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E. Guarini,1 M. Neumann,2 U. Bafile,3 M. Celli,3 D. Colognesi,3 E. Farhi,4 and Y. Calzavara4
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Accurate knowledge of the single-molecule (self-) translational dynamics of liquid para-H2 is an essential
requirement for the calculation of the neutron scattering properties of this important quantum liquid. We show
that, by using centroid molecular dynamics (CMD) quantum simulations of the velocity autocorrelation function,
calculations of the total neutron cross section (TCS) remarkably agree with experimental data at the thermal and
epithermal incident neutron energies where para-H2 dynamics is actually dominated by the self-contributions.
This result shows that a proper account of the quantum nature of the fluid, as provided by CMD, is a necessary
and very effective condition to obtain the correct absolute-scale cross section values without the need of
introducing any empirically adjusted quantity. At subthermal incident energies, appropriate modeling of the
para-H2 intermolecular (distinct) dynamics also becomes crucial, but quantum simulations are not yet able to
cope with it. Existing simple models which account for the distinct part provide an appropriate correction of
self-only calculations and bring the computed results in reasonable accord with TCS experimental data available
until very recently. However, if just published cross section measurements in the cold range are considered, the
agreement turns out to be by far superior and very satisfactory. The possible origin of slight residual differences
will be commented on and suggests further computational and experimental efforts. Nonetheless, the ability
to reproduce the total cross section in the wide range between 1 and 900 meV represents an encouraging and
important validation step of the CMD method and of the present simple algorithm.
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I. INTRODUCTION

Hydrogen isotopes H2 and D2 in their liquid states have
always attracted much interest for their importance as fun-
damental and simple molecular systems. The “hydrogens”
display a quantum behavior still challenging theoretical and
simulation-based descriptions of their translational dynamics,
as far as both single-molecule and collective properties are
concerned. The study of these liquids is, therefore, evidently
important per se; nevertheless, its relevance is even further
enhanced by two facts. One is the direct access to their
microscopic dynamics enabled by important and widespread
spectroscopic techniques. Neutron scattering, in particular, is
by far the most important means for studying the hydrogens
and hydrogen-containing materials, and it is well known that
the study of the cross section for scattering of neutrons
from a sample of liquid hydrogen has been, by itself, a
long-standing theme in the physics of quantum fluids (see,
e.g., [1], and references therein). The second fact is that liquid
hydrogens are among the most used cryogenic fluids and, in
the specific application to neutron techniques, are the most
important low-temperature neutron moderators used to realize
cold neutron sources.

In this field of application, an improved description of
the neutron double differential cross section (DDCS) and
total cross section (TCS) of liquid H2 and D2, and of other
moderating materials, has become an indispensable require-
ment for appropriate development and upgrade of neutron
facilities. For instance, it has been recently shown [2] that
calculations of the safety rod insertion impact on the criticality
of water-moderated reactors provide much better results

if based on new accurate (experimental and/or simulated)
DDCS determinations, rather than on existing cross section
libraries and scattering kernels employed in the available
nuclear data processing codes treating water and other neutron
moderators [3–5]. Similarly, the capability of predicting, with
a high reliability, the dynamic response to neutrons of the
hydrogen liquids is of crucial importance for the design of
advanced and high brilliance cold neutron sources, as those
aimed to exploit directional moderator geometries [6,7].

Direct experimental investigations of the scattering law of
these systems are of course necessary to validate any model
calculation, but obviously cannot cope with the present need to
know the DDCS in a large number of conditions of exchanged
wave vector Q and energy E for any relevant incident energy
E0. Therefore the development of computable accurate models
for the DDCS is a major objective in this field of research and
application, especially if focused on methods aimed to obtain
direct agreement with experimental data without forcing it
through the introduction of variable parameters in the DDCS
algorithm or ad hoc values for some physical quantities.
Unfortunately, available data, appropriately normalized to
an absolute scale, mainly refer to integrated quantities like
the TCS measurements of Refs. [8–10], while past DDCS
determinations for hydrogen and deuterium are often given in
arbitrary units (see, e.g., [11–13]) and exclude the possibility
of a “complete” (i.e., both in shape and absolute-scale intensity
of the spectra) comparison between data and calculations.

The construction of appropriate models is, however, made
rather complex by the quantum nature of the hydrogen liquids,
which is highlighted by the relatively large values of the
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de Broglie thermal wavelength � = h/
√

2πMkBT , where
M is the molecular mass, T is the temperature, and kB

and h are the Boltzmann and Planck constants, respectively.
Indeed the low mass and low temperature of these liquids
makes � comparable with the molecular dimensions, so that
distinguishability of the particles is retained (and use of
quantum statistics is unnecessary) but delocalization effects
show up in the scattering properties, as evidenced even for the
heavier deuterium molecule (see, e.g., [14]).

Therefore classical analytical or simulation methods are
not appropriate to predict the center-of-mass (c.m.) single-
molecule (self) and total (self plus distinct) dynamic structure
factors of liquid H2 and D2. It is important to stress that
the hydrogens are “quantum” liquids in the above special
meaning, which is weaker than that of the He case, but is
anyway more profound than that brought about by the non-
commutative properties of position and momentum operators,
leading to detailed balance spectral asymmetry and nonzero
first frequency moment even in a noninteracting monatomic
system. Furthermore, quantization of the internal degrees of
freedom (e.g., rotations and vibrations) of molecular fluids is
once again something else, which has to be duly considered
also for “classical” liquids such as water or methane, and not
only in the case of the hydrogens.

Much work was devoted in past years to the implementation
of scattering kernels for the hydrogen liquids [3,15–18] with
different methods used to effectively evaluate both the self-
and distinct c.m. contributions to the DDCS. However, the
above mentioned quantum effects were mostly neglected,
or accounted for only approximately, or finally included in
an effective way by adjustments to pioneering experimental
data [11–13,19,20].

In order to investigate their role in the neutron response of
these liquids, we focus here on the most significant case of
H2 at liquid temperatures (i.e., para-H2), which combines a
stronger quantum behavior with a full predominance (in most
kinematic conditions) of the self-component, the latter being
quite reliably accessed by quantum simulation methods (see
Sec. III) and sensitively probed by neutrons in a unique way.

II. THE DDCS OF H2

By assuming free rotations and neglecting rotation-
vibration coupling, the nuclear neutron scattering by a
homonuclear diatomic molecule can be schematically de-
scribed by

d2σ

d�dE
=

√
E1

E0
Sn(Q,E)

with [1]

Sn(Q,E) = u(Q)Sc.m.,dist(Q,E)

+
∑

J0J1v1

FJ0J1v1 (Q)Sc.m.,self
(
Q,E − EJ0J1 − E0v1

)
,

(1)

where u(Q) is a Q-dependent function containing only the
coherent cross sections of the nuclei in the molecule, and
the function F takes different expressions according to the

nuclear spin statistics and the ortho-para concentration, and
contains both the coherent and incoherent nuclear cross
sections (see [1]). In Eq. (1) Sc.m.,dist(Q,E) and Sc.m.,self (Q,E)
denote the distinct (j �= j ′) and self- (j = j ′) components of
the total dynamic structure factor per molecule Sc.m.(Q,E):

Sc.m.(Q,E)

= 1

2π�

∫ +∞

−∞
dt exp

(
−i

E

�
t

)

×
〈

1

N

N∑
j,j ′=1

exp[−iQ · Rj (0)] exp[iQ · Rj ′ (t)]

〉
, (2)

where N is the number of molecules and Rj and Rj ′ denote
the c.m. position operators of the j th and j ′th molecule at time
0 and t , respectively.

The second term of Eq. (1) represents the single-molecule
dynamics Sc.m.,self (Q,E) convoluted with the line structure
of the internal molecular motions, and results in a sum of
spectral lines centered at the energies of rotational (J0 → J1)
and vibrational (v0 → v1) transitions, where the subscripts 0
and 1 are used to label initial and final state, respectively. The
ground vibrational state (v0 = 0) is assumed here as the only
one significantly populated in hydrogen at liquid temperatures.

As anticipated, the last term in Eq. (1) is particularly
important in the case of liquid H2 due to the huge incoherent-
to-coherent cross section ratio of the hydrogen nucleus. More-
over, in the case of para-H2 the combination of initial-state
probabilities and spin correlations makes the DDCS spectra
dominated, in most kinematic conditions, by the intense
rotational line with J0 = 0 and J1 = 1, at ∼14.7 meV [21].
Consequently, a good modeling of Sc.m.,self (Q,E) alone is
generally sufficient to account for the scattering of thermal
and hot neutrons from this liquid. In this respect, the results on
liquid para-H2 provide a fundamental test of the general quality
of possible representations for the single-molecule dynamics.

The simplest algorithms for the evaluation of the single-
molecule part of the DDCS [3,5,16,17,22,23] originate from
direct or empirically modified use of, basically, two possible
analytical models for Sc.m.,self (Q,E): either the ideal gas (IG)
law (see, e.g., [1]), giving rise to the well-known Young and
Koppel model [24] for the self-DDCS; or the Egelstaff and
Schofield (ES) model [25], modified to comply with detailed-
balance asymmetry [26], and with the first frequency moment
sum rule that ensures translational spectra with a (nonzero) first
moment equal to the recoil energy Er = �

2Q2/2M . By con-
trast, in Ref. [15] use is made of a semiempirical determination
of the spectrum of the c.m. velocity autocorrelation function
(VACF) of a hydrogen molecule, which, in the Gaussian
approximation (GA) [27,28], is related to the intermediate
scattering function Fc.m.,self (Q,t) and, through a time Fourier
transform, to Sc.m.,self (Q,E). However, in Ref. [15] the GA was
not applied in the rigorous quantum-mechanical form given,
for example, in Ref. [28] and summarized in the next section.

Although different from each other, all the above ap-
proaches suffer anyway from the limitation of neglecting or
approximating the quantum behavior of the liquid, in the sense
we specified previously. Moreover, none of them provides
direct agreement with experiment unless by modifying some
property entering the model (like, e.g., in the ES model,
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the mass of the molecule or the self-diffusion coefficient)
or by resorting to adjustable parameters in the spectrum of
the VACF, as in the case of Ref. [15]. In some cases, TCS
measurements have been fairly reproduced by considering
the effect of intermolecular vibrations on the VACF spectrum
and by hypothesizing the presence of huge molecular clusters
diffusing in liquid hydrogen, leading to a ∼35–40 times
augmented molecular mass [16,17,19,29] to be used in the
diffusive part (ES) of the single-molecule dynamics. However,
such a high mass value, usually explained in terms of
translational hindering and cluster formation, is not easily
justified, and might reveal instead some inadequacy of the
ES line shape.

These observations induced us to explore whether model
parametrization and fit-based adjustments to experimental data
could be fully avoided by means of a quantum determina-
tion of Sc.m.,self (Q,E), obtained through molecular dynamics
simulations. In doing so, the only assumption concerns the
choice of the intermolecular interaction potential to be adopted
in the simulation procedure. Evident advantages of such a
parameter-free method are (i) a straightforward adaptation to
different thermodynamic and kinematic conditions; (ii) the
possibility to avoid introducing not well-justified hypotheses
and to use the true H2 molecular properties; and (iii) good
control of the physical consistency of the used line shape for
Sc.m.,self (Q,E) and, in particular, of its compliance with the
basic sum rules for a quantum fluid [30], which (see Sec. III) is
instead violated, at the level of the second frequency moment,
by the IG and ES line shapes. The next section illustrates
the method and the successful achievement of the above
expectations both for the spectral properties of Sc.m.,self (Q,E)
and for the neutron TCS results at thermal and epithermal
neutron energies.

III. QUANTUM SIMULATION-BASED SELF-DYNAMICS

The rationale behind the attempt here described is given by
the recent validation of quantum centroid molecular dynamics
(CMD) as an effective method to simulate the VACF of
hydrogen and the detailed probing of the degree of accuracy
(and range of applicability) of the Gaussian approximation in
predicting the measured line shape of liquid para-H2 [31].
Indeed, a non-Gaussian behavior was observed in an in-
termediate Q range, confirming and extending the results
previously obtained by means of ring polymer molecular
dynamics (RPMD) [32]. However, the differences between
neutron data and calculations, combining CMD simulations
of the VACF with the GA (denoted in the following as
CMD+GA), are small enough to suggest that they may be
irrelevant for cross-section calculation purposes, especially at
the level of doubly integrated quantities like the TCS.

Our implementation of the centroid molecular dynamics
method, which was applied to a system of N = 256 parti-
cles interacting via the Silvera-Goldman potential [33], has
already been described in Ref. [31]. Briefly, CMD consists in
integrating the classical equations of motion for the centers
(centroids) of the ring polymers replacing the quantum-
mechanical particles, where, at each time step, the “quantum
mechanical forces” governing the dynamics are given by an
average over the polymers’ internal degrees of freedom. (That

is, the force on the centroid is an average over the forces
on the polymer beads.) We have performed the classical
dynamics in the isokinetic ensemble [34,35] using a single
Gaussian thermostat and a variant of the simple leapfrog
algorithm [36]. This allows for very long, stable runs and yields
VACFs that are virtually identical to those of isoenergetic
simulations. In contrast to the usual implementation of CMD,
where the averaging over the internal degrees of freedom is
done “on the fly” by path integral (PI) molecular dynamics,
we have instead performed short path integral Monte Carlo
simulations at each time step. This avoids problems with the
polymers’ stiff internal modes and permits much larger time
steps. In these path-integral Monte Carlo simulations, which
were based on the primitive algorithm [37], new polymer
configurations were sampled directly from the free-particle
density matrix and subjected to the usual Metropolis test
of change in intermolecular energies. (The discrete Fourier
transform needed to convert the free-particle density matrix
into a product of independent Gaussian random variables also
makes it easy to keep the centroids fixed.) The number of beads
on the polymers (Trotter number) was taken to be P = 64. We
have verified in independent ring polymer molecular dynamics
simulations [38] with P = 32, 64, and 128 that, while there
are slight differences between the P = 32 and 64 results, the
VACFs obtained with P = 64 and 128 are identical for the
present purposes. In the comparable ring polymer molecular
dynamics simulations of Ref. [32] the Trotter number was also
limited to P = 48. The simulations were extended up to 1 ns.
The velocity correlation was calculated up to a maximum time
lag of 1.5 ps. A shorter test run with 500 particles confirmed
that the shape of the VACF was not noticeably influenced by
finite-size effects.

The dynamical information conveyed by the VACF is a
key point in the development of models for the self part of
the DDCS of viscous dense fluids. In the present case of a
molecular liquid, the considered velocity autocorrelation is
that of the molecule center of mass

u(t) = 〈vc.m.(0) · vc.m.(t)〉, (3)

which is a complex quantity satisfying u(−t) = u∗(t) and
u(−t) = u(t + i�β), the latter property descending from the
detailed balance principle.

However, the output of a PI CMD simulation is the
canonical (or Kubo-transformed [39]) VACF:

uc(t) = 1

β

∫ β

0
dλ〈eλH vc.m.(0) · e−λH vc.m.(t)〉, (4)

where H is the Hamiltonian operator of the system and β =
(kBT )−1. The canonical VACF is a real and even function of
time, whose frequency spectrum

pc(ω) = 1

2π

∫ ∞

−∞
dt e−iωtuc(t) (5)

is also real and even in frequency. Differently, the spectrum of
the VACF

p(ω) = 1

2π

∫ ∞

−∞
dt e−iωtu(t) (6)

is not even in frequency, although real, and can be expressed
as the combination of a symmetric (subscript S) and an
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antisymmetric (subscript A) part, p(ω) = pS(ω) + pA(ω),
with

pS(ω) = p(ω) + p(−ω)

2
= 1

π

∫ ∞

0
dt cos(ωt)Re[u(t)],

(7)

pA(ω) = p(ω) − p(−ω)

2
= 1

π

∫ ∞

0
dt sin(ωt)Im[u(t)].

The definition of uc(t) is such that p(ω) and pc(ω) are related,
compatibly with detailed balance asymmetry, by

p(ω) = pc(ω)
β�ω

1 − e−β�ω
. (8)

Through Eq. (7), it is possible to define the two, real and even
in frequency, functions introduced in Ref. [28]:

g(ω) = 2βM

3
pS(ω),

(9)
f (ω) = 4M

3�ω
pA(ω),

with the warning that the symbol β used in Ref. [28] is not
the one used in the previous equations, but corresponds to
�/(2kBT ). Using Eqs. (7)–(9), it can be shown that the above
spectra are related by

g(ω) = β�ω

2
coth

(
β�ω

2

)
f (ω), (10)

which is the analog of Eq. (85) in Ref. [28]. From the
computational point of view, the fundamental relation that
allows one to obtain f (ω), and hence γ1(t), from uc(t) is

f (ω) = Mβ

3π

∫ +∞

−∞
dt e−iωtuc(t) = 2Mβ

3
pc(ω).

The link between the above formalism about the VACF
and the self-intermediate scattering function Fc.m.,self (Q,t) is
easily obtained by recalling that the latter is a Gaussian in
wave vector Q in both the two limiting cases of hydrodynamic
diffusion (Q → 0, t → ∞) and ideal gas behavior (Q → ∞,
t → 0) [30], with exactly known functions of time alone
entering the expression of Fc.m.,self (Q,t):

Fc.m.,self (Q,t) = e−Q2Dt for Q → 0, t → ∞,

Fc.m.,self (Q,t) = e−Q2(t2/2Mβ) for Q → ∞, t → 0

where D is the self-diffusion coefficient.
The Gaussian approximation, introduced by Vineyard in

1958 [27], simply extends the above functionality to any
intermediate time and Q value, i.e., it assumes that

Fc.m.,self (Q,t) � e−Q2γ1(t) for any Q, any t. (11)

This assumption was more deeply formalized, even for quan-
tum systems, by Rahman and co-workers, who demonstrated
that the self-intermediate scattering function can be expressed
as an infinite series of the form

Fc.m.,self (Q,t) = exp

⎡
⎣ ∞∑

p=1

(iQ)2pγp(t)

⎤
⎦,

whose first term, coinciding with Vineyard’s hypothesis, is
related to the VACF spectrum. In particular, the final, and
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FIG. 1. (Color online) Velocity autocorrelation function of hy-
drogen deduced in Ref. [15] (pink dots). The quite different results of
the quantum CMD simulations [31] are also reported. For comparison,
both the canonical VACF uc(t) (dash-dotted blue curve) and the real
part of 〈vc.m.(0) · vc.m.(t)〉 (red solid curve) are shown.

most significant expression of the GA in the Rahman et al.
quantum picture [28], provides the function γ1(t) of Eq. (11):

γ1(t) = �

2M

∫ +∞

0
dω

f (ω)

ω
A(ω), (12)

with

A(ω) = [1 − cos(ωt)] coth

(
�ωβ

2

)
− i sin(ωt).

Such equations have been used in this work, starting from the
PI CMD simulation of uc(t), and developing the formalism
previously described to implement the quantum GA in the
DDCS algorithm.

Figure 1 reports our simulation results for the VACF of
para-H2 at 15.7 K: both the canonical VACF uc(t) and the real
part of 〈vCM(0) · vCM(t)〉 are displayed for comparison with the
VACF values digitalized from Fig. 3 of Ref. [15], also shown
in the figure. The differences between the present CMD results
and the past semiempirical determination of Ref. [15] at 14.7 K
seem too large to be ascribed to a mere temperature effect.

The self-dynamic structure factor, as a function of ω =
E/�, is then obtained as the time Fourier transform of Eq. (11)
at each desired Q. By integration of the spectra over very wide
energy ranges, it is possible to verify the consistency with
the second moment sum rule which, for a quantum system,
reads [30]

M (2)(Q) =
∫

dE E2Sc.m.,self (Q,E) = 2�
2Q2

3M
〈EK〉 + E2

r ,

(13)

where Er is the recoil energy previously defined and 〈EK〉
is the mean kinetic energy of the particle, which in the
present case differs significantly from the classical value
(3/2) kBT . Experimental and path-integral Monte Carlo
simulation values of 〈EK〉 for para-hydrogen at various liquid
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FIG. 2. (Color online) Second frequency moment of para-H2 at
15.7 K calculated from Eq. (13) either using the experimental 〈EK〉
estimate of Ref. [40] (red solid curve), or the classical mean kinetic
energy (3/2) kBT (black dashed curve). Symbols correspond to
the values obtained instead by energy integration of the IG (pink
diamonds), the ES (blue squares), and the CMD+GA (black dots)
spectra.

temperatures have been provided by Celli et al. [40] and
Colognesi et al. [41]. Figure 2 shows the Q dependence of the
theoretical prescription of Eq. (13) (lines) in comparison with
the IG, ES, and CMD+GA results for the second frequency
spectral moment (symbols). In particular, the continuous red
curve corresponds to the calculation of Eq. (13) using the
experimental value of the mean kinetic energy of para-H2

at 15.7 K [40], while the dashed black curve is derived by
assuming a classical mean kinetic energy of (3/2) kBT . As
expected, the latter calculation agrees very well with the values
obtained by appropriate energy integration of the IG spectra.
Similarly, the CMD+GA values are in very good agreement
with the quantum behavior. Conversely, the ES model misses
both the classical and quantum prescriptions of M (2)(Q).

IV. COMPARISON WITH EXPERIMENTAL DATA IN THE
THERMAL AND EPITHERMAL RANGE

The previous results show that the CMD+GA
Sc.m.,self (Q,E) has the correct spectral properties and can
sensibly be used to perform the self-DDCS estimates based
on the computation of the second term of Eq. (1), which
we implemented according to the details given in Ref. [1].
By numerical integration, over energy and solid angle, of the
DDCS spectra we finally derived the TCS values reported in
Fig. 3 which, as mentioned, regard an incident energy range
where the distinct contributions to Eq. (1) are fully negligible
to a good approximation. Calculations were carried out also
using the IG and ES line shapes for comparison with the
quantum simulation-based outputs. From the inset of Fig. 3 the
superiority of the CMD+GA results in reproducing the experi-
mental TCS of para-H2 at thermal incident energies is evident.
At higher energies, as expected, the system tends to ideal gas
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FIG. 3. (Color online) Total cross section per molecule of para-
H2 at 15.7 K and 1 atm, at the thermal energies of Seiffert
measurements [8] (black dots in the inset) and at the higher E0 values
probed in the spallation-source experiment of Celli et al. [9] (black
empty circles in the main frame). Experimental data are compared
with the IG (pink dash-dotted line), ES (blue dashed line), and
CMD+GA (red solid line) calculations.

behavior: all calculated curves thus become indistinguishable
and in very good agreement with the experimental data.

At the more detailed level of nonintegrated quantities,
the effectiveness of the CMD+GA method can be partially
tested against one of the few inelastic scattering measure-
ments [22] providing data in absolute units. In this case,
since the hydrogen sample had a 41% ortho concentration, the
DDCS computations were performed in the same conditions.
The CMD+GA calculated spectra satisfactorily describe the
experimental data of Fig. 4. This shows that use of a quantum
representation of Sc.m.,self (Q,E) is the only real requirement
to obtain a direct and reasonable agreement with experiment,
comparable with the one obtained with the calculations of
Ref. [18], and incomparably better than that of Schott himself
(using the IG model) and of Utsuro [23] (both not shown in
the figure).

The method of combining VACF quantum simulations with
the GA represents therefore an extremely valid alternative
to most experiments or to the use of “quantum-insensitive”
analytical models for Sc.m.,self (Q,E) in the DDCS formula
of H2. A great advantage of this method, recently applied
with simpler classical simulations to the case of water [42],
is that the VACF only depends on the thermodynamic state,
and only one simulation run is required to enable, in a given
state, calculations of Sc.m.,self (Q,E) wherever wished in the
kinematic (Q,E) plane. This actually means that, at least for
H2, we are presently able to calculate the DDCS in most
kinematic conditions, with good accuracy, and high control
on the physical consistency of the results.

V. COMPARISON WITH EXPERIMENTAL DATA IN THE
SUBTHERMAL RANGE

Differently from the case of more energetic incident
neutrons, at cold neutron energies (1 < E0 < 10 meV) the
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FIG. 4. (Color online) Experimental DDCS of H2 at 19.8 K with a 41% ortho concentration (black squares) [22] and CMD+GA results
(red dots with thin line). The blue empty circles are the DDCS values calculated by Morishima and Nishikawa [18]. Measurements refer to the
thermal range (E0 = 21.8 meV) and rather wide angles indicated in each frame.

interplay of initial-state probabilities and spin correlations in
para-hydrogen actually kills out the incoherent signal, leaving
the small coherent cross section as weight of both collective
and single-molecule contributions. Indeed, if only quasielastic
scattering is allowed (because cold neutrons are unable to
induce transitions in para-H2) and only the J0 = 0 level is
thermally populated (because of the low temperature of this
liquid) it can be shown that the second term of Eq. (1) reduces
to u(Q)Sc.m.,self (Q,E), so that Sn(Q,E) = u(Q)Sc.m.(Q,E).
As a result, at neutron energies below the threshold of the
first rotational transition for this system, the distinct dynamics
warrants a primary role also in the response from a nominally
“incoherent” liquid as para-H2. Actually, there is evidence
that distinct intermolecular contributions influence the neutron
signal from para-H2 and that self-calculations are insufficient
in certain conditions [18].

A good knowledge of the collective (i.e., coherent) dynam-
ics of this liquid is therefore an essential ingredient to achieve
the accuracy demanded nowadays on subthermal neutron cross
sections. Unfortunately, present quantum simulation methods
are not yet able to provide direct and reliable estimates
of the self- and total (self plus distinct) dynamic structure
factors [43,44]. At the same time, no analytical model exists
for the total Sc.m.(Q,E) of a quantum liquid, and more
generally of any liquid, except that in hydrodynamic (Q → 0)
conditions. Therefore, we could only try to investigate, in an
approximate way, the effect of adding a collective term to
the single-molecule results. To do this, we adopted the Sköld
approximation [45], that models the total Sc.m.(Q,E) through
a modification of its self part, namely,

Sc.m.(Q,E) ≈ Sc.m.(Q)Sc.m.,self

(
Q√

Sc.m.(Q)
,E

)
, (14)

which was cleverly conceived to fulfill the second moment
sum rule in classical systems, and gave satisfactory results
in several cases, starting from that of liquid argon [46]. In
Eq. (14) Sc.m.(Q) is the c.m. static structure factor for which we
took the experimental values obtained by neutron diffraction
measurements [47].

As evident in Fig. 5, the CMD+GA calculation of the
self part progressively departs from the TCS measurements
presently available [8,10], as soon as the incident neutron

energy is decreased below 14 meV. The Sköld schematization
of the total dynamics, calculated by inserting in Eq. (14) the
properly Q-scaled CMD+GA self-dynamic structure factor,
is seen instead to be rather effective, providing a suitable
correction of the self-only results. In particular, despite its
simplicity, the Sköld model, if used in combination with a
quantum Sc.m.,self (Q,E), is able to quite satisfactorily describe
the very recent neutron transmission data of Grammer and
co-workers at 15.7 K, with only a small overestimate between
2 and 8 meV. Our quantum-based calculations thus apparently
confirm the lower cross-section values of liquid para-H2 with
respect to the earlier cold neutron determinations by Seiffert.
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FIG. 5. (Color online) Total scattering cross section of para-H2

at 15.7 K and cold neutron energies. The large deviation of the
CMD+GA self-contribution (red solid curve) from the absorption-
corrected experimental data of Seiffert [8] (black dots) and of
Grammer et al. [10] (black empty circles) is due to the missing
negative distinct contribution. The pink dotted curve displays the
results obtained by adding a distinct part in the Sköld approximation.
The dots at 3 meV show the effect, on the self (red dot) and
on the self+Sköld (pink square) TCS, of the presence of 0.5%
ortho-hydrogen.
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A possible contamination, by a small fraction (0.5%) of ortho
molecules, of Seiffert sample has been plausibly hypothesized
in Ref. [10]. This actually seems to be the case, as shown in
Fig. 5, where we also report, for an example incident energy of
3 meV, the changes induced, in both the CMD+GA and Sköld
TCS, by the presence of 0.5% ortho-H2. Indeed, temperature
effects might also be thought of in order to find an explanation
to the quite large discrepancies between the two TCS data sets
(15.7 K against 14 K). However, it is well known that structural
changes are extremely limited with varying temperature in
high density liquids [48], and could unlikely lead to such
significant differences in the TCS.

The origin of the residual differences between Grammer
et al. data and our calculations in the range 2 < E0 < 8 meV,
cannot be easily found out. They might either depend on
inaccuracies of the data, or of the S(Q) determination at
the Q values involved at certain incident energies, or finally
on both. It is also plausible that the featureless line shapes
produced by the Sköld recipe do not provide an adequate
description of the total dynamic structure factor which,
besides the single-molecule dynamics, accounts for collective
excitations as well, with well-known inelastic features. At low
and intermediate wave vectors [e.g., up to that of the main
peak of S(Q)], substantial spectral differences from the Sköld
model are therefore expected, and might reveal themselves in
a constant-θ energy integration between (ideally) −∞ and E0,
like the one performed to compute the TCS. Finally, another
possible explanation of the small deviations could be a slight
inadequacy of the CMD+GA method, and in particular a
signature of the mentioned non-Gaussian behavior of para-
H2 in certain Q ranges. In this respect, some observations
are worth investigating. Although deviations from Gaussian
behavior were found to be rather small at the level of frequency
spectra [31], the effect of even small discrepancies has a
different impact on the TCS results depending on E0, and is
more important if the Q values where the GA fails belong, in
majority, to the explored kinematic region. Conversely, at very
low E0 (e.g., 1–2 meV) the probed Q region predominantly lies
between values where the GA holds, explaining the renewed
agreement, as energy is decreased below 2 meV. Finally, at
higher E0 (e.g., between 8 and 14 meV) many, rather low
and rather high, Q values (where the GA holds) contribute
to the TCS, so the role of the “GA-deviating” Q values has
a much lesser impact on the integrated result, and agreement
with experiment is found again. In our opinion, this might
be a sensible explanation of the initially growing and then
decreasing discrepancies with increasing E0 in the subthermal
range. Anyway, it is noteable that the present CMD+GA
approach allows one to reach, using in the calculations the
true molecular properties of para-H2, such a satisfactory
description of the new measured data.

Clearly, these are plausible speculations that can only
be verified by further research. Two different routes can be
envisaged in order to understand, if possible, the role of the
two main approximations here adopted (i.e., GA and Sköld)
to calculate the subthermal TCS. One is the introduction in
our DDCS algorithm of the first non-Gaussian correction to
the self-dynamics [49]. Though feasible, such an attempt is
certainly “expensive” from the computational point of view,

but it is also extremely attractive in a scientific sense, owing to
the great opportunity to test possible (near to “macroscopic”)
failures of the GA, in case they show up even at the level of
neutron TCS calculations. In addition, the dependence on E0

of the supposed GA inadequacy could be duly checked. The
other route passes through experiments aimed at determining
the dynamic structure factor and comparing it with the Sköld
prediction. Indeed, accurate measurements of the DDCS
of liquid para-H2, used in combination with the available
simulations of the self part, are needed to be able to sensitively
probe the different contributions to the total signal in the
subthermal and cold incident energy range below ∼14 meV,
with a great effort in producing well-normalized and duly
corrected scattering data.

VI. CONCLUSIONS

We showed that it is now possible to obtain accurate
evaluations of the thermal neutron scattering law of cryogenic
liquids as important as para-H2. We developed, verified, and
implemented an efficient simulation-based method able to
accurately account for the quantum behavior of the fluid,
and which has the doubtless merit of considerably limiting
the need of consuming experiments, at least as regards the
thermal and epithermal range. The whole kinematic plane
can indeed be covered by this technique, avoiding demanding
experiments and with full flexibility. Use of the known
molecular properties of hydrogen, and neither search of forced
agreement with experiment nor introduction of effective mass
values or other parametrized routes, have been successfully
experimented in an approach in which the only assumption
concerns the intermolecular potential. An improved evaluation
of the non-Gaussian behavior of para-H2 is suggested by the
present TCS results, which point also at the importance of
accurate measurements of the DDCS at some subthermal
incident neutron energies where the role of the distinct
contribution is, as well, worth investigating. The present
estimates provide a parameter-free absolute-scale agreement
with total cross-section measurements, ensuring, at the same
time, compliance with the spectral quantum sum rules. In
this sense, the results reported in this work also constitute a
rather convincing validation, at present, of the CMD simulation
technique for the prediction of the VACF of quantum liquids.
This also highlights the importance of quantum simulation
research, both for fundamental motivations, and for its fruitful
use in increasingly demanding fields of application, such as
the management and new-concept development of neutron
sources.
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