The measured edge saturation field H, (open squares), measured (open circles) and calculated (crosses) edge
mode eigenfrequencies at H = 2.7 kG as a function of the wire width. Edge modes spatial profiles at H = 2.7 kG for (b) free (A = 0) and (c)

partially pinned (A = 0.05 nm~') boundary conditions.
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eigenmode frequencies and spatial profiles in this system as a
function of the wire width.
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APPENDIX

In this section, we present the solution of the spin wave
eigenvalue problem based on the linearized Landau-Lifshitz
given by Eq. (2).

We start by calculating the static demagnetizing field
I?ID(MS)E) produced by the equilibrium magnetization satu-
rated in the sample plane perpendicular to the wire axis,
M x. More specifically, we calculate the x component of
the demagnetizing field averaged over the film thickness
(HD(MS)?))(X). This demagnetizing field can be calculated
as a derivative of a magnetostatic scalar potential ¢(x,y):

(Hp(M,2))(x) = —(a—‘l’)f = — 47 M,n ()%,

™ (A1)

where n,(x) is the spatially dependent demagnetizing factor.
The magnetostatic potential is z independent due to z axis
translational invariance of the system.

The potential ¢(x,y) is generated by magnetic charges
of density +M; located at the wire edges (x' = ta). By
using the well-known expression for the potential created
by an infinite (in the z direction) line of charges located at
(x',y"): (x,y) = —2AIn/(y — ¥)? + (x — x')2, where A is
the linear magnetic charge density, we can write down an
expression for the potential generated by each of the two edges
of the wire:

b
P+(x,y) = —ZAf dy'Iny/(y —y)? +(x £aP. (A2)
—b
By averaging over the wire thickness and taking a derivative
with respect to x, we obtain an expression for the effective
demagnetizing field generated by each wire edge:

Ips\, A [P b, (x £a)
- <—)x =X— dy dy .
ax bJy ) (y=yP+x£a)?
(A3)
Evaluating the integrals in Eq. (A3), we obtain

an exact analytical expression for the demagnetizing

PHYSICAL REVIEW B 92, 104424 (2015)

factor n,(x) [62]:
1
ne(x) = ;{tan—1 R2p/(1+ X)]+tan~'[2p/(1 — X)1}

(1+ X)? )

1
- _[(1 R (<2p>2 1+ %)

4mp
+(1-X)1 ( (- )]
— n —_—n— s
2p)* + (1 — X)?
where X = x/a and p = b/a. .

The dynamic demagnetizing field (Hp(m,,)) produced by
the dynamic magnetization m, and its average over the
nanowire thickness can be calculated using the reciprocity
theorem [63]. We start by averaging the dynamic demagne-
tizing field (for example, its y component) over the section
of the wire of width Ax (and of volume AV = 2bAxAz)
evaluated at x:

(A4)

(Hp(,)),(x) =

dV'Hp(ii,) - $.  (AS)
AV(X) Av(x)

Using the reciprocity theorem, this expression can be
written in the following form:

(ﬁu(ﬁw))y(X) = AV fvdV/fID(ﬁ(”)(X’) My (x)
1 “ ’ Oy ’
= o bAx g dx'A¢” (xHImy(x), (A6)

where $© is defined as an “auxiliary” magnetization restricted
to the Ax section located at x and A(ﬁym(x/) is given by

|x — x|

. A7
VX —x)?+ (Zb)2> AP

Ap (x') = —4Ax In (

This leads to

(Hp (i) y(x)

1
_ —%/ dX'my(X)In{l +[2p/(X = X} (A8)
-1

T_I}e reduced dynamic demagnetizing field in Eq. (2) is given
by (hp(m)),(x) = (Hp(m,,)),(x)/ (47 My).

We first solve the spin wave eigenmode problem for the
case of free boundary conditions dm, ,/0x(+a) = 0. The
eigenvalue integrodifferential equations in Eq. (2) can be
solved by introducing a Fourier series representation for the
dynamic magnetization that satisfies the boundary conditions
(0my . /0X =0at X = %1, i.e., at the wire edges):

L
my(X) = Ao + Z {A;cos(Imr X) + By sin[(2] — 1)w X /2]},
=1

L
m.(X) = Co+ Y_{Crcos(imX) + Dy sin[(2l — )m X/2]}.
I=1
(A9)
The integrodifferential equations in Eq. (2) then become

the problem of solving the eigenvalue matrix equations for the
coefficients of the Fourier expansions. There are independent

104424-8
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equations for the symmetric modes,
ioAy = (h, —nccop/2)Co — neey Cr/2,
ioCy = —(h, — nccop/2)Ag + nccy Ay /2
+ (ccooAo + ccoiAr)/4mp,
i0A, = [h, + d(nmw/a)*1C, — ncen C,
i0Cy = —[hy + d(nm/a)*1A, + ncen A

+ (ccnoAo + ccnAr)/2mp, (A10)
and for the antisymmetric modes,
ioB, = {h, +d[2n — 1) /2a]*} D, — nssu Dy,
ioD, = —{h, + d[2n — )it /2a1*}B, + nssu B,
~+ 58, B; /27 p. (Al1l1)

In these equations, the Einstein summation convention
is used and the coefficients are given by the following
expressions:

1
neepy E/ dXn(X)cos(nm X)cos(lr X),
—1

1
nS Sy E/ dXn,(X)sin[(2n— 1) X /2] sin[(2] — 1) X /2],
-1

PHYSICAL REVIEW B 92, 104424 (2015)

/1 , /‘ X — X'|
cCp = dXx dX In
-1 VX =X +@py

x cos(nm X")cos(Im X)

1 1 v/
$Sp1 = / dX// dX ln( X - X )
1 1 VX =X+ 2p)?

x sin[(2n — D X' /2] sin[(2] — 1) X /2].

(A12)

In the case of partially pinned boundary conditions given
by Eq. (3), a similar Fourier series that guarantees satisfaction
of the boundary conditions was used:

my(X) = Z [An cos (K;X) + B, sin (K,‘fX)],

n

mo(X) =Y _[Cycos (kK X) + D, sin (k2 X)].

n

(A13)

with the wave vectors k%) obtained by solving the following
transcendental equations:

tan (k) = (ha)x,
(A14)
cot (k) = —(ha)xy.
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