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Dynamics of many-body localization in a translation-invariant quantum glass model
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We study the real-time dynamics of a translationally invariant quantum spin chain, based on the East kinetically
constrained glass model, in search for evidence of many-body localization in the absence of disorder. Numerical
simulations indicate a change, controlled by a coupling parameter, from a regime of fast relaxation-corresponding
to thermalization-to a regime of very slow relaxation. This slowly relaxing regime is characterized by dynamical
features usually associated with nonergodicity and many-body localization (MBL): memory of initial conditions,
logarithmic growth of entanglement entropy, and nonexponential decay of time correlators. We show that slow
relaxation is a consequence of sensitivity to spatial fluctuations in the initial state. While numerical results and
physical considerations indicate that relaxation time scales grow markedly with size, our finite size results are
consistent both with an MBL transition, expected to only occur in disordered systems, and with a pronounced
quasi-MBL crossover.
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Introduction. The framework of many-body localization
(MBL) [1] has been shown to be a powerful new approach
in the study of nonequilibrium dynamics in closed interacting
quantum systems. Since its initial proposal [2,3], abundant
[4–8] numerical and analytical evidence has accumulated for
the existence of MBL, and protocols for realizing MBL in
particular systems, such as ultracold atomic gases, have been
proposed. MBL has recently been observed in an experiment
on interacting Fermi gases [9]. While the existence of MBL
in systems with explicit quenched disorder is now mostly
uncontroversial, it is less clear whether a similar transition
can be present in disorder-free transitionally invariant systems
[10–18].

Aspects of MBL have been observed in particular models
of translation-invariant many-body systems, such as certain
mixtures of light and heavy particles [11,13]. Localization
in such disorder-free systems occurs due to the interplay
between interactions and inhomogeneous initial conditions,
leading to nonergodic behavior where relaxation times diverge
with system size. In contrast, a general mechanism for
delocalization has been suggested in Ref. [16], by which the
presence of mobile resonant spots act as carriers of energy
or charge. At present it is unclear whether true MBL can
occur in a finite-dimensional translation-invariant system, and
quasi-MBL has been suggested [13] for cases where transient
MBL behavior is followed by the restoration of ergodicity on
long time scales. (The situation is reminiscent in some sense to
that of the classical glass transition problem, where it is debated
whether relaxation times diverge at finite temperature with a
transition to an ideal glass state, or whether relaxation times
are very long but remain finite for all nonzero temperature.
See, e.g., the discussion in Ref. [19].)

In this Rapid Communication we argue for a transition
between an ergodic (delocalized) phase and an MBL phase in a
specific translation-invariant system. Generally, a disorderless
delocalized-to-MBL phase transition is conjectured to be
related to a quantum glass transition [1]. In particular, in
Ref. [12], indications of such a delocalized-to-MBL transition
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were found in a one-dimensional quantum spin chain based
on the classical glassy Fredrickson-Anderson model [20,21].
Here, we study an even simpler system-and for which MBL-
like dynamics is even more striking-a disorderless quantum
spin chain based on the (infinite temperature) East glass
model [21–23]. We find that in this model a single coupling
parameter controls a significant change in the dynamics, from
a regime of fast relaxation and thermalization, to one where
relaxation times appear to diverge exponentially with system
size. We show that in this slowly relaxing regime the system
exhibits many of the dynamical features associated with MBL:
logarithmic spreading of excitations, lack of thermalization,
initial state dependence at long times, and logarithmic growth
of entanglement entropy. While these observations are highly
suggestive of MBL, we cannot discard (very pronounced)
quasi-MBL behavior as an alternative explanation.

Model. We consider a translation-invariant spin-1/2 chain
with a Hamiltonian operator,

H = J

2

N∑

k=1

nk − J

2

N∑

k=1

e−sσ x
k nk+1. (1)

Here, J is an energy scale, which, without loss of generality,
we take to be J = 1. On the other hand, varying the parameter
s, which controls the coupling between sites, drastically
changes the dynamical behavior of the model, as can be
observed in Fig. 1. This Hamiltonian is closely related to the
master operator of the classical East glass model [21–23].
In fact, if used to generate imaginary time dynamics, the
s = 0 Hamiltonian in Eq. (1) is equivalent to the master
operator of the classical East model at infinite temperatures
[i.e., s = 0 is a Rokhsar-Kivelson point [24,25] of (1)]. At
s �= 0 the operator H is a so-called tilted generator [26],
whose s-dependent ground state is the cumulant generating
function of the “dynamical activity” [27]. The ground state
of the Hamiltonian (1) is known to change discontinuously at
s = 0 [28]. (See also the discussion in Ref. [12] for a related
model).

Classical mechanism for relaxation. In the classical
stochastic dynamics generated by (1) when s = 0, classical
configurations are represented by Fock states in the z basis. The
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FIG. 1. (Color online) Time evolution of site densities 〈ni(t)〉
starting in the half-filled initial state |↓ · · · ↓↑ · · · ↑〉 in the thermal
regime, (a) s = −0.5, and in the MBL-like regime, (b) s = 0.6, show-
ing a linear (ballistic) spreading of the state and a logarithmic spread,
respectively. (c) Equilibrium value Ieq of the initial participation ratio
I(t), averaged over all half-filling initial states.

key feature of these dynamics is that changes of configuration
occur via individual spin flips only on sites which have a right
nearest neighbor with σ z = 1. This means that a region of
space with contiguous down spins can only be relaxed from
its rightmost boundary, and, as a result, a longer region of
this type take longer to relax (as the connecting dynamical
pathway is required to show more collective features). This
“rare region” behavior is what makes the East model glassy at
low temperatures (when the “facilitating” up spins are sparse)
[21–23]. Furthermore, fluctuations in the initial configuration
associated with these down spin domains lead to fluctuations
in the spatial relaxation pattern, known as “dynamical het-
erogeneity,” of the classical East model [29]. As we will see
below, analogous initial state fluctuations strongly affect the
coherent dynamics generated by Eq. (1) for general s.

Dynamical features. Considering pure initial states which
lack translational invariance reveals the dynamical features
of our model when unitarily evolving the system with the
Hamiltonian H . As the system is closed and subject to
recurrence, one has to consider time-integrated observables
to account for relaxation, or limit the dynamics to a small
portion of the recurrence cycle [30,31].

We find two distinct dynamical regimes parametrized by
s. For s < 0 there is fast relaxation and ballistic spreading
of initial excitations (up spins), as illustrated in Fig. 1(a).
In contrast, the s > 0 regime exhibits slow relaxation and
logarithmic spreading of initial excitations, as shown in
Fig. 1(b). In both figures the initial state is a half-filling Fock
state (a Fock vector with equal number of up and down spins
in the z basis) where the first half of the spins are down and the
rest is up. We now argue that the two regimes are distinguished
by thermalization when s < 0 and lack of thermalization for
s > 0, and the nonthermal regime in particular exhibits many
of the features of an MBL system.

To probe the dynamics for the possible occurrence of a
thermal-to-MBL transition, we consider the dynamical inverse
participation ratio (IPR) [32] I(t) = 2−N [

∑
i |〈ψ(t)|i〉|4]

−1

associated with the state |ψ(t)〉 at time t > 0. Figure 1(c)
shows the equilibrium [33] value of the IPR Ieq, averaged
over all half-filling initial states. The quantity Ieq acts as an
indicator of localization of the equilibrium state in the Fock
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FIG. 2. (Color online) (a), (b) Time-averaged magnetization
Mw(t) resolved by the largest interval w between excitations
in the initial state. (c) Initial state dependence quantified by
var[M]eq/var[M]max. (d) Comparison between the equilibrium mag-
netization Meq, and its microcanonical average 〈M〉mc. The high-
lighted points are the equilibrium values Meq obtained in (b),
corresponding to initial states with energy E ≈ 1.7.

basis; in particular, its value changes from approximately unity
for s < 0 to O(N−1) for s > 0, suggesting that at the point
s ≈ 0 an MBL transition might occur.

Initial state dependence. We consider the dynamical fea-
tures of the system starting from a pure initial state picked ran-
domly from the half-filling sector. We characterize the initial
state dependence by associating with each initial classical spin
configuration a quantity w, defined as the maximal number of
consecutive down spins, taking into account periodic boundary
conditions (e.g., w = 3 for a Fock vector |↓↑↓↓↑↑↓↑↓↓〉).

The long-time dependence of single realizations on the
initial state indicates a lack of thermalization, and is considered
a candidate indicator of many-body localization [3–5,34]. We
find that the equilibrium state in the regime s > 0 shows
nonthermal behavior by retaining a memory of the initial
conditions even at long time scales. This can be seen by consid-
ering the time-integrated total magnetization in the z direction,
M(t) = t−1

∫ t

0 m(t ′)dt ′, where m(t) = 〈ϕ(t)|∑k σ z
k |ϕ(t)〉. In

Figs. 2(a) and 2(b) we display this quantity respectively in
the thermal and nonergodic regimes resolved according to
the maximum distance of excitations present in the initial
state Fock vector. We denote with Mw(t) the average over
realizations restricted to initial states with a maximum distance
of w sites between excitations.

In the regime s < 0 the system does not retain memory of
the initial state in the long-time limit, as Mw(t) → 0 for all
values of w. When s > 0, on the other hand, the long-time
values of Mw(t) show a clear dependence on w, suggesting
an equilibration which depends on the initial conditions, and
as such no thermalization occurs. This lack of thermalization
is reflected in the time-dependent variance (with respect to
initial state realizations) var[M(t)]. In Fig. 2(c) we make
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the potential transition apparent by plotting the quantity
var[M]eq/var[M]max, where var[M]max = maxt>0 var[M(t)]
and var[M]eq denotes the equilibrium value of var[M(t)]. This
scaled variance compares the maximum transient spread of
the integrated magnetization (a variation which is expected
since at intermediate times different initial states will evolve
differently) to the spread at long times (a variation which only
occurs in the absence of thermalization).

Further evidence for the absence of thermalization for s > 1
is shown in Fig. 2(d), where we plot the equilibrium values of
the magnetization Meq along with its microcanonical average
expectation value (at infinite temperature) 〈M〉mc as a function
of energy [35]. Here, it can be seen that the microcanonical
prediction does not reproduce the long-time average when the
initial state energy lies in the bulk of the spectrum. In this
case Meq strongly depends on the initial conditions; these
results suggest a breakdown of the eigenstate thermalization
hypothesis leading to the absence of thermalization [36], which
in turn is connected to the MBL [4].

Logarithmic growth of entanglement entropy. Slow growth
of the entanglement entropy has been associated with an MBL
phase in both translation-invariant [13] and disordered systems
[5,37]. We consider the entanglement entropy with respect to
an equal splitting of the system into two half chains, denoted A

and B. Let S(t) = −TrA ρA(t) log ρA(t) be the time-dependent
entanglement entropy, where ρA(t) = TrB |ψ(t)〉〈ψ(t)| is the
reduced density matrix on the half chain A. We define S(t)
as the mean entanglement entropy obtained by taking the
average over the S(t) associated with all possible initial states
in the half-filling sector; additionally, to maintain translation
invariance, S(t) is also averaged over all possible locations of
the cut between half chains A and B.

In Fig. 3(a) we compare the evolution of the average entropy
S(t) for different values of s, starting from the same initial half-
filling ensemble. Clearly evident is a difference in behavior
in the thermal (s < 0) and the nonthermal (s > 0) regimes:
The former is characterized by an exponential growth which
culminates in the equilibrium entropy Seq which is independent
of s. In the nonthermal regime, on the other hand, after an
initial fast growth we observe a slow logarithmic increase

which extends over several orders of magnitude of J t . The
equilibrium value Seq in this regime drops significantly for
increasing s, as shown in the inset in Fig. 3(a).

The time evolution of S(t) can be understood qualitatively
as follows: As previously discussed, the typical initial state will
contain a largest domain of down spins of length w. The initial
linear increase of S(t) corresponds to the mixing of the state
in the regions away from this empty interval. Once the state
is completely mixed over these regions, the only increase in
entanglement can come from propagating excitations into the
w down spin domain, which, as shown in Figs. 1(a) and 1(b),
is linear in time for s < 0 and logarithmic for s > 0. In the
thermal regime, s < 0, there is no difference in the growth of
the entanglement entropy starting from states with different w,
and equilibration is fast. In contrast, in the nonthermal regime,
s > 0, this growth shows a pronounced dependence on the
value of w in the initial state.

The range of logarithmic growth of the entropy in the s > 0
regime increases with system size, as shown in Fig. 3(d). We
can extract a relaxation time τ as the time the S̄(t) reaches S̄eq,
for example, such that |S̄eq − S̄(τ )| = ε with ε = 0.01 (the
precise value of this cutoff is unimportant) [38]. The inset to
Fig. 3(d) shows the scaling of the relaxation time τ for different
values of s. For s > 0, τ it appears to grow exponentially with
the system size in the range of sizes which we were able to
consider. This exponential divergence with size is a hallmark
of the loss of ergodicity and of MBL.

Polarization relaxation. Finally, we consider the relaxation
of fluctuations at different wavelengths. To do this we consider
the (infinite temperature) averaged time correlator of the
Fourier transformed longitudinal magnetization, D(k,t) =
Tr[e−iH tF ∗(k)eiHtF (k)], where F (k) = ∑

j σ z
j eikj . The re-

laxation of this polarization correlator can be used to quantify
the transport of spin perturbations [4,13] and thus can probe
for MBL. Since in a translation-invariant system of finite
size D(k,t) has to decay to zero at large enough times, the
interesting property to look for is in the (transient) behavior of
the relaxation times [13].

In Fig. 4 we show D(k,t) as a function of time for all
the wave vectors k of a system of size N = 12 (the largest

FIG. 3. (Color online) (a) Entanglement entropy S(t) (with respect to an equal bipartition of the spin chain) showing qualitative difference
as s is varied. Inset: Equilibrium value Seq of entanglement entropy as a function of s and N , suggesting a transition from the thermal regime
s < 0 to the many-body localized regime s > 0. (c), (d) Average entanglement entropies Sw(t) restricted to initial states with domain size
w, showing that initial state dependence is absent in the thermal phase. (d) Characterization of the logarithmic regime in the growth of the
entanglement entropy S(t). The dashed lines show the best logarithmic fit S(t) ∝ log t for each value of N . Inset: Estimated relaxation time τ

associated with S(t).
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FIG. 4. (Color online) Dynamics of the spin polarization D(k,t)
for short (k = π ), medium (k = 4π/N ), and long (k = 2π/N )
wavelengths, respectively, in the thermal (s = −1, left panel) and
nonergodic phase (s = 1, right panel) for system size N = 12.

we were able to simulate for this kind of correlator). For the
thermalizing case of s = −1 [Fig. 4(a)], all correlators decay
exponentially and there is no k dependence in their relaxation.
In contrast, for the nonthermalizing case of s = 1 [Fig. 4(a)],
relaxation is nonexponential and time scales are k dependent.
Figure 4(c) shows estimates of the relaxation times τ as a
function of k [obtained from D(k,τ ) = e−1] for three system
sizes: For s < 0, τ (k) is independent of k (and of system size),
while for s > 0, they are strongly k dependent. In fact, in
the nonthermalizing phase, τ (k) ∼ e1/kξ for a large range of
wavelengths, a similar behavior as that observed in Ref. [13].

The exponential in wavelength behavior of the relaxation
time can be rationalized as follows. D(k,t) measures the
relaxation over a wavelength 2π/k. In the MBL-like regime,

the initial states that couple to this wavelength and decay the
slowest [and thus dominate D(k,t)] will be those with w =
2π/k, where w is the size of the largest domain of down spins.
As shown above, such domains decay logarithmically in time
[cf. Fig. 1(b)], that is, the relaxation into an inactive domain
goes as w ≈ ξ log t . Inverting this relation and replacing w by
1/k, we get the form of τ (k) above. In order for this argument
to hold, these slow initial states have to be numerous in the
infinite temperature average. At the largest wavelength they
become rare, and this is the reason why the exponential scaling
is not obeyed in Fig. 4(c) for small k.

Conclusions and outlook. In this Rapid Communication we
studied a disorderless quantum spin chain closely related to the
classical glassy East model in search for an MBL transition
in a translationally invariant system. The coherent dynamics
of this model displays two regimes: a thermal regime, and
a nonergodic regime characterized by a strong dependence
on the initial conditions and breaking of thermalization. The
nonthermalizing regime displays dynamical features charac-
teristic of an MBL phase, in particular, a logarithmic spreading
of excitations and a logarithmic growth of the entanglement
entropy. The slow relaxation behind these MBL-like features
can be traced back to spatial fluctuations in the initial state
corresponding to rare inactive domains. While relaxation times
seem to diverge with system size for the entanglement entropy,
they remain finite (yet anomalous) for dynamic structure
factors. These features would be compatible both with MBL
or with quasi-MBL. In either case, our results suggest a close
connection between classical mechanisms for glassy arrest and
those responsible for MBL dynamics.
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[22] J. Jäckle and S. Eisinger, Z. Phys. B 84, 115 (1991).
[23] A. Faggionato, F. Martinelli, C. Roberto, and C. Toninelli,

arXiv:1205.1607; P. Chleboun, A. Faggionato, and F. Martinelli,
J. Stat. Mech. (2013) L04001.

[24] D. S. Rokhsar and S. A. Kivelson, Phys. Rev. Lett. 61, 2376
(1988).

[25] C. Castelnovo, C. Chamon, C. Mudry, and P. Pujol, Ann. Phys.
318, 316 (2005).

[26] H. Touchette, Phys. Rep. 478, 1 (2009).
[27] V. Lecomte, C. Appert-Rolland, and F. van Wijland, J. Stat.

Phys. 127, 51 (2007).
[28] J. P. Garrahan, R. L. Jack, V. Lecomte, E. Pitard, K. van

Duijvendijk, and F. van Wijland, Phys. Rev. Lett. 98, 195702
(2007); J. Phys. A 42, 075007 (2009).

[29] J. P. Garrahan and D. Chandler, Phys. Rev. Lett. 89, 035704
(2002).

[30] J. Eisert, M. Friesdorf, and C. Gogolin, Nat. Phys. 11, 7 (2014).
[31] See also the recent review by C. Gogolin and J. Eisert,

arXiv:1503.07538 .
[32] W. G. Brown, L. F. Santos, D. J. Starling, and L. Viola, Phys.

Rev. E 77, 021106 (2008); F. Dukesz, M. Zilbergerts, and L. F.
Santos, New J. Phys. 11, 043026 (2009); F. Haake, Quantum
Signatures of Chaos, Springer Series in Synergetics Vol. 54
(Springer, Berlin, Heidelberg, 2010).

[33] Many-body quantum system are expected to “equilibrate” [31],
in the sense of the state becoming close to the time-averaged
state, at long enough times under fairly general conditions (such
as no energy gap degeneracy). This is independent of whether
thermalization is or is not achieved (for example, this so-called
equilibrium state could be initial state dependent).

[34] C. Gogolin, M. P. Müller, and J. Eisert, Phys. Rev. Lett. 106,
040401 (2011).

[35] M. Rigol, V. Dunjko, and M. Olshanii, Nature (London) 452,
854 (2008); M. Rigol and M. Srednicki, Phys. Rev. Lett. 108,
110601 (2012).

[36] M. Srednicki, Phys. Rev. E 50, 888 (1994); J. M. Deutsch, Phys.
Rev. A 43, 2046 (1991); G. Biroli, C. Kollath, and A. M. Läuchli,
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