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Hydrogenic states of monopoles in diluted quantum spin ice
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We consider the effect of adding quantum dynamics to a classical topological spin liquid, with a particular
view of how to best detect its presence in experiment. For the Coulomb phase of spin ice, we find quantum effects
to be most visible in the gauge-charged monopole excitations. In the presence of weak dilution with nonmagnetic
ions we find a particularly crisp phenomenon, namely, the emergence of hydrogenic excited states in which a
magnetic monopole is bound to a vacancy at various distances. Via a mapping to an analytically tractable single
particle problem on the Bethe lattice, we obtain an approximate expression for the dynamic neutron scattering
structure factor.
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The quest for spin liquids is an important enterprise in
strongly correlated many-body physics in an era when a huge
amount of theoretical interest has focused on forms of order
outside the canonical broken symmetry paradigm [1–4]. The
search involves identifying relatively simple Hamiltonians
that host spin liquids and finding experimental systems and
signatures—the latter being more elusive than in Landau
ordered systems. Indeed, at this point the list of experimental
systems where there is strong evidence of spin liquid behavior
is small. Among them is the celebrated spin ice system, arising
in some rare earth pyrochlore magnets, which exhibits a U(1)
spin liquid and excitations which are condensed matter analogs
of Coulombically interacting magnetic monopoles [5]. Spin
ice is truly special at this point in hosting a three-dimensional
spin liquid, but, owing to large magnetic moments, is limited
to the classical regime, in which coherent quantum dynamics
appears to play little role.

Logically, much recent interest has focused on looking
for quantum generalizations of spin ice. There are several
candidate materials for quantum spin ice behavior, such as
Tb2Ti2O7 [6–9], Yb2Ti2O7 [10–12], and Pr2Zr2O7 [13], but
an unambiguous experimental signature of quantum spin ice
has been lacking. Logically, much recent theoretical work has
focused on looking for quantum generalizations of spin ice in
which quantum fluctuations can lead to a fully quantum U(1)
spin liquid [14–20].

Here we investigate the addition of quantum fluctuations to
spin ice but in a different limit which is, plausibly, of relevance
to existing materials. Fundamentally, we wish to understand
the leading order effects of adding quantum dynamics about
the classical spin ice limit. As we will detail below, this has
a parametrically larger effect on monopole motion than on
monopole-free ground states so the leading manifestations of
quantum fluctuations appear when monopoles are present.

We begin this program by studying the simplest manifesta-
tion of the quantum mechanics of monopoles—a striking effect
that appears in the response of quantum spin ice to the introduc-
tion of a vacancy or missing spin. We find that the lowest lying
excited states in the vicinity of the vacancy resemble those
of hydrogen modulo lattice induced mixing—they involve a
magnetic monopole bound to the impurity site into an infinite
set of levels. In the presence of a dilute set of such impurities,
these states give rise to a characteristic signature in neutron

scattering at low temperatures which we discuss. Readers may
note the family resemblance of these hydrogenic monopole
states to hydrogenic states in doped semiconductors [21, and
references therein], although we caution that the details have
crucial differences. We also note that the response of spin
liquids to impurities is of broad interest as a diagnostic of their
internal dynamics [22,23]: what happens when you dope a spin
liquid is the fundamental question of the resonating valence
bond theory of high temperature superconductivity [24].

In the balance of this Rapid Communication we begin by
briefly reviewing how the dynamics of quantum spin ice can be
formulated as the quantum mechanics of monopoles. We then
concentrate our attention on the problem of a vacancy spin
and describe how it can be mapped to a good approximation
to a monopole on a Bethe lattice interacting with a fixed
Coulombic charge. This model leads to a family of hydrogenic
bound states of the monopole along with a continuum band.
In the technical heart of this Rapid Communication we
solve this problem and obtain an exact closed form solution
for the on-site Green’s functions. We use these results to
obtain the signature of the hydrogenic states in the structure
factor of spin ice containing a dilute set of vacancy spins.
We conclude with some comments and pointers to future
work.

Quantum dipolar spin ice. Our model Hamiltonian

HQDSI = HDSI +
∑

i

t · Si (1)

consists, first, of the classical dipolar spin ice Hamiltonian,
defined for Ising spins Si living on the sites of pyrochlore
lattice and pointing along the local easy axis joining centers of
neighboring tetrahedra [25,26, and references therein]:

HDSI = μ0μ
2

4π

∑
i<j

[
Si · Sj

r3
ij

− 3(Si · rij )(Sj · rij )

r5
ij

]
. (2)

The second term in Eq. (1) is the transverse field, oriented
perpendicular to the local easy axis, which adds the simplest
quantum dynamics in the form of single spin flips. This simple
form is convenient for a first theoretical analysis; for a more
complete symmetry-based analysis of quantum terms in the
Hamiltonian, see [17,27].
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Ghost spins and the Bethe lattice. At this point we switch
from a spin description to that referred to as the dumbbell
model [5], which we quickly review. Each spin is replaced by a
pair of magnetic charges ±qm = μ/ad of opposite sign, where
�ad is a vector pointing between the centers of neighboring
tetrahedra. By summing up the net charge at the center of
each tetrahedron (Qα ≡ ∑

i∈α qi = 0, ± 2qm, ± 4qm), we can
replace the dipolar piece of the spin Hamiltonian (2) by

H = μ0

4π

∑
α<β

QαQβ

rαβ

+ v0

2

∑
α

Q2
α, (3)

Coulomb interactions between charges on the diamond
lattice, with v0 = (2 + √

6)μ0/(4πad ) the cost of creating
a monopole, which can be shifted by a nearest-neighbor
exchange term. In spin ice ground states, Qα ≡ 0. Flipping
a spin in a ground state yields a pair of magnetic monopoles
of charges ±2qm on adjoining tetrahedra which can then
move apart via further spin flips at finite cost in energy. Each
charge has three majority spins that are all pointing in or
out of the tetrahedron, and a single minority spin pointing
in the opposite direction. We note that the ±4qm excitations
are explicitly excluded from the present analysis.

With this in hand let us discuss the energetics of substituting
a magnetic ion on the pyrochlore lattice by a nonmagnetic
impurity (see Fig. 1). Removing a spin from a classical spin
ice state [Fig. 1(a)] leaves behind two monopoles of charges
±qm [28] [Fig. 1(b)]. A bulk monopole with charge ±2qm

can be “emitted” by the vacancy via flipping one of the two
majority spins at each of the tetrahedra adjacent to the ghost
spin [Fig. 1(c)]. The bulk monopole can then move around in
the system. We define a quantity that can be thought of as the
ionization energy of the vacancy: I = μ0

2π

μ2

a3
d

+ 2v0
μ2

a2
d

. This is

the total energy cost of an emitted monopole moved out to
infinity. Emitting another monopole into the bulk would cost

+ 2

- 2

+1

-1

-1

-1

+ 2

(a)      (b)

(c)     (d)

FIG. 1. (Color online) Spin ice projected onto a plane, with each
vertex of the resulting square lattice in (a) corresponding to a
pyrochlore tetrahedron. (b) A missing spin gives rise to a +1 and
a −1 charge; (c) flipping one of the majority spins adjacent to the
vacancy creates a bulk charge +2, inverting the sign of one of the
vacancy charges; (d) the bulk charge propagates in the system through
further spin flips, while the net charge of vacancy is approximated as
a single −2 monopole.

additional energy of the order of 2v0
μ2

a2
d

, so the lowest energy

charged excitation in the presence of an isolated vacancy is
a single monopole with charge ±2qm. Once the monopole is
emitted into the bulk, it is free to hop through fluctuation-
induced spin flips, while a net charge of opposite sign ∓2qm

remains at the vacancy [Fig. 1(d)].
Adding quantum dynamics via the transverse field in Eq. (1)

has only a weak effect on the ground states, as connecting two
of them requires flipping spins in closed loops, minimally six of
them on a hexagon of the pyrochlore lattice. Near the classical
limit, v0 � t , such processes come with a prohibitively small
energy scale, ∼ t6/v5

0 . By contrast, for a state containing a
monopole, the lowest order effect—a monopole hopping onto
a neighboring tetrahedron by flipping a majority spin—is
parametrically stronger: linear in t!

Thus, in experiment, the most promising place to see
quantum effects in spin ice is in the gauge-charged monopole
excitations, rather than its gauge-neutral gapless emergent
photons. Analogous considerations apply in the proximity of
a vacancy, where we focus on the case of a monopole emitted
into the bulk [Fig. 1(d)], also with low-order signatures.
For this reason, here we perform a quantum calculation for
the monopole states, and do a thermal sum over the nearly
degenerate spin ice configurations.

We treat the problem as that of two Coulombic charges,
one of which is stationary. As the charge propagates through
the bulk, it changes the spin ice background. This process is
difficult to capture exactly, but fortunately it is possible to make
considerable progress via an effective model that we describe
next. From this, we are able to extract the bound states in
considerable detail, followed by a continuum band, much as
we would expect for the hydrogen atom.

In order to investigate the problem of an isolated vacancy
that has emitted a free monopole into the bulk, we switch to
the state lattice description [29]. First, consider a new basis of
the following (classical) states: a spin ice state with a vacancy,
which we label |0〉, and states with an emitted monopole in the
bulk, connected to |0〉 through single spin flips. Next, each site
of the state lattice represents one of the basis states |n〉; while
bonds connect those sites whose corresponding states are con-
nected by single spin flips. Apart from site 0 (representing |0〉),
the state lattice is trivalent. It can be shown that the smallest
closed cycle in the state lattice of disordered pyrochlore spin
ice has length 20 [30]. We therefore approximate the state
lattice by a cycle-free infinite Cayley tree (the Bethe lattice)
rooted at site 0 (Fig. 2). The monopole propagating in real
space corresponds to a single particle hopping on this lattice

FIG. 2. The Bethe lattice describing state space. Its root, n = 0,
corresponds to the unionized vacancy state |0〉.
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in the presence of the Coulomb potential:

H |0〉 = −t

4∑
m=1

|0m〉; H |k〉 =
(

I + C

dn

)
|k〉 − t

3∑
m=1

|km〉,

(4)

where k labels a site at the nth generation of the Bethe lattice
and the sums run over states reached by flipping majority
spins of the monopole. dn denotes the distance between the
vacancy and the monopole in the bulk in units of ad , such
that C/dn is the attractive Coulomb potential (C = −μ0

π

μ2

a2
d

)

between the two charges. In conventional spin ice, the cost of
having a monopole is larger than the magnitude of the Coulomb
interaction between two charges: I > |C|, where ad has been
set to unity. For concreteness, we use C = −I/3; t = I/10
in the following. Since we restrict ourselves to a particular
starting spin ice configuration and omit other degenerate ice
states from the discussion, the mapping from Eq. (1) to (4)
is accurate to O(t5/v4

0). Our final approximation concerns
the distance between monopoles. Since the four sites at the
first generation of the Bethe lattice correspond to the bulk
monopole being one spin flip away from the vacancy, it is
natural to approximate dn in Eq. (4) by the generation of the
Bethe lattice n. This definition fails to be exact already beyond
O(t2), but should work sufficiently well in the I,|C| � t

regime, when the bulk monopole prefers not to move too far.
In return for these approximations, we are able to solve exactly
our idealized model, that of a single particle hopping on the
Bethe lattice in the presence of a Coulomb potential I + C/n

for n > 0.
The Bethe lattice problem. We calculate the diagonal

elements Gii(ω) of the lattice Green’s function to infinite order
in t [31,32]. We find [30] that each Gii(ω) can be written
down in terms of a finite number of GF

k (ω), infinite sums
involving particle hopping from a site at generation k to sites
at generations g > k. The latter have a closed form expression
in terms of the Gauss hypergeometric functions F 2

1 (a,b,c,z)
[33]:

GF
k (ω) = 2k/ω√

1 + x2 + 1

1

k − C/ω√
1+x2

×
F 2

1

(
1 − C/ω√

1+x2 ,k + 1,k + 1 − C/ω√
1+x2 ,

1−√
1+x2

1+√
1+x2

)
F 2

1

(
1 − C/ω√

1+x2 ,k,k − C/ω√
1+x2 ,

1−√
1+x2

1+√
1+x2

) ,

(5)

where x2 = − 8t2

ω2 . This yields the exact expression for any of
the diagonal elements of the Green’s function; for instance, at
the root site

G00(ω) = [
ω − 4t2GF

1 (ω − I )
]−1

.

The full Green’s function yields the energy levels via its
poles and the local densities of states for each Bethe lattice
generation, proportional to its imaginary part. The local density
of states at site 0 in Fig. 3 indicates that indeed there are
bound states followed by the continuum energy band. While
the classical ground state (a spin ice state with a vacancy)
would have zero energy, the ground state energy of the quantum
problem ω0 is lowered due to the hopping t . Low-lying excited

0 1 2 L I

4

FIG. 3. (Color online) Local density of states at site 0 of the
Coulomb problem on the Bethe lattice, for C = −I/3; t = I/10.
Bound states (red) appear as sharp peaks; the lower edge of the
continuum (blue) is labeled L, the classical ground state energy by 0,
and the ionization energy by I .

states are separated from the ground state by a gap, which is
also decreased from the classical value I through hopping
and Coulomb attraction. They accumulate below the edge of
the continuum band, located at L = I −

√
8t2. In the Bethe

lattice problem, the band of the extended states, of width linear
in t , is confined to the region I −

√
8t2 < ω < I +

√
8t2.

(Introducing closed cycles into the lattice has the effect of
adding band tails, extending beyond these edges).

Signatures of monopoles in neutron scattering. One of our
central results is the dynamic structure factor, defined as

S(�q,�ω) =
∑
f

δ(Ef − Ei − �ω)

∣∣∣∣∣∣
∑

�R
〈f |S+

�R |i〉ei �q· �R

∣∣∣∣∣∣
2

. (6)

In order to extract the information that is most relevant
to spin ice experiments from the Bethe lattice model, we
calculate a one-dimensional version of Eq. (6), averaged over
all directions of �q. Such a quantity, S(q,�ω), can be measured
directly in a powder averaged neutron scattering experiment.
The details of our calculation, carried out in the limit of
dilute nonmagnetic impurities, are given in the Supplemental
Material [30]. The dynamic structure factor S(q,�ω), plotted
in Fig. 4(a), has sharp features signaling the presence of bound
states. The structure of the lines gives direct information
about the character of the ground and excited states. The
most visible signatures show up in elastic scattering and at
the energy transfer equal to the difference between the first
excited state and the ground state. For a well-localized ground
state, the matrix elements between S+

�R |i〉 and excited states
at higher energies (bound to the vacancy at distant radii)
give rise to peaks whose structure is essentially identical
up to a scale factor, as shown in Fig. 4(b). Note that for
t = 0, the signals corresponding to n �= 1 would be absent,
vanishing as powers of t . Their presence thus yields direct
evidence of the existence of quantum dynamics. Observing
such hydrogenic bound states may well serve as the diagnostic
of quantum spin ice which has thus far been lacking. An
ideal compound would have a large value of total angular
momentum J , and hence appreciable Coulomb splitting of the
bound states, in addition to substantial transverse terms for
multiple bound states to appear in neutron scattering. Moving
away from the classical spin ice limit, much progress has been
made very recently [34,35]. One needs substantial subleading
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FIG. 4. (Color online) Left: Dynamic structure factor S(q,�ω)
for powder averaged neutron scattering. Each line is multiplied by
exp[0.7|n − 1|], where n labels the all-even energy levels with n = 0
the ground state. Right: Line shapes S(q,�ωn)/S(0,�ωn) for n =
0,1,5,10. C = −I/3; t = I/10 throughout.

admixtures to the spin’s crystal field ground state doublet,
as suggested [34] to be the case in CdEr2Se4 [36]. Another
origin of transverse terms is through interactions of the ion
with surrounding magnetic moments [35]. In Dy2Ti2O7, a
transverse magnetic field on the order of 0.5 T [37,38] exists
in the vicinity of a monopole. However, once projected onto
the crystal-field ground state doublet, the Ising nature of
the effective spin-1/2 still suppresses quantum fluctuations.
Regarding compounds whose magnetic ions are not strictly
Ising, one of the best-known quantum spin ice candidates,
Yb2Ti2O7, has an easy-plane anisotropy. While the exchange
forces the magnetic moments in the 〈111〉 direction, there are

transverse terms of the same order as the 〈111〉 exchange [11].
Another easy-plane compound where a similar scenario may
apply is CdDy2Se4 [39], whose large J may put this spinel in
the right parameter range.

Conclusion and outlook. We have studied in detail the
properties of magnetic monopoles in dipolar quantum spin
ice. We have demonstrated that these are the prime indicators
of the presence of quantum dynamics. In the presence of
nonmagnetic impurities we have found both sharp hydrogenic
bound states as well as a broad continuum energy band. While
we believe these results to be robust, there is clearly much
scope for further, presumably numerical, modeling taking
into account the detailed lattice structure, as well as any
material specific single-ion physics and terms in the quantum
Hamiltonian.

The quantum dynamics of a pair of monopoles presents
a more difficult problem due to the pair’s center-of-mass
motion. We are planning to address this issue, as well as
clarify the detailed character of the continuum band of states
in the vacancy problem, in future work. Additionally, despite
neutron scattering being the method of choice for investigating
magnetic materials, local disorder is an attractive subject for
other types of experimental probes, such as nuclear magnetic
resonance. While such techniques are beyond the scope
of this work, our theoretical model can also be employed
for calculating real space quantities accessible by the local
probes.
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[36] J. Lago, I. Živković, B. Z. Malkin, J. Rodriguez Fernandez,
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