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Gilbert-like damping caused by time retardation in atomistic magnetization dynamics
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Gilbert-like damping in magnetization dynamics is commonly attributed to the interplay of the spin, the
electron, and the phonon reservoirs. Spatial correlations within the spin reservoir itself, for example magnons,
mediate damping as well. We show theoretically that temporal correlations within the spin reservoir cause a
similar effect. We investigate the role of time retardation in the atomistic Landau-Lifshitz-Gilbert equation using
two different retardation kernels. Although viscous damping is explicitly excluded, we find both analytically and
numerically that damping and higher-order effects emerge due to time retardation. Thus, our results establish a
mechanism for damping and inertia in magnetic systems.
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I. INTRODUCTION

New developments in spintronics are often related to
switching magnetic moments [1–4]. The efficiency of the
switching process can be manipulated either by external
magnetic fields or by magnetic properties of the material
under consideration, e.g., by selecting compounds with strong
spin-orbit coupling [5,6] or with large dissipation of energy and
angular momentum. Both influence the effective precession as
well as the Gilbert dissipation [7] and, thus, the dynamics
of the magnetic moments. In particular, the Gilbert damping
is of utmost importance since it determines the velocity of
the switching as well as the thermal stability of the magnetic
system.

Dissipation in a magnetic system is ascribed to coupling of
the spin reservoir to the electron or the phonon reservoirs
(illustrated schematically in Fig. 1). The breathing Fermi
surface model [8] attributes the Gilbert damping α to the
coupling of the electron and the phonon reservoir. Here,
deviations from the collinear ground state, with magnetization
along an easy axis, produce an out-of-equilibrium electronic
ground state; the relaxation of this excited state back to
an equilibrium state requires energy dissipation and takes
place either between the electron and spin reservoirs (with
strength α) or between the electron and phonon reservoirs
(with relaxation time τep = h/�ep). It has been shown by
Gilmore et al. [9] that the lower the coupling energy �ep,
the higher the dissipation of energy and angular momentum in
the magnetic system. This trend has been corroborated within
a linear-response model by Ebert et al.: in Refs. [10] and [11],
a decrease of the Gilbert damping with the phonon temperature
has been established and, furthermore, the dominance of the
phonon contribution is analyzed. Steiauf and Fähnle point
out a nonlocality as well as an anisotropy of the damping
in space and with respect to the direction of the magnetic
moments [12,13]. In addition, a significant influence of the
electron and spin temperatures on the damping has been
established [14].

Besides electron-phonon coupling, other damping mecha-
nisms are conceivable; for example, a direct coupling of the
phonon and the spin reservoirs [15], a spin-orbit-influenced
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electron gas in nonequilibrium [16], as well as damping within
the spin reservoir itself. The latter mechanism, in particular, is
related to the exchange of angular momentum between mag-
netic quasiparticles, as has been reported for magnon-magnon
scattering [17] or for magnon-skyrmion scattering [18,19]. A
mismatch between ferromagnetic resonance and field-driven
domain wall dynamics has been resolved by nonlocal damping
within the spin reservoir [20].

The above discussion provides examples of “magnetic
damping” attributed to spatial correlation among the magnetic
moments. This immediately raises the question of whether
temporal correlation could result in damping as well; if so,
such a mechanism should be called time-retarded damping. In
this paper, we point out this possibility.

Retardation effects have been investigated by Bose [21] for
mesoscopic magnetic systems. Taking into account retardation
effects in both time and space in the equation of motion led
to an increase of the effective Gilbert damping and of the
Larmor frequency. This has been attributed to a coupling
of the magnetic configuration at time t to that at t ′ < t and
to nonlocal dissipation. The latter effect has been confirmed
by experiments [22] and by theory [14,15]. Predictions of
magnetic configurations on the atomic level and, consequently,
a discussion of the role of intrinsic magnetic properties—
e.g., exchange or magnetocrystalline anisotropy—are hardly
possible in a mesoscopic model. This calls for a study of time
retardation on the atomic scale.

In this paper, we report on an investigation of the time-
retarded equation of motion on the atomic scale. The approach
is applied to a macrospin system as well as to the bulk
ferromagnets Fe and Co. By studying the parameter space of
the retardation kernels—both analytically and numerically—
we show that Gilbert-like damping is determined by the
effective magnetic field at time t ′, which obviously depends
on the exchange coupling and on the magnetocrystalline
anisotropy. We also find a sizable influence of the correlation
duration τs.

The paper is organized as follows. In Sec. II, we introduce
time retardation in the Landau-Lifshitz-Gilbert equation as
well as the retardation kernels. In addition, we provide details
of the numerical calculations. We proceed with applications to
a macrospin (Sec. III A) and to atomic systems (bulk Fe and
Co; Sec. III B). Conclusions are given in Sec. IV.
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FIG. 1. (Color online) Interplay between and within the electron,
the spin, and the phonon reservoir (schematic). The associated
relaxation times τ are indicated.

II. THEORETICAL ASPECTS

The time-retarded equation of motion for a mesoscopic
magnetic moment M at position r and at time t reads [23,24]

∂ M(r,t)
∂t

=
∫ t

0
dt ′

∫
d3r ′ �(r,t ; r ′,t ′)M(r ′,t ′)

×
[
−γ B(r ′,t ′) + α

Ms

∂ M(r ′,t ′)
∂t ′

]
, (1)

where Ms is the saturation magnetization, α is the damping
constant, and γ is the gyromagnetic ratio. In this equation,
magnetic “velocities” are integrated from the initial time t ′ = 0
to time t and over all positions r ′, weighted with the retardation
kernel �(r,t ; r ′,t ′). More precisely, the velocity ∂ M(r,t)/∂t of the
magnetic moment at r and t is determined by the torque of the
magnetic moment with respect to the effective field B(r ′,t ′)
and the dissipation field

Bdiss(r ′,t ′) ≡ α

Ms

∂ M(r ′,t ′)
∂t ′

. (2)

The retardation kernel �(r,t ; r ′,t ′) models the space-time
correlation between the magnetic moments. For example, in
Ref. [25], time retardation similar to Eq. (1) was used for
the dissipation field only to derive the magnetic inertia in
the equation of motion. In this paper, we address solely time
retardation; thus �(r,t ; r ′,t ′) is approximated by �(t,t ′). This
implies that the space retardation is completely given by the
effective field B(r,t ′).

To map the mesoscopic equation (1) onto the atomistic
level—in other words, replacing the continuous domain by
a discretized one—one has to be aware that there is no
one-to-one correspondence with the mesoscopic model, in
contrast to the conventional Landau-Lifshitz-Gilbert (LLG)
equation. By requiring normalized atomic magnetic moments
(|mi | = ms, where i is a site index), the condition mi(t) ×
mi(t ′) = 0 cannot be guaranteed by Eq. (1). This problem
is overcome by introducing a retardation field Bret in the
atomistic magnetization dynamics. The modified atomistic

LLG equation then reads

∂mi(t)

∂t
= mi(t)

×
∫ t

0
dt ′�i(t,t

′)
[
−γ Bi(t

′) + α

ms

∂mi(t ′)
∂t ′

]
, (3)

which fulfills the above normalization condition. Here, �i is
assumed local at site i. The retardation field is given by

Bret
i (t) =

∫ t

0
dt ′�i(t,t

′)
[

Bi(t
′) − α

γms

∂mi(t ′)
∂t ′

]
. (4)

In the following, the retardation kernel �(t,t ′) depends on
the duration t − t ′. Hence, the obtained equation of motion (3)
is of Cummins type [26]: mass and damping are due to the
convolution integral and are included in the operator1

�(t) ≈ − 1

π

∫ ∞

0
dωm(ω)

×
[
αret(ω)

ms
cos(ωt) + ιret(ω)

ms
sin(ωt)

]
. (5)

Here, m(ω), αret(ω), and ιret(ω) are the Fourier-transformed
magnetic moment, the retarded damping tensor, and the
retarded moment-of-inertia tensor, respectively. Note that αret

and ιret are defined differently than α in Ref. [7] and ι in
Refs. [27] and [28]. Equation (5) establishes a time dependence
of the damping and of the inertia; both are approximated by a
functional α = α[m] in Ref. [15].

Since the forms of both αret(ω) and ιret(ω) are unknown,
the retardation kernel �(t − t ′) has to be approximated. In this
paper, we focus on two kernels. The first kernel describes an
exponential decay in time,

�exp(t − t ′) ≡ [	0δ(t
′ − t) + 	1e

−(t−t ′ )/τs ]13×3. (6)

The correlation time τs defines—loosely speaking—the
“strength of memory.” The strength of the retardation is given
by 	0 and 	1. 	0 is fixed by 	0 = 1/δt, where δt is the step width
in the numerical integration. Equation (3) can be rewritten in
LLG form, but with the additional retardation field Bret,

∂mi

∂t
= mi ×

(
−γ Bi + α

ms

∂mi

∂t
− γ Bret

i

)
. (7)

	1 = 0 in Eq. (6) makes Eq. (7) equivalent with the conven-
tional LLG equation. To include higher exponential orders in
τs, we consider also a second kernel, a Gaussian with amplitude
	0,

�Gauss(t − t ′) = 	0√
2πτs

e−(t−t ′ )2/2τ2
s 13×3. (8)

In what follows, the retardation kernel is assumed to be site
independent and isotropic because we focus on collinear mag-
netic states. Furthermore, we explicitly neglect the Gilbert-
type dissipation in Eq. (3) by setting α ≡ 0, in order to explore
other mechanisms of damping.

1Equation (5) is obtained by Fourier transforming the Landau-
Lifshitz-Gilbert equation and comparing it with Eq. (14.20) of
Ref. [26].
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The effective field in Eq. (3) is given by Bi = −∂Ĥ/∂mi , in
which the magnetic Hamiltonian

Ĥ = −
∑
ij

Jij mi · mj +
∑

i

Ki(mi · e)2

−μB Bext ·
∑

i

mi (9)

consists of three terms. The first term is the Heisenberg
exchange that couples two atomic magnetic moments at sites
i and j by the strength Jij ; the second term is the uniaxial
magnetocrystalline anisotropy with the uniaxial direction e
and the anisotropy constant Ki . In this paper, the set of
{Jij } is calculated for bulk Fe and Co using the Lichtenstein
formula [29] within the framework of relativistic multiple-
scattering theory (Korringa-Kohn Rostoker method) [30,31].
The last term in Eq. (9) is a Zeeman term that couples the
magnetic moments to an homogeneous external magnetic field
Bext.

The semiclassical Landau-Lifshitz approach on the atom-
istic scale has been successfully applied in the last decade [32–
34] and was derived in Refs. [35] and [36] from quantum-
mechanical principles via the adiabatic approximation. In
the aforementioned papers, it was shown that the semiclas-
sical Landau-Lifshitz-Gilbert equation provides reasonably
accurate results even in the case of an atomistic model;
however, it goes without saying that for precise accounting
of magnetic phenomena on the atomic level, corresponding
quantum-mechanical calculations should be carried out. Note
that the adiabatic approach is reasonable since the time scales
in the atomistic model (cf. Fig. 1)—attoseconds for the
electron reservoir and picoseconds for the spin reservoir—
are still separable. However, Wieser et al. [37,38] point
out a discrepancy between the atomistic semiclassical and
the quantum-mechanical model if the magnetic Hamiltonian
contains terms that are quadratic in the magnetic moments
mi ; the latter is the case for a uniaxial magnetocrystalline
anisotropy.

The retarded LLG equation is solved for a set of magnetic
moments {mi} by an iterative partial-differential equation
solver which is based on the midpoint method [39]. The iter-
ation error is less than 1 × 10−9. The integration is performed
by the trapezoidal method, but cut at a time t ′ for which
the retardation kernel is smaller than 1 × 10−5 fs−1. For high
accuracy, time steps ranging from 1 × 10−5 up to 1 × 10−4 fs
are required. Our spin dynamics code2 has been run over at
least 5 × 107 time steps, allowing one to observe relaxations
within 1 ps. The cluster size is 5 × 5 × 5 times two atoms in the
unit cell (250 atoms), which turns out to be sufficiently large for
our purposes. Periodic boundary conditions [40] are applied
to evaluate properly bulk properties. The convergence of the
cluster size has been checked by simulations for larger clusters
[up to 10 × 10 × 10 (2000 atoms) for small τs], reproducing
the same results as for the smaller clusters in a collinear and

2Computer code CAHMD, classical atomistic Heisenberg mag-
netization dynamics. A computer program package for atomistic
magnetization dynamics simulations. (danny.thonig@physics.uu.se,
2013) (unpublished).

coherent state. Note that the minimal cluster size (250 atoms)
is dictated by the maximal interaction distance rmax (here,
convergence is examined up to rmax = 5 × a, where a is the
lattice constant) and is used to achieve larger values of τs.
The conditions of collinearity and coherence are valid since
T = 0 K in our model.

The Fourier space of a selected magnetic moment mi and,
consequently, its precession frequency ω as well as its nutation
frequency ωn are extracted from the trajectory {mi(t)} of
the moment at site i by using a fast Fourier transformation
based on the Danielson-Lanczos algorithm. Note that in the
collinear magnetic state (macrospin state), the precession
and nutation frequencies are not dependent on the site and,
consequently, could be obtained from the average magnetic
moment. Noncollinear magnetic states are mediated, e.g., by
lower coordination in the lattice and, consequently, anisotropic
effective Heisenberg exchange or by site-dependent magnetic
anisotropies, resulting in retardation frequencies and damping
parameters that depend on the atomic site i. This is valid for a
wide range of parameter sets {Jij } and {Ki}. A damping rate
R indicates how fast a magnetic moment relaxes towards the
external magnetic field which is along the z axis; it is defined
by the slope of the trajectory {mi,z(t)},

R = dmi,z(t)

dt
. (10)

Equation (7) does not contain a stochastic field (“thermal
noise”) which introduces a temperature dependence [35].
For the conventional LLG equation, this field is derived
from Markovian Langevin dynamics. For the retarded LLG
equation, this approach is not applicable since the stochastic
process would require solving a non-Markovian Langevin-like
equation [41]. Hence, the results presented in the following are
for zero temperature, albeit Eq. (3) can, in general, be solved
at finite temperatures.

III. DISCUSSION OF RESULTS

In what follows, the initial configuration of magnetic
moments is always collinear along the x axis. We apply a
homogeneous external magnetic field of 10 T in the z direction.
This setup is motivated by previous studies of higher-order
effects in magnetization dynamics [42]. As mentioned, the
Gilbert damping α in Eq. (3) is set to zero.

A. Macrospin

As a first example, we discuss the retardation for a
macrospin [43], which is introduced by the “exponential”
kernel in Eq. (6). For such an effective single-spin system,
there is no Heisenberg exchange; thus, the dynamics of the
macrospin is determined by the magnetocrystalline anisotropy,
the external magnetic field, and the relative orientation
between these two fields.

It is conceivable that the macrospin precesses around the
effective field B if both the external magnetic field and the easy
axis e (for K < 0) of the anisotropy field are parallel. More
precisely, the precession frequency ω (Larmor frequency) is
determined by the strengths of the external and the anisotropy
field. Since the convolution integral “sums up” fields from

104403-3
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time t ′ orientated in the z direction, the Larmor frequency
increases owing to time retardation. Hence, damping in this
highly symmetric field configuration shows up only if the
Gilbert damping α in Eq. (3) is nonzero.

Because the dissipation field in the LLG equation is
proportional to the nutation frequency ωn of the magnetic
moment, it is perpendicular to m. Thus, the retardation field
has to be perpendicular to m as well. This can be achieved by an
anisotropy field in the x direction, for which we fix K < 0 with
an easy axis along x. The dissipative retardation field then reads

Bret(t) = K

∫ t

�(t,t ′)[m(t ′) · e]dt ′e, (11)

with e = (1,0,0). Relaxation into the direction of the external
magnetic field occurs even if 	1 ≡ 0, since the in-plane
anisotropy field mediates a torque parallel to the external mag-
netic field. Consequently, if the anisotropy is larger than the ex-
ternal magnetic field, the precession in the yz plane dominates.

For an external field much larger than the anisotropy field,
the damping will be small. The dynamics is then dominated
by precession within the xy plane, expressed as

m = m

⎛
⎝cos(ωt)

sin(ωt)
0

⎞
⎠ (12)

(black lines in Fig. 2). Integration of Eq. (11) for small t gives

Bret(t) ≈ K	1τs

ω2τ 2
s + 1

(
m · e + τs

∂m
∂t

· e
)

e (13)

for the kernel �exp in Eq. (6). Comparison with the nonretarded
Landau-Lifshitz-Gilbert equation suggests to define a time-
retarded damping constant,

αret ≡ K	1τ
2
s

ω2τ 2
s + 1

. (14)

This result readily illustrates the proportionality of the retarded
anisotropy field and a Gilbert-like damping αret. Since the
damping is related to the projection onto the anisotropy axis,
stimulation (“negative” damping) can occur as well, which
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FIG. 2. (Color online) Trajectory (Mx,My,Mz) of a macrospin
under the influence of time retardation. The in-plane components
of the magnetic moment (Mx black line, My gray line) show
precession, whereas the out-of-plane component (red line) exhibits
dissipation and inertia. The retardation time and the retardation
amplitude are τs = 100 as and 	1 = 0.5 	0, respectively. ms = 1 μB

and K = −10 μeV.

0.0

0.5

1.0

1.5

R
(μ

B
/p

s)

0.0

0.5

1.0

1.5

2.0

ω
(f

s−
1
)

5 10 15 20 25

τs (as)

ωn

ω

R
(μ

B
/p

s)

ω
(f

s−
1
)

0.5 1.0 1.5 2.0 2.5

Γ1/Γ0

FIG. 3. (Color online) Damping rate R (black circles), preces-
sion frequency ω (red triangles), and nutation frequency ωn (red
squares) for a macrospin vs retardation time τs. Parameters as in Fig. 2.
Inset: The damping rate R (black circles), precession frequency ω (red
triangles), and nutation frequency ωn (red squares) of a macrospin vs
correlation strength 	1/	0. The retardation time τs equals 2 as. The
ordinate has the same scale as in the main figure. Lines are added to
guide the eye.

can be attributed to the inertia of the magnetic moment (cf. the
oscillation in the red line in Fig. 2).

Stimulation of the magnetic moment stems from precession
that is caused by the in-plane uniaxial anisotropy field and
superimposes with the precession around the external magnetic
field. It governs the oscillations of the magnetic-moment-
on-external-magnetic-field projection, where the oscillation
amplitude depends on the anisotropy parameter K (not shown
here); and thus, the superposition of both fields leading to a
larger nutation frequency ωn than the frequency ω coming
from the external magnetic field only (red lines in Fig. 3).
These oscillations “survive” for the time-retarded equation of
motion, but exist also in the LLG equation with very small
damping; the oscillations are suppressed by the dissipation
field in the LLG equation, whereas the dissipation field is
of the same origin as the effective field in the time-retarded
equation of motion (3).

At variance with the findings in Ref. [42], we find here that
the trajectory is a curtate cycloid; a prolate cycloid was not
observed for time retardation.

The approximate analytical result of Eq. (13) have been
further analyzed by numerical simulations which we report
on now. We address, in particular, the dependence of the
precession frequency ω, the nutation frequency ωn, and the
damping rate R on 	1 and on τs (shown in Fig. 3). Since the
value of the macrospin is only a linear scaling parameter, we
set ms = 1 μB.

Both the amplitude 	1 as well as the retardation time τs

determine the damping (black lines in Fig. 3). τs produces
an exponential slope corresponding to �R = 4.38, whereas
	1 leads to �R = 1.98. This suggests that τs dominates
the damping compared to 	1. In addition, the precession
frequency ω and the nutation frequency ωn depend linearly
on both parameters (red lines in Fig. 3), in agreement with
the analytical calculations (13), assuming ωτs = const. The
nutation amplitude, however, does not depend on 	1/	0; it
is of the order of 1.73 × 10−2 μB (the error of the nutation
amplitude at different times is in the range of 1 × 10−6 μB).
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FIG. 4. (Color online) Mapping of the retardation energy �s =
hτ−1

s and the Gilbert damping constant α for the “exponential”
retardation kernel (circles, 	1 = 0.5	0) and the Gaussian retardation
kernel (triangles, 	0 = 1 as). The data are fitted by a Lorentzian (red
line) for �exp and by 1/�s (blue line) for �Gauss. Inset: α vs relaxation
rate R (black circles) as well as α vs the characteristic precession
frequency ω (red triangles) for the conventional equation of motion.
Lines are a guide to the eye.

Since the correlation time τs dominates the damping, a
relation between τs and αret is desirable. To achieve such a
mapping (shown in Fig. 4), we solved the nonretarded equation
of motion for various Gilbert damping parameters; subse-
quently, the damping rates R obtained from both equations
are compared. The inset of Fig. 4 shows the increase of the
Gilbert damping α with damping rate R in the conventional
LLG equation. At high damping, the magnetic moment relaxes
within one precession cycle toward the direction of the external
field (Fig. 4 provides the characteristic frequencies with
respect to the damping calculated from the first two oscillation
maxima.).

The Gilbert-like damping constant αret introduced by time
retardation (Fig. 4) is inversely proportional to the squared
retardation energy �s = h/τs and can be fitted nicely by a
Lorentzian (red line in Fig. 4). This fit strongly supports
the relation between the Gilbert damping and the relaxation
time which is established by the Kamberský theory, as
discussed by Gilmore et al. [9]. Furthermore, the width of
the Lorentzian scales linearly with 	1/	0 and the magnetocrys-
talline anisotropy.

To conclude this section, we briefly address the Gaussian
retardation kernel of Eq. (8). The analytical solution for the
retarded field is expressed in terms of error functions (not
shown here). It turns out that this kernel significantly increases
the slope �R for τs. The mapping αret versus τs (triangles in
Fig. 4) illustrates that the retarded damping α as well as the
damping rate R scale linearly with τs for the chosen strength
of 	0 = 1 as. Unphysically large 	0 or anisotropies K produce
higher orders in τs, as will be discussed in Sec. III B.

For a macrospin, we conclude that sufficiently large
retardation times and correlation strengths cause Gilbert-like
damping and magnetic inertia. Both retardation kernels yield
the same trend: the stronger the retardation energy �s, the
lower the damping, which is similar to phonon-mediated
damping [10,11].

B. Exchange-coupled systems: Bulk Fe and Co

For exchange-coupled systems, the dynamics of the mag-
netic moments becomes more complex. In the following, we
address bulk bcc Fe and hcp Co with the aim to study the
damping caused by the Heisenberg exchange. Considering the
easy axis of the magnetocrystalline anisotropy to be oriented
along the +z direction for both bcc Fe and hcp Co [44], which
in our studies coincides with the direction of the external
magnetic field, one can say that magnetic anisotropy will
provide a contribution similar to that of the external field,
especially due to the fact that both quantities (anisotropy field
and external field) are of comparable magnitude. However,
as we are considering an atomistic approach with small
size of the modeled clusters, the fields associated with the
exchange coupling will strongly dominate both the magne-
tocrystalline anisotropy field and the applied field. Under these
circumstances, it is reasonable to neglect the anisotropy term,
which considerably simplifies the analytics by removing the
quantum-mechanical magnetic effects, according to results
published by Wieser et al.; see Refs. [37] and [38]. To
ease the analysis, we restrict ourselves to a collinear initial
configuration of magnetic moments, with the consequence that
the magnetic structure can be viewed as a macrospin at any
time t . We will show that correlation in time will generate
larger damping due to the Heisenberg exchange. This suggests
that even for a collinear configuration, the internal constituents
are important.

In a collinear magnetic state, the exchange field Bex(t)
at time t does not contribute to the evolution of the magnetic
moments [red arrow in Fig. 5(b)]. However, at time t ′, it causes,
due to the time retardation, a field not necessarily parallel
to the magnetic moments at time t [cf. the orange arrows
in Figs. 5(b) and 5(c)]. This field can be decomposed into
a moving tripod [Fig. 5(a)] which consists of a component
parallel to the effective field B at time t , a component parallel
to the dissipation field Bdiss ∝ ∂m/∂t at time t , and an inertialike
component Bin:

Bret = B + Bdiss + Bin

= (Bret · e)e + (Bret · ediss)ediss + Bin. (15)

Here, e and ediss are the directions of the effective and the
dissipation field at time t , respectively. This decomposition
is obtained analytically by integrating the Heisenberg ex-
change convolution field [first term in Eq. (9)], assuming
nearest-neighbor interactions J and a small retarded damping
α. Consequently, the Cartesian components of a magnetic
moment can be represented by sine and cosine functions, as in
Eq. (12) of Sec. III A.

For the retardation kernel in Eq. (6), the retardation field
reads

Bret(t) = 2NJ

∫ t

0
�exp(t − t ′) m(t ′)dt ′

= 2NJ	1τs

ω2τ 2
s + 1

(
m − τs

∂m
∂t

+ cin

)
(16)

(N coordination number). The functional form of Bret is
similar to that for a macrospin [Eq. (13)], however, without
projection to a specific direction. Thus, the retarded damping
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FIG. 5. (Color online) Evolution of a magnetic moment in an
exchange-coupled system under the influence of time retardation
(schematic). (a) Decomposition of the retardation field into a moving
tripod consisting of the effective field B at time t , the damping field
∂m/∂t, and the inertia field Bin. (b) Trajectory of the magnetic moment
based on the equation of motion with time retardation. The moment
precesses with the frequency ω, which is determined by the strength
of the external field Bext. The retarded damping is caused by the
fields B(t ′) at time t ′ (orange arrows), leading to the dissipation
field

∑
t ′ B⊥(t ′). (c) If the field is in the direction of Bext and the

precession frequency ω′ (ω′ > ω) increases due to the retardation, the
retarded damping and the retarded field Bret parallel to the magnetic
moment decrease, which destabilizes the dynamics of the magnetic
moment.

is always positive definite, which is corroborated by numerical
simulations.

It follows from Eq. (16) that the retarded damping as well
as the inertia are frequency dependent, in accordance with
the Cummins equation (5). This dependence is controlled by
the Heisenberg exchange and is illustrated as follows. The
exchange field at time t in the collinear state is parallel to the
average magnetic moment M = ∑

i mi at t ; more precisely,
in the nearest-neighbor model of Eq. (16), the exchange
field reads Bex = J M. This exchange field can always be
decomposed into a field parallel (B‖) and perpendicular (B⊥)
to the external magnetic field. B⊥ comprises the damping and
inertia fields of Eq. (15). Since the average magnetic moment
will equilibrate in the direction of the external magnetic field,
B‖ increases, whereas B⊥ decreases. We recall that the torque
m(t) × Bex(t) is zero in a coherent magnetic state.

With retardation, however, the torque m(t) × Bex(t ′) is
nonzero since, in nonequilibrium, magnetic moments at
different times point in different directions. Decomposing the
exchange field at t ′ reveals that B‖(t ′) contributes effectively to
the external field due to the retardation and, consequently, leads
to higher precession frequencies ω, in accordance with the
Larmor law [Fig. 5(c)]. Hence, the product ωτs—the number
of oscillations within the fixed time interval τs—increases.
In contrast, B⊥(t ′) and B⊥(t ′′) decrease in time and may
be aligned antiparallel to each other for sufficiently large ω

and fixed τs [orange arrows in Fig. 5(c)]. Since B⊥(t ′′) is
larger than B⊥(t ′) for t ′′ < t ′, the retarded damping—which
is proportional to B⊥—could be reduced or even vanish. In
contrast, a small ω always leads to an enhanced retarded

0.0
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FIG. 6. Retarded damping αret vs precession frequency ω of the
retardation field B‖ per atom for Fe (black triangles) and Co (gray
circles); 	1 = 0.05	0 and τs = 3 as. Lines are added to guide the eye.

damping. Consequently, the damping decreases or oscillates
with frequency (Fig. 6).

This decrease depends on both the Heisenberg exchange
parameter and the correlation time τs. For small τs (Fig. 6),
material-specific differences in the retarded damping are small
(cf. Fig. 8); thus, the tuning of αret with the frequency ω

is very similar in Fe and Co. We recall that ω is specified
by the exchange field and, therefore, cannot be probed by
ferromagnetic resonance measurements operating in the GHz
regime.

The inertia field Bin = 2NJ	1τs/(ω2τ 2
s +1) cin tilts the moment

out of the equilibrium direction, and the solution of the equa-
tion of motion becomes unstable. Thus, in what follows, cin has
to be neglected, in accordance with Ref. [45] which exemplifies
negligible inertia in bulk materials; nutation cycloids were
revealed at the edges of low-dimensional magnets, where less
coordination in the Heisenberg exchange could cause magnetic
inertia. Furthermore, Ref. [25] postulates important magnetic
inertia for narrow-band magnetic materials, such as strongly
correlated electron systems, and noncollinear magnetic states.
Both arguments do not apply for the collinear Stoner magnets
examined in this paper.

We now address the dependence of the damping rate R on
the nearest-neighbor exchange, the retardation strength 	1, as
well as the retardation time τs for hcp Co and bcc Fe (Fig. 7).
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FIG. 7. Damping rate R vs correlation time τs for bulk Fe
(triangles) and Co (circles); 	1 = 0.2	0. The top-left inset shows
R vs retardation strength 	1/	0 for τ = 5 as, whereas the bottom-right
inset depicts R vs the nearest-neighbor exchange J for a bcc structure.
Lines are added to guide the eye.
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FIG. 8. (Color online) Mapping of the retarded damping constant
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and Co (circles and red line); 	1 = 5 × 10−3	0. The data are fitted
by a Lorentzian. Inset: The Gilbert damping α vs damping rate R

obtained from the conventional LLG equation.

The linear proportionality of R with respect to the Heisenberg
exchange J is valid only for very small J (we recall that
the nearest-neighbor J for bulk Fe is 12.77 meV, as obtained
from electronic structure calculations [45,46]). For larger J ,
the damping increases dramatically and higher-order terms
have to be taken into account. By successively increasing the
Heisenberg interaction to higher neighbor shells (not shown
here), the damping rate can increase or decrease, which is
attributed to the sign of the J0j ’s that are associated with the
neighbor shells (j ) [45]. The damping rate of hcp Co is larger
than that of bcc Fe due to the stronger exchange (bulk Co:
J = 13.56 meV; second-nearest-neighbor J ’s are 11.31 meV
for Fe and 12.08 meV for Co, respectively [45]). This finding is
in accordance with the Kamberský model discussed in Refs. [9]
and [14].

Since the Heisenberg exchange is larger than the anisotropy,
a τs smaller than for a macrospin situation would yield the
same damping rate R. R increases exponentially with τs, but
saturates at τs > 12 as. This is explained by a damping faster
than one period of precession. For even higher τs, the rate
decreases, which is mediated by the aforementioned frequency
dependence of the damping. The position of the inflection
point shifts with the Heisenberg exchange and the correlation
strength; it scales quadratically with the latter.

As for the macrospin, we map the retarded damping αret

and τs (Fig. 8). We obtain a Lorentzian-like decrease of the
damping with the retardation energy �s = h/τs. The Heisenberg
exchange generates a higher damping for the same τs than for
the macrospin model; likewise, the damping for Co is larger
than for Fe. The damping rate R from the LLG equation,
however, for both ferromagnets is almost identical (inset in
Fig. 8) since the Heisenberg interactions do not contribute to
the torque.

Finally, we briefly address the Gaussian retardation kernel
(Fig. 8). The dependence of the damping rate R on the cor-
relation time τs differs from that obtained for the exponential
retardation kernel. Direct proportionality between R and τs

shows up for small values, whereas larger values yield a
maximum and subsequent decrease to exp(−τ 2

s ω2
/4). The slope

and the position of the maximum depend on the strength of
the magnetic exchange and the correlation: the larger J and
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FIG. 9. Damping rate R vs retardation time τs for bulk Fe
(triangles) and Co (circles) for the Gaussian retardation kernel with
	0 = 1 as−1. Inset: The mapping of the retarded damping constant
αret and the correlation time τs for 	0 = 1 fs−1. Lines are added to
guide the eye. Please note that the abscissa label of the inset is on top
of the figure.

	1/	0, the smaller the correlation τs. Assuming a linear relation
between R and τs, one finds a one-to-one correspondence of the
retarded dissipation and the correlation time (inset in Fig. 9).

In conclusion, we find that—although we consider a
collinear state of the atomic magnetic moments which can
be viewed as a macrospin—it is important to account for
the Heisenberg exchange within an assembly of magnetic
moments. The latter is responsible for a significant contribution
to the damping in Fe and Co, which is due to the retardation.

To check relaxations in a noncollinear case, we also applied
our model to 2 ML Co nanoislands on Cu(111) (not shown
here), with exchange parameters taken from Ref. [47]. An
atomic magnetic moment at the rim of an island has a smaller
coordination N [cf. Eq. (16)] compared to sites in the center.
Thus, the retardation field causes a retarded damping at the rim
which differs from that at an island’s center, as is expected for
low-dimensional systems within the Kamberský model [14].

IV. CONCLUDING REMARKS

In this paper, we present and discuss an ansatz for the
time-retarded equation of motion for atomistic magnetization
dynamics, with a focus on damping. For various examples,
a connection between the correlation time τs—that is, the
duration in which a magnetic moment “is aware of” its
history—and the Gilbert damping constant α. In particular,
we show that the mapping of both quantities depends on the
correlation strength, the chosen retardation kernel, and the
intrinsic magnetic parameters, such as Heisenberg exchange
and magnetocrystalline anisotropy. Thus, time retardation is
a damping mechanism in addition to well-established mecha-
nisms, e.g., damping mediated by electron-phonon coupling.
The results are consistent with the works of Kamberský [48]
and Bose et al. [24].

The relations deduced in the present work are applicable
also for low-dimensional magnetic systems. Due to reduced
coordination, for example at a surface, the effective exchange
and, therefore, the damping become site dependent. Numerical
simulations (not shown here) establish that the damping at
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a surface can be sufficiently large to maintain a collinear
magnetic configuration.

Considering future investigations, we would like to empha-
size that the retardation mechanism is not able to describe
damping in a thermal bath since the retarded field vanishes in
this case. This implies that the thermal energy cannot dissipate
to the same reservoir or—in the sense of time retardation—
from time t to t ′ (where t ′ < t). Thus, the coupling to
other reservoirs (Fig. 1) and other damping mechanisms are

essential. Another open question concerns the inertia field,
which in some cases destabilizes the system. Studies of these
phenomena are underway.
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[13] M. Fähnle and D. Steiauf, Phys. Rev. B 73, 184427 (2006).
[14] D. Thonig and J. Henk, New J. Phys. 16, 013032 (2014).
[15] A. Brataas, Y. Tserkovnyak, and G. E. W. Bauer, Phys. Rev. B

84, 054416 (2011).
[16] Y. Wang, W.-Q. Chen, and F.-C. Zhang, New J. Phys. 17, 053012

(2015).
[17] P. Pirro, T. Sebastian, T. Brächer, A. A. Serga, T. Kubota, H.
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