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Field-induced detrapping in doped organic semiconductors with Gaussian disorder
and different carrier localizations on host and guest sites
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For organic host-guest systems with a low fraction of guest sites, i.e., the trap-limited case, field-induced
detrapping of charge carriers is studied via master equation calculations under the assumption of Miller-Abrahams
rates and two Gaussian distributions of uncorrelated energy levels. Among existing descriptions of carrier
redistributions in the presence of an electric field, the effective temperature derived by F. Jansson, S. D.
Baranovskii, F. Gebhard, and R. Österbacka [Phys. Rev. B 77, 195211 (2008)] for pure host materials shows the
best agreement with the simulation results. The detrapping description based on carrier heating is extended to
the case that the two material-specific hopping rate parameters ν0 (attempt frequency) and α (decay constant or
inverse localization length of charge carriers) are different for host and guest sites.
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I. INTRODUCTION

During the past years, the interest in organic semicon-
ductors has rapidly increased. Besides their use in lasers
[1,2], solar cells [3,4], and holograms [5], the probably
most promising application is the organic light-emitting diode
(OLED). Although the conductivity of OLEDs is significantly
lower than that of inorganic semiconductors [3], they are
sought after for their high emission efficiency, fast response,
low driving voltage, and simple fabrication [6]. Due to the use
of dye dopants to tune color and efficiency [7] as well as the
presence of parasitic traps [8], proper theoretical models for
the charge carrier transport in OLEDs in the presence of guest
sites are desired.

OLEDs consist of amorphous organic materials, in which
carriers are localized on single sites, which can be small
molecules or functional groups of polymers. Carrier transition
between such sites with energy difference Ej − Ei and
distance Rij is in theoretical studies mostly described by
Miller-Abrahams rates [9]

νij =ν0 exp

(
−2α Rij − Ej − Ei + |Ej − Ei |

2 kBT

)
. (1)

In this equation, α denotes the inverse localization length of a
charge carrier on a site and the prefactor ν0 can figuratively be
called attempt frequency. An early study of carrier transport
based on these rates in amorphous inorganic materials was
presented by Mott [10]. This analytical model, which is
focused on the temperature dependence, was verified through
percolation theory by Ambegaokar et al. [11]. The concepts
used by these authors were many years later applied to
amorphous organic semiconductors, first under the assumption
of exponential densities of states (DOSs) [12,13], then for
Gaussian densities of states [14,15], which are mostly assumed
to apply to organic materials. Several other semianalytical
models applicable to hopping transport in a Gaussian DOS
have been suggested [16–21]. Charge transport in amorphous
organic semiconductors has also been investigated in many
computer simulations. At first, they were based on the Monte
Carlo (MC) method [22], then the computationally more
efficient master equation (ME) approach became the preferred

method [23]. The carrier mobility in amorphous organic
semiconductors strongly depends on temperature T , electric
field F , and carrier concentration n [24–26]. A dependence
on T and n for low fields can be directly derived from all
aforementioned semianalytical models and has been shown
to quantitatively agree with computer simulations for several
of these models [15]. A field dependence, on the other hand,
has been only included in two of the semianalytical models
[20,27]. Especially these two models haven been shown,
however, to severely disagree with ME simulations even in
the low-field regime [15,28]. Hence, the time-consuming ME
or MC simulations are indispensable to determine reliable
field-dependent mobility values. Widely used parametrizations
of the field dependence resulting from Miller-Abrahams rates
in a Gaussian DOS have been derived via MC simulations at
low carrier concentrations in the case of uncorrelated [22] and
correlated [29] energetic disorder and via ME simulations also
at high carrier concentrations for both disorder types [30,31].

While disordered, pure host systems have been widely
studied, little attention has been drawn to host-guest systems
so far. An early examination of organic materials intentionally
doped with traps was performed by Hoesterey and Letson
[32], who used a simple model depending on temperature,
trap depth, and concentration to explain measurements of
transient photocurrents. One of the first Monte Carlo sim-
ulations within this topic considered the transient carrier
propagation in a doped device after application of a voltage
[33]. While the subject was dropped for the subsequent years,
several researchers recently started to apply the models and
simulation methods mentioned before to host-guest systems:
Three semianalytical models were applied to these systems
[34,35] and two computer studies based on ME simulations
were performed [36,37]. The results were in agreement
with experimental findings that the mobility decreases for
increasing guest concentration, as long as carrier transport is
determined by hopping between host sites [38]. In this regime,
transport is called trap-limited, since guest sites merely act as
traps. As soon as direct guest-to-guest hopping starts to occur,
the mobility reaches its minimum and increases with further
increasing guest site concentration. Both ME-based studies
also considered the field dependence. They explicitly verified
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that the well-known expression

μ = μh

nh

nh + ng

(2)

for the mobility μ in the case of trap-controlled transport, with
nh (ng) denoting the concentration of carriers residing on host
(guest) sites and μh the mobility of the pristine host material, is
valid for arbitrary values of n, T , and F in the case of hopping
in a Gaussian host-guest system. Taking all dependencies into
account, Eq. (2) for these systems reads

μ(n,F,T ) = μh(nh(n,F,T ),F,T )
nh(n,F,T )

nh(n,F,T ) + ng(n,F,T )
,

(3)

with the total carrier concentration n = nh + ng . For realistic
trap depths, the second factor can show an even stronger
dependence on temperature and carrier concentration than
the mobility of the pristine host material. The second factor
also introduces an additional field dependence of considerable
magnitude. Cottaar et al. suggested a parametrization for this
latter dependence based on field-induced spreading of chem-
ical potentials [37]. To our knowledge, this parametrization
was the only attempt so far to quantify the field dependence of
carrier mobility in disordered organic semiconductors in the
trap-controlled regime.

In this paper, we will focus on the field dependence of
the ratio nh/(nh + ng) as it has been studied the least so far
and can dominate the behavior of real devices. Unlike previous
investigations, we consider different attempt frequencies ν0,h/g

and inverse carrier localizations αh/g for host and guest sites.
Section II starts with the explanation of the bulk properties,
the numerical method, and the effective temperature models.
Section III A explains the optimal set of numerical parameters
for the ME simulations. In Sec. III B, we show that the variation
of attempt frequencies and carrier localizations for guest sites
can be effectively reduced to the variation of one of these two
parameters. In Sec. III C, the simulation results for equal and
different values of αh and αg are presented and compared to
several parametrization schemes.

II. THEORY

We consider a cubic lattice of length L in each direction,
the sites of which are assumed to have the DOS

g(E) = (1 − x) gh(E) + x gg(E), (4)

with x denoting the guest site fraction and

gh(E) = N

σh

√
2 π

exp

(
− E2

2 σ 2
h

)
, (5)

gg(E) = N

σg

√
2 π

exp

(
− (E + �)2

2 σ 2
g

)
(6)

the Gaussian DOS of host and guest sites, respectively. The
random energy levels are uncorrelated. N = 1/a3 is the spatial
site density, σi are the respective widths, and � is the trap
depth. All lengths throughout this work are given in units of the
lattice constant a, all inverse localization lengths α in units of
a−1. Once the lattice is assigned, the hopping from a certain site

i to j is described by a generalized Miller-Abrahams (GMA)
rate

νij =√
ν0,i ν0,j

× exp

[
−(αi + αj ) Rij − Ej − Ei + |Ej − Ei |

2 kBT

]
.

(7)

An important numerical parameter is the cutoff radius rm

of the sphere containing all potential hopping neighbors.
Hopping rates at the border of the cube are treated by imposing
periodic boundary conditions. The energy Ei of each site is the
superposition of the electrostatic potential due to the electric
field F and an the equilibrium energy which is randomly
chosen according to the distribution g(E).

With the hopping rates and a given number of charge
carriers, the carrier occupancies pi can be determined by the
master equation∑

j �=i

[νij pi(1 − pj ) − νji pj (1 − pi)] = 0. (8)

This equation was first applied to organic materials by Yu
et al. [23]. Instead of the method employed in their work,
we use, however, Newton’s method for its solution as it was
already done by Szymanski et al. [39]. Coulomb interaction
between the carriers is neglected. For the considered relative
carrier concentration n/N in the range between 10−5 and
10−4, this simplification has no influence on the mobility [40].
The ratio nh/(nh + ng) is then easily obtained as the sum
of all host site occupancies divided by the sum of all lattice
site occupancies. Detrapping is the change of this ratio with
increasing field.

In an attempt to parametrize the simulation results for
potential use in a drift-diffusion model, we used several
approaches from the literature. Our main focus was on carrier
heating in Gaussian DOSs as described by Jansson et al. [41]
according to the equation

Teff,h/g =
[
T β +

(
γ

e F

αh/g kB

)β] 1
β

(9)

with β = 1.54 and γ = 0.64. This expression was verified for
pure host systems by simulations and measurements [42] and
it can be easily applied to host-guest systems with αh = αg

and ν0h = ν0g . Considering particle number conservation

n = nh + ng = (1 − x)
∫ ∞

−∞
dE gh(E) f (E,EF ,Teff,h)

+ x

∫ ∞

−∞
dE gg(E) f (E,EF ,Teff,g) (10)

with the Fermi distribution f , the Fermi energy EF is uniquely
determined since the total charge carrier density n is given.
One can then reinsert EF into the host carrier density nh and
calculate the detrapping by nh/n.

It was claimed by Cottaar et al. [37] that the assump-
tion of carrier heating strongly overestimates field-induced
detrapping, and they suggested a field-dependent spreading
of chemical potentials instead. However, they only compared
their results to an expression for field-induced carrier heating
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which had been derived by Preezant and Tessler based on the
so-called energy space master equation (ESME) [43]. This
simulation approach calculates an energetic distribution of
carriers in the volume and assigns it to each lattice site. Hence,
it differs conceptually from the ME approach, which assigns
randomly chosen but discrete energy levels to the lattice sites
and calculates carrier occupancies for these sites. It is shown
in the following section that, for a host-guest system with
αh = αg and ν0,h = ν0,g , detrapping parametrization based on
the effective temperature from ME simulations, though far
from perfect, is clearly superior to fits based on the ESME-
based effective temperature or the spreading of chemical
potentials.

This leads to the question of how detrapping in host-guest
systems with αh �= αg or ν0,h �= ν0,g can be described. It
is also shown in the next section that this problem can be
reduced to αh �= αg . Hence, Eq. (9), which only contains
a localization length and no attempt frequency, can still be
used as a starting point. A first possibility to account for
αh �= αg would be the use of Eq. (10) with Teff,h �= Teff,g . This
approach, from here on referred to as model 1, implies separate
carrier heating in host and guest DOSs unaffected by each
other but thermal quasiequilibrium of all charge carriers in the
volume. This assumption, however, leads to the prediction that
a decrease of αg (a measure for carrier localization on guest
sites) would result in a reduction of field-induced detrapping
for a given αh. Since this prediction contradicts any intuition,
we suggest a second model, which is chosen to fulfill three
important conditions: First, it takes into account contributions
from host-host, guest-guest, and host-guest interactions to the
energetic redistribution of carriers. Second, reduction of αg and
reduction of αh lead both to enhanced field-induced detrapping
if the trap depth � is large. Third, the expression is equivalent
to Eqs. (9) and (10) for αh = αg .

The suggested expression is based on the well-known ratio
ng/nh in the Boltzmann limit without an electric field [35]:

ng

nh

= Ng

Nh

exp

[
− 0.5

(
σh

kBT

)2

+ 0.5

(
σg

kBT

)2

− �

kBT

]
.

(11)

Three different effective temperatures are now inserted in this
expression:

ng

nh

= Ng

Nh

exp

[
− 0.5

(
σh

kBTeff,h

)2

+ 0.5

(
σg

kBTeff,g

)2

− �

kBTeff,�

]
. (12)

Teff,h and Teff,g are calculated from αh and αg , whereas for
Teff,� we use an averaged decay constant α� = 0.5(αh + αg).
This parametrization is supposed to include the interaction
between host and guest sites. With such an expression in
combination with a correction factor to approximate deviations
from the Boltzmann limit at higher carrier concentrations, we
have already successfully modeled temperature-dependent IV
curves of lowly doped organic diodes [44].
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FIG. 1. (Color online) Convergence analysis for (αh,αg) =
(3,3). Based on these results, the numerical parameter set (L,rm) =
(100,

√
6) was chosen for subsequent calculations.

III. DATA ANALYSIS

A. Convergence

Prior to a discussion of physical behavior, a proper
convergence analysis for L and rm had to be performed. We
considered the most critical parameter combination within our
study (ν0,g/h = 1, αg/h = 3), determined the sufficient set of
numerical arguments, and used them for all other simulations
as well.

Based on the findings in Fig. 1, we chose L = 100 and rm =√
6. Three regimes can be distinguished in the plot: While

the wrong choice of lattice size leads to the highest error at
low electric fields, the maximum hopping distance rm has the
highest influence at intermediate fields around 2 σh

e·a . For high
fields, at which the percolation character of carrier transport
vanishes, the choice of numerical parameters becomes less
critical.

B. Compensation of ν0,g and αg

To reduce the effort of analyzing host-guest systems with
different ν0,g and αg and to describe detrapping based on
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FIG. 2. (Color online) Compensation of variations of ν0,g and αg

according to Eq. (14) for three different combinations of temperature
and carrier concentration at rm = √

6 and host site parameters
(ν0,h,αh) = (1,5).
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FIG. 3. (Color online) Results of our master equation for the
parameter set from Table I and αh = αg = 10 compared to three
existing models for energetic redistribution of carriers: the effective
temperature based on the ESME approach proposed by Preezant
and Tessler [43], the effective temperature based on ME results as
parametrized for pure host systems by Jansson et al. [41], and the
spreading of chemical potentials as claimed by Cottaar et al. [37]
based on their ME simulations of host-guest systems.

Eq. (9), which does not include ν0, we examined the com-
pensation of both parameters by varying them simultaneously
and checked whether the investigation could be effectively
reduced to αg . Detrapping is governed by hops which include
one guest and one host site. Recasting the according GMA rate
[Eq. (7)] leads to

νij =√
ν0,h exp

(
−αh Rij − Ej − Ei + |Ej − Ei |

2 kBT

)

× √
ν0,g exp (−αg Rij ). (13)

For a given set of host material parameters, two pairs of
guest material parameters, (ν0,g,a,αg,a) and (ν0,g,b,αg,b), were
chosen according to the equation

√
ν0,g,a exp (−αg,a rm) = √

ν0,g,b exp (−αg,b rm), (14)

with rm denoting the previously determined maximum hopping
distance.

Figure 2 shows that a variation of ν0,g can be replaced by
a variation of αg via Eq. (14) for the considered parameter
range, hence the condition ν0,h = ν0,g = 1 was kept fixed in
all subsequent simulations and only αh and αg were varied.

C. Comparison of master equation results
with theoretical models

Before the analysis of αh �= αg , we compared ME simu-
lation results for the extensively investigated [36,37] case of
αh = αg = 10 with three existing models of carrier redistri-

TABLE I. Parameters used for all simulations if not explicitly
stated otherwise.

a σh,g T x � n/N ν0,h/g

10−9 m 0.1 eV 300 K 0.01 −4σh 10−5 1
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FIG. 4. (Color online) Comparison of our ME results to calcu-
lations of detrapping based on the effective temperature derived by
Jansson et al. [41] for two different sets of αh = αg . It is revealed that
the field dependence of detrapping scales in the same way with α as
the effective temperature in pure host systems.

bution under an electric field. The comparison is shown in
Fig. 3 (see also Table I). The model published by Cottaar
et al. [37], which assumes a Gaussian distribution of the
chemical potential, is close to the ME results for low and
intermediate fields but deviates significantly for high fields.
This deviations can be explained by the fact that this model
assumes an upper limit for the spreading of chemical potentials
and thus for the broadening of the Fermi distribution. ME
simulations however reveal an arbitrarily strong broadening
of the distribution function resulting in a nearly uniform
distribution for very high fields as shown in Fig. 7. The model
by Preezant and Tessler [43] severely overestimates field-
induced detrapping as already stated [37]. This is no surprise
since ESME simulations predict a much higher effective
temperature than ME simulations. The effective temperature as
parametrized by Jansson et al. [41] based on ME simulations,
on the other hand, captures the overall tendency for the whole
field range better than the other models. Additionally, our ME
simulations for αh = αg = 5, which are presented in Fig. 4,
show that the field dependence of detrapping indeed scales
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FIG. 5. (Color online) Comparison of ME results (full symbols)
to model 1 (open symbols). For αh �= αg , the model strongly deviates
from the simulation results and even predicts opposite tendencies.
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FIG. 6. (Color online) Comparison of ME results (full symbols)
to model 2 (open symbols). Introducing a “mixed” carrier heating
approach leads to a drastic improvement compared to model 1.

with α as expected from Eq. (9). Thus, the usual scaling of
the electric field as eFa/σ is inadequate and the influence of
carrier localization on the characteristics of charge transport
in OLEDs has been underestimated so far.

After the verification that detrapping can be at least roughly
characterized by carrier heating, we extended this model to
the case of different carrier localizations for host and guest
sites. Figures 5 and 6 show three exemplary cases for (αh,αg):
(3,7), (7,3), and (5,5), the last of which is already included
in Fig. 4. The ME results reveal how the detrapping and
hence the mobility are changing if one varies αh and αg

while leaving the sum αh + αg constant. Figure 5 compares
the ME results with the previously explained model 1 and
shows that the assumption of two separate Fermi distributions
with one common chemical potential for different αh and
αg is completely unjustified. As already expected, even the
predicted tendency of this model is the opposite of the
simulation results. Model 2, the results of which are depicted
within Fig. 6, shows a much better accordance, even though the
deviation between this model and the ME simulation results
peaks at one order of magnitude. Characteristic features of the
ME results are, however, explained by this model, including
even the local minimum of the fraction of free carriers
for (αh,αg) = (3,7) at F = 1 σh

e·a , which can be qualitatively
explained through the exponent in Eq. (12).

D. Energetic distribution of charge carriers

To illustrate field-induced carrier heating, Fig. 7 compares
the energetic distribution of a pure host system (x = 0) with
a system containing guest sites (x = 0.01) for low and high
fields at (αh,αg) = (10,10). For a vanishing field of 0.1 σh

e·a , a
constant shift between the two respective distributions can be
seen, which indicates that guest sites, if present, are mostly
occupied. For high fields, the distribution functions change
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FIG. 7. (Color online) Energetic distribution of charge carriers
for a pure host and a host-guest system with αh/g = 10. At high
fields, both distributions become nearly identical and uniform among
all energies.

to approximately uniform distributions as expected for very
high effective temperatures. Accordingly, the curves for x = 0
and x = 0.01 are practically identical, which means that the
presence of a low fraction of guest sites becomes irrelevant at
high fields.

IV. CONCLUSION

For the examination of detrapping in a disordered host-guest
system with hopping rates of the Miller-Abrahams type, the
consideration of different attempt frequencies and carrier
localizations could, within the investigated parameter range,
be effectively reduced to the consideration of different carrier
localizations. A subsequent comparison of the master equation
results with parametrization schemes from the literature
revealed that only the effective temperature proposed by
Jansson et al. [41] captures the tendency for field-induced
detrapping if equal decay constants for host and guest sites are
assumed. For unequal decay constants, we have presented two
different attempts to model the field-dependent behavior. The
first one, assuming two different effective temperatures, failed.
The second model, including a third effective temperature,
which depicts the interaction between host and guest sites,
gave a good approximation of the exact results from the master
equation. Our findings underline the importance of decay
constants for the field dependence of mobility in host-guest
systems, which has been underestimated so far. A detrapping
parametrization which does not only predict the tendency but
also the quantitative progression is still an open problem. The
lack of such a parametrization for arbitrary material properties
renders drift-diffusion simulations virtually useless and makes
device models based on master equation or Monte Carlo
simulations a necessity for all OLEDs involving trap-limited
carrier transport.
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