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Quenches and dynamical phase transitions in a nonintegrable quantum Ising model
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We study quenching dynamics of a one-dimensional transverse Ising chain with nearest neighbor antiferromag-
netic interactions in the presence of a longitudinal field which renders the model nonintegrable. The dynamics
of the spin chain is studied following a slow (characterized by a rate) or sudden quenches of the longitudinal
field. Analyzing the temporal evolution of the Loschmidt overlap, we find different possibilities of the presence
(or absence) of dynamical phase transitions (DPTs) manifested in the nonanalyticities of the rate function of
the return probability. Even though the model is nonintegrable, there are periodic occurrences of DPTs when
the system is slowly ramped across the quantum critical point (QCP) as opposed to the ferromagnetic version
of the model; this numerical finding is qualitatively explained by mapping the original model to an effective
integrable spin model which is appropriate for describing such slow quenches. Furthermore, concerning the
sudden quenches, our numerical results show that in some cases, DPTs can be present even when the spin chain
is quenched within the same phase or even to the QCP, while in some other situations they completely disappear
even after quenching across the QCP. These observations lead us to the conclusion that it is the change in the
nature of the ground state that determines the presence of DPTs following a sudden quench.
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Following the remarkable advancement of the experimental
studies of ultracold atoms trapped in optical lattices [1,2], there
is an upsurge in the studies of nonequilibrium dynamics of
closed quantum systems, in particular from the viewpoint of
quantum quenches across a quantum critical point (QCP) [3,4].
The relaxation time of the quantum system diverges at the
QCP resulting in a nonadiabatic dynamics and proliferation
of topological defects in the final state reached after the
quench. Particularly, the study of the dynamics of a quantum
system ramped slowly across its QCP(s) has gained importance
because of the possible universal Kibble-Zurek (KZ) scal-
ing [5,6] of the defect density and the residual energy measured
in the final state reached following the quench [7,8]; this
scenario has been extensively studied in recent years [9–14].
Similar scaling relations for the residual energy and the defect
density have also been derived using an adiabatic perturbation
theory for a sudden quench of small magnitude [15] (for a
review, see [16–18]). In this paper, we consider the real time
evolution of a nonintegrable system following a quench (both
slow as well as sudden) and probe the nonanalyticities, known
as a dynamical phase transition (DPT), occurring at different
instants of time. In particular, our emphasis is on the slow
quenching across the QCP which, to the best of our knowledge,
has not received much attention. Furthermore, we also present
some remarkable results in the context of sudden quenches.

It is well established that the phase transition in a ther-
modynamic system is marked by the nonanalyticities in the
free-energy density whose information can be obtained by
analyzing the zeros of the partition function in a complex
temperature plane as proposed by Fisher [19]. These zeros
of the partition function coalesce into a line (or area [20])
in complex temperature plane, crossing the real axis in the
thermodynamic limit; these crossings mark the nonanalytic-
ities in the free-energy density. A similar observation was
made earlier by Yang and Lee [21] for a complex magnetic
plane. In a similar spirit, a recent work by Heyl et al. [22]
introduced the notion of a DPT in connection to quantum

quenches probing the nonanalyticities in the dynamical free
energy in the complex time plane. The idea stems from the
similarity between the canonical partition function

Z(β) = Tre−βH , (1)

of an equilibrium system (where β is the inverse temperature)
and that of the overlap amplitude [the Loschmidt overlap (LO)]
defined at an instant of time t as

G(t) = 〈ψ0|e−iH t |ψ0〉, (2)

where, in the above equation, H is the final Hamiltonian of the
system reached through a sudden quenching of parameters,
while |ψ0〉 is the ground state of the initial Hamiltonian.
Generalizing to the complex time (z) plane, one can define
the dynamical free energy, f (z) = − ln G(z); one then looks
for the zeros of the G(z), known as Fisher zeros, and can claim
the occurrence of DPTs (at real times) when the lines of Fisher
zeros cross the imaginary axis. These DPTs are manifested
in sharp nonanalyticities in the rate function of the return
probability [I (t) = − ln |G(t)|2/N] at those instants of time.
This usually happens when the system is quenched across the
QCP [23]. The quantity |G(t)|2 can also be viewed as the work
(W ) distribution function Pt (W = 0) = |〈�0|e−iĤ t |�0〉|2; this
represents the probability of doing no work in a time t during
a double-quench process, in which the system is quenched to
the final Hamiltonian at t = 0 and quenched back to the initial
Hamiltonian at a time t [22].

The initial observation by Heyl et al. [22] for a transverse
Ising chain led to a series of works for both the integrable
and the nonintegrable models [24–28] where DPTs were
observed for sudden quenches across the QCP, although, a later
work [29] showed that DPTs can occur even when the system
is quenched within the same phase. These studies have also
been generalized to two dimensions [30,31] where topology
may play a nontrivial role [30]. Furthermore, a dynamical
topological order parameter that changes its discrete values at
a DPT has been introduced [32].
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A pertinent question at this point is, how does the DPT
depend on the integrability of the model under consideration
or the nature of driving (slow or sudden)? Is quenching across
a QCP essential to observe this? In this paper, we shall address
these issues in the context of a specific nonintegrable model.
We note in passing that the quantity |G(t)|2 denotes the
Loschmidt echo which has been studied in recent years in
the context of decoherence [33–41]. The LO is also connected
to the work statistics [42] and the entropy generation following
a quench [43].

The model we consider here is a one-dimensional Ising
model with a nearest neighbor antiferromagnetic (AFM)
interaction J (scaled to unity in the subsequent discussion)
subjected to a transverse field (�) as well as a longitudinal
field (h). It is described by the Hamiltonian [44]

H =
∑

i

σ z
i σ z

i+1 − �
∑

i

σ x
i − h

∑
i

σ z
i , (3)

where σi’s are Pauli matrices. For h = 0, the model is
integrable with QCPs at � = �c = ±1, while any nonzero
value of h renders the model nonintegrable. Furthermore, since
the AFM interaction and the field h compete with each other,
there is a quantum phase transition (QPT) from the AFM
ordered phase to the disordered phase at a particular value of
�c(h) for a given value of h. As a result, one finds a phase
diagram in the �-h plane (separating the ordered from the
disordered paramagnetic phase starting from the integrable
QCP (at �c = 1, h = 0) at one end and terminating at first
order transition points at � = 0, h = ±2 on the h axis. The
phase diagram of the model and the quenching path are shown
in Fig. 1.

h

( =0,h=2)

( =1,h=0)

FIG. 1. The schematic phase diagram of the model given in
Eq. (3); the solid line extending from (� = 0, h = 2) to (� =
0, h = −2) through (� = 1, h = 0) separates the antiferromagnetic
(AFM) phase from the paramagnetic (PM) phase. The points (� =
0, h = ±2) denote the first order transition while (� = 1, h = 0)
corresponds to the integrable quantum critical point. Throughout this
paper, � is set equal to 1 and h is quenched along the dashed line
shown with an arrow.

In this paper, we shall restrict our attention to the case when
� is fixed to �c = 1 so that the system is at the QCP when
h = 0 (see Fig. 1). Preparing the system in the ground state of
the initial Hamiltonian, the longitudinal field h is driven slowly
(i.e., defined by a rate τ−1) or suddenly in the vicinity of the
QCP. In the presence of a small h, a gap (�E) opens up in
the energy spectrum and a perturbation theoretic calculation,
valid for small h, yields [44] �E ∼ hνhz = h2, where νh is
the correlation length exponent associated with the relevant
perturbation h and z is the dynamical exponent associated
with the QCP at � = 1. Noting that z = 1, one concludes that
the exponent νh = 2. The expected scaling relations of the
residual energy for both slow and sudden quenches obtained
using exponents νh = 2 and z = 1 are indeed numerically
established as shown in Appendix A. We note that a similar
study was reported in Ref. [45] for a ferromagnetic (FM) Ising
chain in a skewed field (having both � and h); however, the
universal behavior associated with the FM case is different.

Our results establish that for a sudden quench starting
from the QCP as well as a slow quench up to the QCP,
numerically obtained residual energies per spin exhibit scaling
relations which perfectly match earlier predictions (see the
discussion in Appendix A). On the contrary, there is a series
of interesting and unexpected results concerning the scenario
of DPTs following these quenches. Even though the model
is nonintegrable, we find prominent existence of DPTs when
the longitudinal field is slowly ramped across the QCP. This
is remarkable, given the fact that in the FM case [45] sharp
nonanalyticities are present in I (t) in the integrable case for
h = 0 when � is ramped across the QCP; on the contrary, those
get smoothened out when the skewed field is quenched through
the QCP at � = 1 so that the system is always nonintegrable
except at the QCP. This apparently leads to a conclusion that
nonintegrability may wipe out DPTs. On the other hand, for
sudden quenches the DPTs are found to occur whenever there
is a difference in the nature of the ground states of the initial
and the final Hamiltonians irrespective of the fact whether the
system is quenched across a QCP or not.

Having summarized our main observations, we now probe
the scenario of possible DPTs by tracking the temporal evo-
lution with the time-independent final Hamiltonian Hf , of the
final wave function |ψf 〉 reached following a quench. Notably,
for a sudden quench |ψf 〉 is the ground state of the initial
Hamiltonian. The Loschmidt overlap at an instant t (where
the initial time t = 0 is set immediately after the quench-
ing is complete) is given by G(t) = 〈ψf | exp(−iHf t)|ψf 〉;
subsequently, one can define the rate function of the return
probability I (t) and investigate its temporal evolution to probe
the signature of possible DPTs [namely, the nonanalyticities
in I (t)]. Results obtained for the slow and sudden quenches of
the system described by Eq. (3) (of chain length N ) obtained
by using the time-dependent density matrix renormalization
group (t-DMRG) method [46] are presented in Figs. 2 and 3;
below we analyze the remarkable findings.

We first analyze the slow quenching of the model (3) with
h ∼ −t/τ , where h is varied from a large positive to a large
negative value to arrive at the final wave function |ψf 〉, and
then the overlap G(t) and the rate function I (t), as defined
above, are evaluated. Referring to Fig. 2, we find that I (t)
shows nonanalyticities which appear at regular (and periodic)
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FIG. 2. (Color online) Our numerical results show prominent
periodic occurrences of DPTs when the longitudinal field is slowly
ramped from a large positive value to a large negative value as
h ∼ −t/τ . This periodic pattern can be qualitatively explained
by studying I (t) of the equivalent integrable Hamiltonian (4) as
demonstrated in Appendix B.

intervals when τ � 1 in contrast to the FM case [45]. To
analyze this, we recall that for a sufficiently slow driving the
dynamics is always adiabatic except in the vicinity of the QCP
(h � 1) where the relaxation time diverges. Remarkably, the
nonintegrable Hamiltonian (3) can be mapped to an effective
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FIG. 3. (Color online) Numerically obtained I (t) showing the
absence and occurrence of the nonanalyticities (DPTs) in different
situations when h is suddenly quenched. (a) No DPTs are observed
for a sudden quench of small amplitude of h even if the system crosses
the QCP in the process; (b) DPTs occur when h is quenched within
the same phase; (c) DPTs also appear when h is quenched from a large
positive value to the QCP at h = 0; (d) a regular (but not periodic)
occurrence of DPTs is observed when h is suddenly quenched from a
large positive to a large negative value. The inset shows that the DPTs
are rounded off when the quench amplitude is even larger, leading to
Rabi osscillations.

integrable model for h � 1, described by the Hamiltonian

Heff = (1 − bh2)
∑

i

τ z
i τ z

i+1 −
∑

i

τ x
i , (4)

where τi’s are Pauli spin matrices and b is a constant which in
our case can be chosen to be of the order of unity; this mapping
to model (4) is shown to exactly describe the low-lying
excitations of Hamiltonian (3) in the thermodynamic limit [44].
Consequently, so far as the slow quenching is concerned,
when the dynamics is nonadiabatic only in the vicinity of
a QCP, one can work with the effective Hamiltonian (4) which
represents an AFM transverse Ising chain and is equivalent
to a FM transverse Ising chain by simple gauge and duality
transformations. Both the models are exactly solvable by
Jordan-Wigner transformation. Focusing only at the QCP at
h = 0 and considering a slow ramp of h from a large positive
value to a large negative value with the system initially in
its ground state, one can derive the final wave function by nu-
merically integrating the corresponding Schrödinger equation;
the rate function thus obtained indeed shows occurrences of
the DPTs thereby qualitatively explaining the phenomena we
observe here (see Appendix B for details).

Interestingly, the mapping to the effective Hamiltonian (4)
also enables us to explain the absence of DPTs following
a sudden quench of small amplitude across the QCP of the
original model as presented above in Fig. 3(a) because the
interaction term in the equivalent Hamiltonian (4) does not
change sign, which implies that this quenching does not take
the system across the QCP of Hamiltonian (4). This explains
the absence of DPT in this case though there is a crossing
of the QCP in the original model. Though the mapping to the
equivalent Hamiltonian is strictly valid for h � 1, in Fig. 3(a),
we show this argument can be extended to explain the absence
of DPTs when h is quenched from +0.7 to −0.7 crossing the
QCP at h = 0.

Analyzing the original Hamiltonian (3), we note that the
ground state is paramagnetic with all spins polarized in the
direction of h, when h � 1; on the contrary, it is a quantum
paramagnet with the majority of spins orienting in the direction
of � when h � 1. The change in the nature of the ground state
is reflected in DPT, irrespective of the fact whether the system
crosses the QCP in the process of quenching. In Fig. 3(b),
we find a prominent presence of DPTs when h is quenched
from 3 to 0.2; here, even though the quenching does not
take the original Hamiltonian across a QCP, the nature of
the ground state changes. Similar DPTs are observed when
quenched to the QCP also [Fig. 3(c)]. No such DPT is found
to occur when the nature of the ground state is the same
(e.g., when h is changed from 3 to 2). Finally, when h is
suddenly quenched from +3 to −3 across the QCP, one finds
a regular (but not periodic as shown in Fig. 2) occurrence of
DPTs [see Fig. 3(d)]. This is a generic feature of a sudden
quench across the QCP as also observed in the FM case [24]
(while the periodic pattern is only a characteristic of the
integrability of the underlying Hamiltonian). In this case, the
initial and final ground states are nearly fully polarized states
with their overlap being exponentially small with the system
size; this difference of the ground states results in observed
DPTs. When the quench amplitude is further increased [e.g.,
h = +5 to −5; see the inset of Fig. 3(d)], both the initial
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and final Hamiltonians essentially reduce to an assembly of
noninteracting spins; in such situations DPTs are rounded off
leading to Rabi oscillations between two fully polarized states.

Finally, we summarize the results: for the slow quenches,
model (3) provides a unique example where one can work
with an equivalent integrable model for τ � 1. This mapping
enables us to explain the KZ scaling and also a periodic
occurrence of DPTs for a slow quenching across the QCP.
This is remarkable in the sense that, to the best of our
knowledge, the presence of DPTs following a slow quench
of a nonintegrable model has not been reported earlier;
in the FM situation, these nonanalyticities get smoothened
out [45]. Concerning the sudden quench, we also present some
remarkable observations: in some cases, DPTs do not occur
even when the system is quenched across the QCP; but they
may appear when the system is quenched within the same
phase (even to the QCP). For very large amplitude quench of h

across h = 0, DPTs get rounded off. These observations lead
us to the conclusion that concerning the sudden quenches,
it is the change in the nature of the ground state that is
responsible for DPTs. In short, our results establish that for
slow quenches of a nonintegrable model across the QCP, DPTs
can indeed occur periodically, while for sudden quenches they
are not necessarily entangled with crossing the equilibrium
QCP. These observations have not been reported in earlier
studies specifically in the context of a nonintegrable model.

We would like to conclude with the note that the Hamil-
tonian (3) has been experimentally studied using Bose atoms
in an optical lattice [47], with � � h. The field � of the
equivalent spin chain is determined by the hopping amplitude
t of the Bose atoms and is given by 23/2t ; � is necessarily kept
small to stabilize the Mott state necessary for the realization
of a spin system. On the other hand, a quantum Monte Carlo
study [48] shows that in one dimension it should be possible to
achieve a field � ≈ 1. Therefore it should be possible to verify
some of the situations of the present study in experimental
systems. It is noteworthy that the Loschmidt echo has already
been studied close to the QCP of model (3) using NMR
simulators [49].
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APPENDIX A: THE KIBBLE-ZUREK SCALING

According to the KZ scaling relation [5,6], generalized to
quantum critical systems [7,8], when a d-dimensional quantum
system, initially prepared in its ground state, is driven across
an isolated QCP, by changing a parameter of the Hamiltonian
in a linear fashion as t/τ , the density of defect satisfies the KZ
scaling τ−dν/(zν+1); here, ν and z are the correlation-length
exponent and the dynamical exponent associated with the
QCP, respectively [9–11]. Subsequently several modifications
of the scaling have been proposed [12–14]. Similarly when the

N = 400
-4/3

h

N = 100
h2

FIG. 4. (Color online) Scaling of residual energy for slow and
sudden quenching by changing the longitudinal field h with the
transverse field � = �c = 1, as obtained from DMRG studies. When
h is changed linearly as −t/τ to the QCP (h = 0), εres ∼ τ−4/3 which
is in perfect agreement with the KZ scaling. In the inset, we verify
the scaling of εres ∼ h2 for a sudden quench starting from the QCP.

system is quenched to the gapless QCP, the residual energy (the
excess energy over the ground state of the final Hamiltonian)
scales as τ−(d+z)ν/(zν+1); on the contrary, when quenched to the
gapped phase, the residual energy follows a scaling relation
identical to that of the defect density. Similar scaling relations
for the residual energy and the defect density have also been
derived using an adiabatic perturbation theory for a sudden
quench of small magnitude [15] (see review articles [16–18]).

Let us first consider the situation when the field h is
ramped linearly to the QCP (h = 0) as h = −t/τ fixing
� = 1 in the Hamiltonian given by Eq. (3). Denoting the
final Hamiltonian Hf with ground state energy E0

f , and final
wave function of the system (of length N ) reached after the
quench as |ψf 〉, the residual energy per spin is defined by εres =
(〈ψf |Hf |ψf 〉 − E0

f )/N . Using the t-DMRG calculations with
an open boundary condition, we find εres ∼ τ−4/3 (see Fig. 4).
This is in perfect agreement with the KZ scaling prediction,
εres ∼ τ−ν(d+z)/(νz+1) with ν = νh = 2 and z = 1. We now turn
our attention to the sudden quench, in which the system is
initially at the QCP and suddenly a small longitudinal field
h is switched on; in this case, numerically we find εres ∼ h2

(inset, Fig. 4). According to the prediction of the adiabatic
perturbation theory [15], for such a sudden quench of small
magnitude starting from the QCP, εres should scale as hνh(d+z),
as long as the exponent does not exceed 2; this is indeed true
in the present case and as a result the exponent saturates to 2.

As emphasized in the main text, so far as the slow quenching
of the longitudinal field h is concerned (especially, for large
τ ), one can equivalently work with the effective integrable
Hamiltonian given by

Heff = (1 − bh2)
∑

i

τ z
i τ z

i+1 −
∑

i

τ x
i , (A1)

where b is a constant [44] which is inessential in the argument
below, and hence set equal to unity hereafter. Using a gauge
transformation (which flips the spins of alternate sites) and a
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duality transformation [50], the Hamiltonian in Eq. (A1) can
be mapped to an equivalent dual Hamiltonian with a nearest
neighbor FM interaction:

H̃eff = −
∑

i

τ̃ z
i τ̃ z

i+1 − (1 − h2)
∑

i

τ̃ x
i

= −
∑

i

τ̃ z
i τ̃ z

i+1 −
∑

i

τ̃ x
i + h2

∑
i

τ̃ x
i , (A2)

which is a FM transverse Ising Hamiltonian in an effective
transverse field �eff = 1 − h2. We note that H̃eff with h = 0
represents a critical Hamiltonian. Using the Jordan-Wigner
transformation followed by the Fourier transformation, the
model can be reduced to a two-level problem in the basis |0〉
(no fermion state) and |k, − k〉 (a state with a pair of fermions
with quasimomenta k and −k, respectively) [3,4]; the reduced
2 × 2 Hamiltonian is then given by

Hk(h) = 2

(
(1 − h2) − cos k −i sin k

i sin k −(1 − h2) + cos k

)
. (A3)

Analyzing the spectrum,

εk = 2
√

{(1 − h2) − cos k}2 + sin2 k,

it is straightforward to show that model (A2) has three QCPs;
the energy gap (2εk) vanishes at critical points at h = 0 and
h = ±√

2, with the corresponding critical wave vector (for
which the energy gap vanishes) kc = 0 and π , respectively.
We are, however, interested in the transition at h = 0, which
is the only relevant QCP to the context of the original
Hamiltonian (3). To focus on the critical point at h = 0, we
expand Hamiltonian (A3) in the vicinity of k = 0 to arrive at
Hamiltonian

Hk(h) = 2

(
−h2 + k2

2 −ik

ik h2 − k2

2

)
, (A4)

which shows only one quantum critical point at h =
0. Analyzing the simplified form of the spectrum εk =√

(h2 − k2/2)2 + k2, one immediately finds for h = 0, the gap
(�Ek = 2εk) ∼ k, yielding z = 1 and for k = 0, gap scales as
h2 yielding νz = 2, and hence ν = 2 (referred to as νh in the
main text).

Let us now point out that the quenching h = −t/τ , with t

going from −∞ to 0, in the original Hamiltonian is equivalent
to driving the reduced Hamiltonian (A4) from h → ∞ to the
QCP at h = 0 by a nonlinear protocol (t/τ )2; in both cases the
system is initially prepared in its ground state. Even though the
nonadiabatic transition probability for the mode k (pk) cannot
be calculated directly using the Landau-Zener formula for such
a nonlinear protocol, one can make appropriate rescaling in the
corresponding Schrödinger equations [18,51] to argue that it
would be a function of the dimensional combination of k2τ 4/3,
i.e., pk = F(k2τ 4/3) where F is an unknown scaling function.
Since the gapless QCP is characterized by gapless excitations
k, the scaling of the residual energy can be obtained as
εres ∼ ∫

dk kF(k2τ 4/3) ∼ τ−4/3; this matches perfectly with
the KZ prediction with d = z = 1 and ν = 2 and the numerical
result presented in Fig. 4. This establishes that the nonlinear
reverse quenching of Hamiltonian (A4) indeed leads to the

expected KZ scaling of the εres following a linear quench of
the longitudinal field of the original nonintegrable model (3).

APPENDIX B: SLOW QUENCHING AND
NONANALYTICITIES IN THE RATE FUNCTION

We shall now calculate the nature of the Fisher zeros of the
effective partition function [22] obtained from the LO when
the parameter h of the Hamiltonian (A2) is quenched from a
large positive to a large negative value following the protocol
h = −t/τ ; this is equivalent to the slow quenching of the
longitudinal field h in the original Hamiltonian (3). But there
is a subtle difference that needs to be emphasized: the field h

contributes a quadratic h2 term to the transverse field of the
equivalent model (A2), thus as h is linearly changed from a
large positive value to the negative value in model (3), the
parameter h2 changes from a positive initial value to zero (i.e.,
the QCP) and returns to the original initial value at the final
time; this in a sense is a reverse quenching of the transverse
field of Hamiltonian (A2) as studied in [52] in a nonlinear
fashion.

To calculate the Loschmidt overlap of a system of length
N defined by f (z) = − ln〈ψf | exp(−Hf z)|ψf 〉/N , where z

is the complex time, Hf is the final Hamiltonian, and |ψf 〉
the state reached following the quantum quench, we focus
on the reduced 2 × 2 Hamiltonian (A4). Summing over the
contributions from all the momenta modes, a few lines of
algebra leads us to the expression [53]

f (z) = −
∫ π

0

dk

2π
ln

[
(1 − pk) + pk exp

(−2ε
f

k z
)]

, (B1)

where pk is the nonadiabatic transition probability for mode
k. The zeros of the “effective” partition function [where f (z)
is nonanalytic] are given by

zn(k) = 1

2ε
f

k

[
ln

(
pk

1 − pk

)
+ iπ (2n + 1)

]
, (B2)

where n = 0, ± 1, ± 2, · · · . . . . For a nonlinear reverse
quenching protocol, the expression for pk cannot be exactly
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FIG. 5. (Color online) The rate function for quenching h = 3 to
h = −3 shows sharp nonanalyticities at periodic intervals in time
with system size N = 400 and several τ ’s.
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determined using the LZ formula (though an exact form can
be obtained for the linear case [52]). However, it can be
argued pk = G[(k − k0)2τ 4/3], where k0 is the wave vector
for which pk is maximum which shifts to k = 0 for large
τ and G is an unknown function. We find from Eq. (B2)
Fisher zeros cross the imaginary axis for a particular value
of k∗ for which pk∗ = 1/2 [45,53] and the rate function shows
sharp nonanalyticities at t∗n = π (n + 1

2 )/εf

k∗ . For the present
case, to calculate the Fisher zeros and especially the rate
functions I (t) we shall use the form of the Hamiltonian near
k = 0 given in Eq. (A4) (to avoid the influence of the QCP at

h = √
2), when h is quenched from +3 to −3. Numerically

integrating the Schrödinger equation describing the dynamics
of Hamiltonian (A4) with the initial condition that the system
is in the ground state of the initial Hamiltonian, we obtain the
value of pk which is then substituted in the expression of the
rate function:

I (t) = −
∫ π

0

dk

2π
log

[
1 + 4pk(pk − 1) sin2 ε

f

k t
]
. (B3)

As shown in Fig. 5, this qualitatively explains the periodic
occurrence of DPTs presented in Fig. 2 in the main text.
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