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Honeycomb phononic crystals with self-similar hierarchy
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We highlight the effect of structural hierarchy and deformation on band structure and wave-propagation
behavior of two-dimensional phononic crystals. Our results show that the topological hierarchical architecture
and instability-induced pattern transformations of the structure under compression can be effectively used to
tune the band gaps and directionality of phononic crystals. The work provides insights into the role of structural
organization and hierarchy in regulating the dynamic behavior of phononic crystals, and opportunities for

developing tunable phononic devices.
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Hierarchical organization is ubiquitous in biological sys-
tems, from the nanometer to the macroscopic length scales.
Examples include collagen [1], bone [2,3], tooth [2], tendon
[3], wood [3.4], nacre [5], gecko foot pads [6], Asteriscus
plant [7], Euplectella sponge [8], and water-repellent biolog-
ical systems [9]. The purely structural role of hierarchy in
boosting mechanical performance is now well known [10—-14].
In addition to hierarchy, periodic organizations aimed at
influencing the wave-propagation behavior, for instance in
structural colorations, can also be found in nature [15-17].
More interestingly, the reversible modulation of these so-called
photonic crystals through deformation provides an incredibly
rich optical behavior enhancing their survival [18,19].

Pursuing these synergetic motifs for materials development
[20-23], we investigate a different class of hierarchical
organization based on two-dimensional (2D) honeycomblike
structures primarily geared towards phononic applications
(i.e., phononic crystals) and the effect of deformation on
controlling their band gaps (defined as frequency ranges of
strong wave attenuation). To this end, 2D lattices with different
nonhierarchical topologies have been well investigated (no
deformation included) [24-26]. However, recently, Xu et al.
[27] investigated wave propagation in 2D hexagonal lattice
structures with sandwich plate cell walls possessing only first-
order non-self-similar hierarchy. This early study, although
lacking a systematic analysis of the role of hierarchy in
fostering phononic properties, provided an early evidence of
expansion of band gaps with hierarchy.

In this paper, we study the effect of structural hierarchy on
the band structure and directionality of these crystals, as well
as investigate the additional effect of compressive loads on
the tunability of band gaps of first-order hierarchical phononic
crystals. Interestingly, our results reveal that hierarchy and
pattern transformations through compression can significantly
affect the dynamic response, and they can be effectively used
to tune the propagation of elastic waves in phononic crystals.

The evolution of a regular honeycomb into the fractal-like
hierarchical phononic crystal studied in this paper is illustrated
schematically in Fig. 1. The structural organization of the
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PACS number(s): 63.20.D—, 43.35.+d, 62.30.+d

honeycomb at each order of hierarchy (y;) is defined by the
ratio of the newly introduced hexagonal edge length (/;) to the
previous hexagon’s edge length (/;_;), i.e., y; =;/l;—,. For
convenience, y; is defined as y; = 21, /I, [see Fig. 1(b)] [10].
The following geometrical constraints must be imposed on the
structure to avoid overlapping edges:

0<y <1

Y Ilv <1,

i=1j=1

ey

where n is the order of hierarchy (n > 1). The dimensionless
relative density (equal to area fraction) of the structure
[compared to the material density (py)], i.e., p. = p/ps, is
given as the following:

2 T t
pe="x 1+§3 gy] X )
where 1, is the wall thickness, which for simplicity is assumed
to be uniform throughout the structure. Thus, thickness ()
must decrease to maintain a fixed relative density (po.) as the
order of hierarchy (n) and the values of y; are increased.

We consider the structure to be infinitely extended in 2D
space and the advancing wave front to induce no finite strains
to model waves of low intensity with wavelengths of the
order of lattice characteristic size. Numerical simulations of
the propagation of these small-amplitude elastic waves in
the crystal (in undeformed configuration) were performed
using the finite-element (FE) method and Bloch wave analysis
[28,29]. In the FE models, honeycomb walls were modeled
as Timoshenko beams [30] with a rectangular cross section
of unit length normal to the plane of wave motion, and
the material was assumed to be aluminum with Young’s
modulus E; = 71 GPa, Poisson’s ratio vy, = 0.33, and density
ps = 2700kg/m>. The relative density of the structure was
kept constant at 8%. The frequency of the propagating wave
(w) was normalized with respect to the first flexural frequency
of a simply supported beam with length [y and thickness #,
that is, Q = w/w,, where wy = w2y E;102/(12p510*) [25].

We compare, in Fig. 2, the band structures and directionality
diagrams of a regular honeycomb (left column) and a first-
order hierarchical structure with y; = 0.5 (right column). In
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FIG. 1. (Color online) Hierarchical honeycombs. (a) The evolu-
tion of a regular hexagonal honeycomb (left) to first-order (middle)
and second-order (right) hierarchical honeycombs. (b) Corresponding
primitive unit cells of the structures.

Fig. 2(a), we report the normalized frequency as a function of
the reduced wave vector [29]. For the considered frequency
range, the regular structure features a band gap at Q =
4.56-5.46. On introducing hierarchy, the lowest frequency
band gap is now much lower (2 = 2.01-2.85) and several
other new band gaps appear in the considered frequency
range (2 =5.77-10.22,11.67-12.38). Another preexisting
band gap is also shifted to the lower frequency at Q2 =
13.16-13.55. This considerable change in the band structure is
due to the added hexagons (brought about by hierarchy), which
also reduce the cell wall thickness to conserve mass. This
geometrical change results in an increase in multiple scattering
of the propagating waves at the cell walls and consequently
opening up the Bragg-type band gaps [31]. The alterations of
the band structure indicate a hierarchy-dependent transition,
which parallels the effect of hierarchy on mechanical behavior
in other contexts [10-14].

Since band diagrams such as Fig. 2(a) cannot always
fully provide the directional behavior of a lattice structure,
they are often investigated using dispersion surfaces (in
compact form: phase and group velocities) [32]. In rapidly
expanding broadband applications, it is crucial to focus on the
low-frequency regime in addition to more well-investigated
high-frequency behavior [24,33,34]. Figures 2(b) and 2(c),
respectively, present the phase and group velocity profiles for
the lowest two modes of propagating waves at relatively low
frequency of 2 = 0.1. Each velocity profile is normalized with
respect to the maximum velocity of the profile (Vi) [see
Fig. 2(b)]. For the regular structure (left column), the phase
velocity profile exhibits a slight preference in the direction of
propagation at & = 0°, § = 60°, and due to symmetry, at 6 =
120° for mode 1 (shear or S mode), whereas it does not show
any preferential direction for mode 2 (longitudinal or L mode).
Hierarchy seems to have no effect on the relative isotropy of
mode 2. However, anisotropy of mode 1 is further accentuated
due to hierarchy. The origin of this effect can be traced to
decreased thickness of the original cell walls due to additional
hexagons resulting in an increase in the relative anisotropy
ratio Vinax/Vmin- Group velocity, which typically indicates
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FIG. 2. (Color online) Regular hexagonal honeycomb vs a first-
order hierarchical honeycomb with y; = 0.5. (a) Effect of hierarchy
on band gaps. (b), (c) Effects of hierarchy on the directionality of
phase and group velocities.

the velocity at which energy is transported along the wave
vector, also reflects this anisotropy concentration of mode 1 in
Fig. 2(c) for both the regular and hierarchical structures.
Next, we investigate the effects of the hierarchical order
(n) and geometrical ratios (y;’s) on band gaps and wave
directionality. For convenience, we limited the analysis to self-
similar hierarchical honeycombs up to third order of hierarchy
with self-similarity ratio, n, definedasn = y,, = Y1 = -+ =
y) for nth order of hierarchy with n = 1,2, and 3, respectively,
for first, second, and third orders of hierarchy. The geometrical
constraints given in Eq. (1) limit the maximum value of
n at each order of hierarchy to nm,x = 1,0.62, and 0.54,
respectively for first, second, and third orders of hierarchy.
Figures 3(a)-3(c) show the evolution of band gaps as the
value of 7 increases, respectively, for first, second, and third
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FIG. 3. (Color online) (a)—(c) The evolution of band gaps as a function of self-similarity ratio (1) for hierarchical honeycombs with first,
second, and third orders of hierarchy. (d) The evolution of anisotropy ratio (1) as a function of self-similarity ratio (n) for phase, and group

velocity profiles for mode 1 of propagating waves.

orders of hierarchy for the range of frequencies 0 < € < 10.
Note that the upper bound of the horizontal axis is limited to
Nmax- Forn = 1 [Fig. 3(a)], introducing hierarchy is found to, at
first, lower the midgap position of the original nonhierarchical
band gap, although the width of the band gap remains fairly
the same. Thereafter, a slender band gap appears on either
side of this central band gap. Increasing n opens up another
band gap at higher frequencies, which continues to expand
as the original dominant band narrows. After n &~ 0.35, this
original band gap disappears, giving way to two separate
band-gap flanges which first expand and then disappear, giving
further band-gap flanges. This waxing and waning pattern
of band gaps continues as newer band gaps emerge and
disappear. Similar phenomena are observed for higher orders
of hierarchy [see Figs. 3(b) and 3(c)]. The results presented
in Figs. 3(a)-3(c) confirm that the order of hierarchy and
self-similarity ratio are two important geometric parameters
affecting the band structure. This has important implications
on the critical gap/midgap ratio for phononic applications
[35].

To study the directionality of propagating waves at low fre-
quency of Q2 = 0.1, we define the following scalar anisotropy

ratio [31]:

A= Vmax/Vmina (3)

where Vyax and Vi, are the maximum and minimum wave
velocities, respectively [Fig. 2(b)]. Note that A > 1, withA = 1
showing an isotropic media where elastic waves propagate
with the same speed in every spatial direction with no prefer-
ence (i.e., the polar plot of wave velocity is circular). We report
in Fig. 3(d) the evolution of anisotropy ratio as n increases for
phase and group velocity profiles for mode 1 of propagating
waves. Note that the phase and group velocity profiles of the
structures for mode 2 do not show any preferential direction
of propagation indicating isotropic response (i.e., A = 1).
Figure 3(d) shows that for mode 1, A of both the phase and
group velocity profiles rise from the initial values (n = 0, regu-
lar structure) up to a turning point (critical point), then decrease
as a function of 7, restoring isotropy. This behavior is entirely
due to the redistribution of matter within the crystal resulting
in an initial increase of scattering in the smaller hexagons,
whose expanding size eventually restores crystal symmetry.
The figures also reveal that the higher order of hierarchy
accentuates the rate of anisotropy ratio. This is due to higher
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FIG. 4. (Color online) The evolution of band gaps as a function of the applied engineering strain for the first-order hierarchical honeycomb
with y; = 0.5 subjected to (a) uniaxial compression in the y direction, (b) uniaxial compression in the x direction, and (c) equibiaxial
compression. The dashed vertical lines represent the strain such that buckling occurs. The undeformed and deformed configurations of the

RVE:s at different levels of applied strains are shown at the bottom.

number of smaller hexagons in the structure, which introduces
greater incremental anisotropy in the crystal structure.

Next, we investigate the propagation of small-amplitude
elastic waves in a first-order hierarchical honeycomb with y; =
0.5 under different levels of applied compressive loads using
FE simulations. The numerical analyses include (i) the stability
analysis of the structure [36], (ii) the nonlinear postbuckling
analysis of the system [36], and (iii) the propagation of
small-amplitude elastic waves at a given deformation [22,37].
The 2D FE models were constructed using beam elements
(hybrid element type B22H in ABAQUS). We assumed that
the 2D phononic crystal is made of a silicon-based rubber (Elite
Double 32:Zhermack) represented by an incompressible Neo-
Hookean model [38], with G; = 0.27 MPa,K; = 13.4 MPa,
and p; = 965kg/ m?> [39]. We chose this material to guarantee
reversibility under large deformations.

Using this model, we calculate the dispersion relations for
both undeformed and deformed configurations [24,29,37,40].
We report the normalized frequency (£2) as a function of
applied engineering strain (¢) in Fig. 4(a) for uniaxial com-
pression in the y direction, Fig. 4(b) for uniaxial compression
in the x direction, and Fig. 4(c) for equibiaxial compression.
Note that the structure was compressed in all of the directions
up to the limit where the beams begin to contact one another.
The dynamic response of the structure is characterized with
four band gaps at the undeformed configuration in the given
range of frequency (0 < 2 < 15). While the widest band
gap at Q2 = 5.77-10.22 remains almost unchanged during the
entire range of applied strain, the other three band gaps are
significantly altered upon compression in all of the directions.
The lowest frequency band gap narrows and shifts to higher
frequencies, whereas the other two high-frequency band gaps
completely close around the buckling point and ate = —0.125,

respectively, for uniaxial and equibiaxial compressive loads.
Furthermore, once buckling occurs (highlighted with dashed
vertical lines), by increasing the level of deformation, several
new band gaps open up at different levels of compression
and most of them remain open, up to the highest level of
applied deformation. The results reported in Fig. 4(c) clearly
indicate that equibiaxial compression opens more band gaps,
a signature of higher band-gap tunability (compared to other
loading directions).

Moreover, the corresponding deformation mode shapes
of the representative volume element (RVE) at different
levels of applied strains were shown in Fig. 4. The results
clearly show the emergence of distinct pattern transformations
upon loading in different directions, induced by buckling
of the individual beams. Since the pattern transformation
is reversible, repeatable, and scale independent, our results
provide insights into designing tunable materials and devices
over a wide range of length scales.

In summary, our computational study, which investigates
the influence of structural hierarchy and imposed deformations
on band structure of self-similar hierarchical honeycombs, pro-
vides insights on the critical role of hierarchy on the dynamic
response of phononic crystals. We found that hierarchy tends to
shift the existing band gaps to lower frequencies while opening
up new band gaps. Deformation was also demonstrated as
another mechanism for opening more band gaps in hierarchical
structures. This study, therefore, provides useful guidelines
for the design of phononic devices with tunable properties
[41-43].

This report was made possible by a NPRP award (NPRP
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