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We derive a non-Markovian master equation for the evolution of a class of open quantum systems consisting of
quadratic fermionic systems coupled to wideband reservoirs. This is done by providing an explicit correspondence
between master equations and nonequilibrium Green’s function approaches. Our findings permit us to address
non-Markovian regimes characterized by negative decoherence rates and to characterize the dynamics with
respect to a recently proposed measurement of “non-Markovianity.” We study the real-time dynamics and the
steady-state solution of two illustrative models: a tight-binding electronic model and XY spin chains. The rich set
of nonequilibrium steady-state phases encountered extends previous results to the non-Markovian regime.
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Interest in out-of-equilibrium processes has been boosted
in recent years by considerable experimental progress made
in the manipulation and control of quantum systems under
nonequilibrium conditions in ultracold gases [1,2], nanode-
vices [3,4], and spintronic [5,6] setups. This renewed attention
in nonequilibrium processes has raised a number of new
questions, such as the existence of intrinsic out-of-equilibrium
phases and phase transitions [7–11], the definition of effective
notions of temperature [12–16], universality of dynamics after
quenches [17–21], and thermalization [22–24].

Out-of-equilibrium open quantum systems in contact with
thermal reservoirs are fundamentally different from isolated
autonomous systems as dissipation is intrinsic to the evolution
and thermodynamic imbalances, such as temperature and
chemical potential gradients, may induce a finite flow of
particles, energy, or spin, which are otherwise conserved
quantities. Among the set of theoretical tools available to tackle
nonequilibrium quantum dynamics [25,26], the Kadanoff-
Baym-Keldysh nonequilibrium Green’s function formalism
allows for a systematic derivation of the evolution from the
microscopic Hamiltonian of the system and its environment.
An alternative approach consists of treating open quantum
systems with the help of master equations for the reduced
density matrix ρ. The formalism is generic as any process
describing the evolution of a system and its environment can
be effectively described by a master equation of the form [27]

∂tρ = Lt ρ = −i[H (t),ρ]

+
∑

�

γ�(t)

[
L�(t)ρL

†
�(t) − 1

2
{L†

�(t)L�(t),ρ}
]
, (1)

where the L�’s are a suitable set of jump operators,
which, without loss of generality, satisfy tr [L�(t)] = 0 and
tr [L†

�′(t)L�(t)] = δ��′ , and H is the system’s Hamiltonian [28].
The specific form of the L�’s is only known for rather specific
examples [29–34]. For a generic case, to use this approach on
a practical level, one has to rely on various approximations
that substantially restrict its applicability range [35,36]. Trace
preservation, explicitly respected by Eq. (1), and positivity are
essential in order for ρ(t) to represent a physically allowed
density matrix. Generic conditions on L�′(t) and γ�(t) to
ensure that the complete positivity of ρ(t) is maintained

throughout the evolution are yet unknown [32]. For the case
where all decoherence rates are non-negative [γ�(t) � 0],
positivity can be proven [37,38]. This condition implies that
the superoperator Et,t ′ , evolving the density matrix from t ′ to
t , Et,t ′ (ρ) = T e

∫ t

t ′ dτLτ ρ (where T stands for the time-ordered
product), is a completely positive map for all t > t ′ > 0. In this
case, Et,t ′ is also contractive [39], meaning that the distance
between two density matrices cannot increase under the
time evolution. For time-independent processes, i.e., γ�(t) =
γ� � 0 and L�(t) = L�, Eq. (1) reduces to the celebrated
Lindblad form [27,37,38], which can be obtained from the
microscopic evolution assuming a small system-bath coupling
and a Markovian (memoryless) environment. The Markovian
assumption has been extremely fruitful, with the Lindblad
formalism being widely used to model quantum optics and
mesoscopic systems [40–45] and, more recently, quantum
transport [8,46–48]. Master equations of the Lindblad form
also allow for efficient stochastic simulation techniques using
Monte Carlo methods [27,49]. Nonetheless, the evolution of
open quantum systems is generically non-Markovian, with
some γ�’s assuming negative values. The Lindblad description
therefore fails whenever coherent dynamics between the
system and environment is essential.

If some of the decoherence rates become negative, al-
though Et,0 is completely positive, Et,t ′ for t ′ > 0 might not
be so. Thus, not all initial density matrices are allowed
starting points for the evolution from t ′ to t , implying that
the process has necessarily some memory. Non-negative
decoherence rates can thus be associated with memoryless
environments [28,39,50,51]. “Non-Markovianity,” i.e., the
presence of an environment with a finite memory time, can be
detected and measured using recently proposed measurements
and witnesses [39,50–55]. Here, we consider the measurement
fnM(t) = 1

2

∑
� [|γ�(t)| − γ�(t)], proposed in Ref. [51], that

strictly quantifies the degree of non-Markovianity of the
dynamics at time t .

In this Rapid Communication we provide a master equation
for the class of quadratic fermionic systems coupled to non-
interacting wideband reservoirs. This extends the knowledge
of the exact form of the jump operators of non-Markovian
processes to a wide and important class of models, used to
study spin and electronic transport in normal systems and
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superconductors. After providing the explicit form of the jump
operators, we show how our results can be applied to treat
non-Markovian dynamics in two examples: a tight-binding
model and an open XY spin chain.

Open quadratic models with wideband reservoirs. We
consider a generic quadratic fermionic system coupled to
noninteracting fermionic reservoirs (leads) labeled by ν =
1, . . . ,m. The fermionic operators of the system and of the
reservoirs are denoted ca=1,...,n and fνa=1,2,...

, respectively. The
total Hamiltonian is given by H = Hc + ∑

ν Hν + Hc−f ,
where Hc = 1

2 C†HcC is the Hamiltonian of the system, with

Hc a single-particle operator and C = {c1, . . . ,cn,c
†
1, . . . ,c

†
n}T

the Nambu vector. Hν = ∑
i ενi

(f †
νi
fνi

− 1
2 ) is the Hamil-

tonian of the νth reservoir. The interaction Hamiltonian is
given by Hc−f = ∑

νji (c†j t
p

j,νi
+ cj t

h
j,νi

)fνi
+ H.c. containing

generically normal and superconducting hopping terms.
After the coupling is turned on at t = 0, we consider

the joint system-reservoir evolution of an initially prepared
product state. Being a macroscopic system, each reservoir
is initially in a Gibbs state specified by βν , the inverse
temperature, and μν , the chemical potential. The initial density
matrix of the system is taken to be of the form ρ(0) =
e− 1

2 C†�0C/Z, with �0 a generic single-particle operator.
The Dyson equation on the Keldysh contour can be

derived by standard nonequilibrium Green’s function tech-
niques [56]. We make a crucial assumption respecting
the environment properties—the so-called wideband limit—
which amounts to saying that the density of states of each
reservoir and their hybridization functions with the system
are essentially constant with respect to the system’s energy
scales. This yields a frequency-independent retarded self-
energy, which in the time domain translates to �R

c (t,t ′) =
−iδ(t − t ′)

∑
ν (�ν + �̂ν), with �ν the hybridization matrix

of reservoir ν and where the operator ˆ. . . denotes particle-hole
conjugation. The explicit form of �ν in terms of the system-
reservoir couplings is given in the Supplemental Material [57].
The Keldysh component also reduces to a particularly sim-
ple form, �K

c (t,t ′) = −2i
∑

ν [�νFν(t − t ′) − �̂νF̄ν(t − t ′)],
where Fν(t) = ∫

dε
2π

tanh [βν(ε − μν)]e−iεt encodes the ther-
modynamic properties of the reservoirs. A different set of
assumptions leading to a similar �R

c was used in Ref. [58]
to study steady-state transport. Within this approximation, the
retarded Green’s function is simply given by

GR
c (t,t ′) = −i�(t − t ′)e−i(t−t ′)K , (2)

where K = Hc − i� and � = ∑
ν (�ν + �̂ν), resembling

the solution of a Hamiltonian problem but with K a non-
Hermitian operator. The solution for the Keldysh component
also considerably simplifies. For simplicity, here we consider
equal-time quantities only, defining for that purpose the
single-particle correlation matrix χ(t) = 〈C(t) · C†(t)〉 that
encodes all information of the equal-time observables. A
closed equation for the evolution of χ can be obtained by using
the relation χ (t) = 1

2 [iGK
c (t,t) + 1] and Dyson’s equation for

the Keldysh Green’s function, yielding

∂tχ (t) = −i Kχ (t) + iχ (t)K † +
∑

ν

Nν(t), (3)

with Nν(t) = �ν + �̂ν + i{R[(K + μν),βν,t]�ν + R[(K −
μν),βν,t]�̂ν − H.c.}. The function R[z,β,t] = −i

∫ t

0

∫
dε
2π

dt ′ tanh [βε]e−i(z+ε)(t−t ′) can be obtained by a suitable regu-
larization of the integral (see the Supplemental Material). The
initial condition χ (0) = 1

2 [tanh (�0) + 1] is determined by the
density matrix of the system at t = 0.

Master equation. We now turn to the alternative approach
in terms of the master equation. Under the evolution given by
Eq. (1), for a quadratic Hamiltonian and linear jump operators
of the form L�(t) = ∑

i 〈�(t)|i〉Ci , an initial Gaussian density
matrix remains of the Gaussian form, ρ(t) = e− 1

2 C†�(t)C/Z(t),
and the single-particle correlation matrix, given by χ , fully
encodes all the equal-time properties of the system. Under
the Lindblad dynamics χ (t) evolves as (see Ref. [59] or the
Supplemental Material for the derivation)

∂tχ(t) = −i Q(t)χ (t) + iχ (t) Q†(t) + N(t), (4)

with N(t) = ∑
� γ�(t)|�(t)〉〈�(t)| and Q(t) = Hc(t) −

i 1
2 [N(t) + N̂(t)]. Identifying the different elements of Eqs. (3)

and (4), we obtain Q(t) = K and N(t) = ∑
ν Nν(t). The

decoherence rates γ�(t) and the vectors |�(t)〉, characterizing
the jump operators, can be thus obtained by diagonalizing
N(t), given in the Keldysh derivation in terms of the
properties of the reservoirs and of the system’s Hamiltonian.
This procedure explicitly shows how to obtain the master
equation describing a non-Markovian process and is the
central result of this Rapid Communication. In the following,
we discuss the consequences of our findings for dynamics and
provide examples. The more general case where the system
Hamiltonian and the system-environment couplings depend
on time can be straightforwardly obtained and is given in the
Supplemental Material for completeness.

It is tempting to analyze independently the contribution
Nν(t) of each reservoir, however, as these matrices may in
general not commute with each other, the dynamical process
has to be analyzed globally. Nevertheless, in the case where
all contributions Nν(t) are positively defined, their sum N(t)
is a positively defined matrix and therefore the process is
Markovian. Particularly simple examples yielding positively
defined contributions arise for time-independent Nν in the case
of fully empty or fully filled reservoirs [35,36], i.e., μν →
±∞, for which Nν = 2�̂ν and Nν = 2�ν , respectively, and
for infinite temperature, βν → 0, for which Nν = �ν + �̂ν .
An open quantum system coupled to a set of such reservoirs is
therefore Markovian. Conversely, any Markovian process can
be obtained by coupling the system to a set of such simple
reservoirs.

In the asymptotic long time limit, N(t) converges to a time-
independent matrix N∞. As the operator K is non-Hermitian,
we denote by |β〉 and 〈β ′| its right and left eigenvectors with
eigenvalue λβ . Stability arguments imply that Im λβ � 0. If
all the eigenvalues have a nonvanishing imaginary part, a
unique steady state exists and the single-particle density matrix
is given by χ∞ = −i

∑
βγ |β〉(λβ − λ̄γ )−1〈β ′|N∞|γ ′〉〈γ |.

When all reservoirs are in thermodynamic equilibrium, i.e.,
βν = β and μν = ν, χ∞ reduces to its Gibbs form χ∞ =
1
2 {tanh [β(Hc − μNc)] + 1} in the limit of vanishing system-
reservoir coupling, corresponding to the familiar equilibrium
density matrix.
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FIG. 1. (Color online) (a) Sketch of the system coupled to thermal reservoirs. (b) Decoherence rates γ�(t) as a function of time computed
for M = 50, �L = 0.4, �R = 0.2, T = 0, and μR = 0.5 for different values of μL. The labels (p/h,L/R) refer to the particle or hole nature of
the single-particle state |�(t)〉 and to its localization with respect to the boundary. Negative eigenvalues with the same labels as their positive
counterparts are depicted in the same line color. (c) Measurement of non-Markovianity fnM for the steady-state process computed for M = 50,
�L = 0.6, �R = 0.2, TL = TR = T , and μL = −μR = V/2 as a function of T and V . (d) The same as in (c) for TL = TR = 0 as a function of
μL and μR .

Tight-binding chain. In order to demonstrate the previous
results, let us consider a tight-binding one-dimensional chain
in Fig. 1(a), with Hc = −∑M−2

i=0 c
†
i+1ci + H.c., coupled to two

leads at positions 0 and M − 1 by the hybridization constant
�L and �R , respectively.

Figure 1(b) shows the evolution of the decoherence rates
γ�(t), after the coupling to the reservoirs has been turned on,
for different values of μL. There are eight nonzero eigenvalues
of N , arising in positive-negative pairs (see the color code).
In the Markovian limit the negative decoherence rates tend
to zero. The labels p/h refer to the particle or hole nature
of the corresponding eigenvector of N , and L/R to their
localization near the left or right lead. For M → ∞ we observe
that NR/L|�L/R(t)〉 → 0, where Nν(t)|�ν(t)〉 = γ�;ν(t)|�ν(t)〉,
i.e., for a large size chain the contribution of both reservoirs
factorizes and the nonzero eigenvalues of N can be obtained by
a direct sum of the spectrum of NL and NR . This factorization
explains that in Fig. 1(b) the R-labeled eigenvalues are unaf-
fected by changes in μL. More generally, such a factorization,
arising when the special separation between the reservoirs is
large, is to be expected for short-range Hamiltonians Hc and
allows one to treat the decoherence rates of each reservoir
independently. In the present example the structure of Nν

is particularly simple, corresponding to the two positive and
negative eigenvalue pairs in Fig. 1(b). The fact that in Fig. 1(b)
the particle or hole nature of the L-labeled eigenvalues is
interchanged upon switching μL → −μL can be seen in the
expressions of |yp/h

ν 〉, together with the fact that K has no
anomalous terms.

Figures 1(c) and 1(d) depict the non-Markovianity nature
of the steady state as measured by the fnM = fnM(t → ∞). In
Figs. 1(c1)–1(c3) we set μL = − μR = V/2, TL = TR = T , and
show fnM as a function of the bias voltage V and temperature
T . Figures 1(c1) and 1(c2) show how fnM varies as a function of
T and V , respectively. Figure 1(c3) shows a logarithmic plot of

fnM for large values of V and T . The Markovian limit, obtained
for large values T or V , is attained differently along the two
axes, fnM ∝ V −1 for large V and fnM ∝ T −2 for large T .

Figure 1(d) shows the variation of fnM with μL and μR

separately at TL = TR = 0. Figure 1(d3) shows clearly that
the Markovian limit is attained only when both chemical
potentials are large. This can be understood by the approximate
factorization of the eigenvalues of N as a Markovian evolution
can only arise when both reservoirs behave as memoryless
environments. For |μL/R| � |μR/L|, one has fnM ∝ |μL/R|−1.

XY spin chain. In the Markovian limit a number
of works have addressed spin and heat transport in
spin chains [8,42,46,47,60,61]. Here, we consider an XY

spin chain in a transverse field with non-Markovian
reservoirs, depicted in Fig. 2(a). The Hamiltonian is
given by H = −∑

m
J
2 [(1 + γ )σx

mσ x
m+1 + (1 − γ )σy

mσ
y

m+1] −
h

∑
m σ z

m, where J = Jc, γ = γc, and h = hc within the
central region. Setting J = JL/R with JL/R/Jc � 1 and γ = 0,
the side chains act as wideband gapless reservoirs with h =
hL/R . In the following, we set hL = −hR = �h and work in
units where Jc = 1. Employing a Jordan-Wigner mapping, this
model can be transformed into a set of noninteracting spinless
fermions. Following our wideband treatment for the reservoirs
(i.e., JL/R/Jc → ∞), we obtain that �L/R ∝ J ′2/JL/R are the
hybridization constants characterizing the contacts, with J ′
the couplings of the central region with the side chains, and
μL/R = 2hL/R .

In the Markovian limit (�h → ∞) this model was shown
to exhibit a steady-state phase transition where the decay of
the correlators Cl,m = 〈σ z

l σ z
m〉 − 〈σ z

l 〉〈σ z
m〉, as a function of

r = |l − m|, passes from power law, for hc/Jc < 1 − γ 2
c , to

exponential, for hc/Jc > 1 − γ 2
c [8]. We address the non-

Markovian regime (finite �h) and monitor the steady-state
energy current Je and fnM in addition to Cl,m (explicit forms
are given in the Supplemental Material). Figure 2(b) shows the
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FIG. 2. (Color online) (a) Sketch of the XY model coupled to
spin reservoirs with TL = TR = 0 and hL = −hR = �h. (b) Phase
diagram of the nonequilibrium steady state in the hc-�h plane
computed for γc = 0.5, Jc = 1. Regions I–IV are described in the text.
(c) Measurement of non-Markovianity fnM and energy current Je as
a function of the spin imbalance �h computed for different values of
hc and γc = 0.5. The band structures of the spinless Jordan-Wigner
fermions are depicted in the insets.

phase diagram in the hc-�h plane and signals the four different
steady-state phases. The energy current and fnM as a function
of �h are given in Figs. 2(c1)–2(c3) for different values of
hc. A numerical analysis of the exponential/algebraic decay
of Cl,m within each region is provided in the Supplemental
Material. In region I both effective chemical potentials (μL/R)
are below the excitation gap. This region shows a vanishing
energy current and an exponential decay of Cl,m. In region

II there is energy transport with a finite dJe/d�h and an
algebraic decay of Cl,m. In this region μR/L lie within the
excitation energy band. Regions III and IV show a saturation of
the energy current and fnM behaves as 1/�h as the Markovian
limit is taken. However, in region III, Cl,m is algebraically
decaying whereas in region IV the decay is exponential.

These results show that the two Markovian phases reported
in Ref. [8] can be continuously connected to phases III and IV.
Moreover, deep into the non-Markovian regime, phases I and
II arise, having no Markovian analog.

Discussion. The explicit construction of the master equa-
tions for quadratic fermionic models coupled to wideband
reservoirs permits the identification of the jump operators and
decoherence rates derived from a microscopic Hamiltonian
within the nonequilibrium Green’s function formalism. The
simplifications introduced by the wideband approximation
greatly reduced the complexity of the equations of motion
for the density matrix and allow one to treat extended systems.
The approach permits one to characterize decoherence rates
and to clarify the regimes where the Markovian limit yields a
good approximation for the dynamics. Particular examples of
non-Markonian evolution show how decoherence rates evolve
as a function of time and how the Markovian limit can be
reached as a function of the thermodynamic properties of the
reservoirs. Our examples show that a set of nonequilibrium
steady-state phases with distinct physical properties can be
obtained upon changing the reservoir’s properties. The method
provides an explicit approach to study the real-time dynamics
of a wide class of open systems.

During part of this work, P.R. was supported by the Marie
Curie International Reintegration Grant No. PIRG07-GA-
2010-268172.
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