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Experimentally observable signatures of odd-frequency pairing in multiband superconductors
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We investigate how hybridization (single-quasiparticle scattering) between two superconducting bands induces
odd-frequency superconductivity in a multiband superconductor. An explicit derivation of the odd-frequency
pairing correlation and its full frequency dependence is given. We also find that the density of states is modified,
at higher energies, from the sum of the two BCS spectra to also include additional hybridization gaps with strong
coherence peaks when odd-frequency pairing is present. These gaps constitute clear experimentally measurable
signatures of odd-frequency pairing in multiband superconductors.
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I. INTRODUCTION

Many materials have multiple bands close to the Fermi
level. It is then not surprising that there also exist many
superconductors with more than one superconducting band.
Well-known multiband superconductors are MgB2 [1–3],
which hosts two distinct superconducting gaps, and the
iron-based superconductors [4–6], where the order parameter
even changes sign between different bands [7,8]. Multiband
superconductivity has also been suggested to be impor-
tant in simple metals [9,10], heavy fermion compounds
[11–15], different carbides [16,17], and Chevrel phases [18],
as well as for engineering time-reversal invariant topological
superconducting states [19,20].

Multiple superconducting bands allow for unusual coupling
effects. Early, and much current, theoretical focus has been
oriented towards studying the effects of Josephson coupling
between different superconducting bands, i.e., the exchange
of whole Cooper pairs between bands [21–26]. However,
single-quasiparticle scattering, or tunneling, between the
superconducting bands is conceptually much simpler. The
origin of interband quasiparticle scattering can be impurity
scattering, but a common intrinsic source is the superconduc-
tivity associated with specific orbitals, which subsequently
hybridize to form the low-energy bands around the Fermi sur-
face. Tunneling spectroscopy has found significant effects of
interband quasiparticle scattering in silicon clathrate Ba8Si46

[27,28], iron-based superconductors [29], and MgB2 [30].
Recent ARPES data on MgB2 have also shown that interband
scattering due to disorder can be important [31].

Theoretically, interband single-quasiparticle scattering re-
sults in both band hybridization and interband pairing, where
the two electrons forming a Cooper pair belong to different
bands. Straightforward effects of band hybridization were
studied already quite early on [32–34]. More recently, band
hybridization has also been proposed to influence the nodal
structure of the superconducting gap in iron-based super-
conductors [35–38]. On the other hand, consequences of the
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induced interband pairing have been much less discussed. Pure
interband pairing in cold atom and quantum chromodynamics
systems has been proposed to give a “breached” regime
containing both a superfluid and a normal liquid [39,40], but
in band-hybridized superconductors the interband pairing is
also accompanied by (usually large) conventional intraband
pairings. Still, it was recently pointed out, using symmetry
arguments and simple mean-field BCS calculations, that
superconducting pairing which is odd in both frequency and
band index can be ubiquitous in multiband superconductors,
although the explicit frequency dependence was never found
[41].

The fermionic nature of the superconducting wave function
usually renders a division into spin-singlet even-parity (i.e.,
s-, d-wave) or spin-triplet odd-parity (p-wave) supercon-
ductors, but it can also be even or odd under time, or
equivalently frequency [42–44]. Examples of this are odd-
frequency spin-triplet s-wave superconductivity giving rise to
long-range proximity effects in superconductor-ferromagnet
systems [45,46] or odd-frequency spin-singlet p-wave pairing
in nonmagnetic junctions [47–49]. A recent example of the
former is the theoretically predicted odd-frequency pairing in
MgB2 under applied magnetic field [50]. In multiband super-
conductors, the band index offers the additional possibility
of spin-singlet s-wave pairing, which is odd in both band
and frequency, without translation or spin rotation symmetry
breaking or any external fields.

In this work, we derive the exact Green’s functions for
a generic multiband superconductor with single-quasiparticle
scattering. We thus obtain the full frequency dependence
of the interband pairing and find that the odd-interband
pairing has odd-frequency dependence, while the even-
interband pairing is even in frequency. By studying the
density of states (DOS), we also discover that finite band
hybridization gives rise to an extra gap located beyond
the original gap edges. This hybridization-induced gap is
not fully depleted, but still has very pronounced BCS-like
coherence peaks. Moreover, the hybridization gap disappears
whenever the odd-frequency interband pairing is absent
and is thus a directly measurable signal of odd-frequency
superconductivity.
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II. RESULTS

To model a generic multiband superconductor, we consider
two bands, bands 1 and 2, with dispersions εk1 and εk2,
where εk = ε−k . For simplicity, we assume that the two
bands independently develop conventional spin-singlet s-wave
superconducting order parameters �1 and �2, respectively, but
one of them can also be zero. Finally, we add a small single-
quasiparticle hybridization, or scattering, term proportional to
� between the two bands, resulting in the Hamiltonian

H =
∑
kσ

εk1a
†
kσ akσ + εk2b

†
kσ bkσ +

∑
kσ

�(k)a†
kσ bkσ + H.c.

+
∑

k

�1(k)a†
k↑a

†
−k↓ + �2(k)b†k↑b

†
−k↓ + H.c., (1)

where a (b) is the annihilation operator in band 1 (2).
Alternatively, the band hybridization can be interpreted as a
coupling process in real space, with the a and b electrons
living to the left and the right of a junction or in different
layers [32,51]. In this picture, the Josephson coupling would
instead be a two-particle tunneling term (not included here).

We start by calculating the spin-singlet s-wave interband
anomalous Green’s functions F12 and F21, which express the
pairing correlations of two electrons belonging to different
bands. Assuming � to be a small parameter, we can use
standard perturbation theory [52]. The first-order contributions
are then represented by the schematic diagrams in the inset
of Fig. 1(a) and give F

(1)
12 = F1�G2 − ←−

G 1�F2, where
←−
G is

FIG. 1. (Color online) (a) Odd- and (b) even-interband pairing
amplitudes in meV per nm3 when �2 = 2.5 meV, �1 = 2.5, 2.8,
4.5 meV (blue, orange, green), and � = 3 meV, with the band
structure specified in the main text. (Inset:) First-order hybridization

contributions to the interband pairing: F1�G2 (top) and −←−
G 1�F2

(bottom). Solid (dashed) line represents the propagator in band 1 (2)
and × the hybridization.

the hole propagator, i.e.,
←−
G = −G(−k, − ω). The minus sign

before the second term is due to scattering of hole propagators
(left-going arrows). The normal and anomalous propagators
without the hybridization are as usual [52](

Gj Fj

F
†
j

←−
G j

)
= 1

(iω)2 − E2
j

(
iω + εkj �j

�∗
j iω − εkj

)
, (2)

where E2
j = E2

kj = ε2
kj + |�j |2 and ω = ωn = π (2n + 1)kBT

are the fermionic Matsubara frequencies. Using these ex-
pressions we arrive at F

(1)
12 = �[iω(�1 − �2) + �1εk2 +

�2εk1]/[(ω2 + E2
1)(ω2 + E2

2)]. The next-to-leading-order
terms for F12 are cubic in �. Further organizing the pertur-
bation expansion of the interband pairing of a given order n in
a systematic way, we find several recursion relationships (see
Appendix for a detailed derivation). These can be compactly
written in a matrix form as(←−

G
(n)
12

F
(n)
12

)
= g

(
e f

−f ∗ e∗

)(←−
G

(n−2)
12

F
(n−2)
12

)
, (3)

where g = �2/[(ω2 + E2
k1)(ω2 + E2

k2)], e = (iω − εk1)(iω −
εk2) − �1�

∗
2, and f = −iω(�∗

1 − �∗
2) + �∗

1εk2 + �∗
2εk1. For

the starting point of the recursion, we use the first-order anoma-
lous interband Green’s function F

(1)
12 and the correspond-

ing normal propagator:
←−
G

(1)
12 = �[�1�

∗
2 − (iω − εk1)(iω −

εk2)]/[(ω2 + E2
1)(ω2 + E2

2)]. From Eq. (3), we recognize that
the Green’s functions to infinite order can be written as a
geometric series, where the quotient is a two-by-two matrix.
The formal criterion for a matrix geometric series to be
convergent is that the norm (i.e., the largest singular value)
of the coefficient matrix is <1. From this, we arrive at
the condition � � (ω2 + E2

1)1/4(ω2 + E2
2)1/4, which translates

into

� �
√

|�1||�2|, (4)

meaning that the series is always convergent for suf-
ficiently small �, provided that �1 and �2 are
both finite. This allows us to sum the infinite se-
ries and we arrive at F12 = �[iω(�1 − �2) + �2εk1 +
�1εk2]/D, where D = (ω2 + E2

1)(ω2 + E2
2) − �2[2(εk1εk2 −

ω2) − �∗
2�1 − �∗

1�2] + �4. The expression for F21 is ob-
tained by exchanging the band indices and we can also form
the odd and even combinations of F12 and F21 with respect to
the band index:

F odd
12 (k,iω) = F12 − F21

2
= iω�(�1 − �2)/D, (5)

F even
12 (k,iω) = F12 + F21

2
= �(�1εk2 + �2εk1)/D. (6)

The odd-band combination is directly seen to be odd in
frequency, whereas the even-band combination has a conven-
tional even-frequency dependence. This is fully consistent with
Fermi-Dirac statistics for spin-singlet s-wave superconducting
pairing. Furthermore, we see that interband pairing always
requires a finite band hybridization and that the odd-interband
pairing also requires �1 �= �2. Equations (5) and (6) can
be Fourier transformed to real space and then evaluated
numerically, with the result shown in Fig. 1. By definition,
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the odd-frequency pairing amplitude must be zero at ω = 0.
Close to ω = 0, we find that the leading term in F odd is linear in
ω. However, the slope can initially be large and then abruptly
change sign to asymptotically go to zero for large ω, resulting
in an approximate 1/ω-dependence, which has also been found
for some odd-frequency states [53,54].

By forming an analog of Eq. (3) for the intraband anomalous
Green’s function in band 1, we find F1 = {�1[(iω)2 − E2

2] −
�2�2}/D and the corresponding normal Green’s function:
G1 = {(iω + εk1)[(iω)2 − E2

2] − �2(iω − εk2)}/D. The ex-
pressions for F2 and G2 are obtained by mutually exchanging
band indices. The expressions for the normal Green’s functions
allow us to compute the DOS using the standard formula:

N (E) = − 1

π
Im Tr G(E + iδ), δ → 0+. (7)

Here the trace involves a sum over band and spin indices
and an integral over k space. We use similar expressions, but
unsummed over the band index, to define the partial DOS N1

and N2.
The total and partial DOS offer a direct connection to

experimental measurements on multiband superconductors.
In Figs. 2–4, we show numerically obtained results for the
DOS, explicitly exploring the effect of interband pairing.
To most clearly illustrate the effect of interband pairing, we
use two generic parabolic bands: εkj = �

2k2/2mj − μj , with
effective masses m1 = 20me, m2 = 22me, and distances from
the bottom of the bands to the Fermi level μ1 = 100 meV
and μ2 = 105 meV. For this and other band structures, we
studied, the interband effects are most clearly visible when �

is comparable to |εk1 − εk2| for fixed k ≈ kF . The contributions
to the DOS are obtained by numerical integration in the
range including both Fermi surfaces and we use a smearing
parameter δ = 0.01 meV. We have also independently verified
the DOS results by direct numerical diagonalization of the
Hamiltonian in Eq. (1). In fact, we find a perfect agreement
even far beyond the theoretical condition for convergence in
Eq. (4).

FIG. 2. (Color online) Total (N ) and partial densities of states
(N1, N2) when �1 = 2.5 meV and �2 = 1 meV for different values
of � = 0,0.5,3,6 meV [(a)–(d)], with the band structure specified in
the main text.

FIG. 3. (Color online) Total (N ) and partial densities of states
(N1, N2) when �2 = 2.5 meV and � = 3 meV for different values
of �1 = 0.5,2,2.5,2.8,4.5,7.5,10,15 meV [(a)–(h)], with the band
structure specified in the main text.

We here especially showcase that unusual features in the
DOS are only seen when the conditions � �= 0 and �1 �= �2

are both satisfied, which are exactly the two key criteria for
odd-frequency pairing, see Eq. (5). First, the DOS without
any band hybridization, as shown in Fig. 2(a), is just a
sum of two BCS spectra with energy gaps Eg1 = �1 and
Eg2 = �2, respectively, as expected. However, when we turn
on hybridization, see Figs. 2(b)–2(d), we see extra, very
notable, dips in the DOS located beyond the original gap edges
Eg1,2. These dips, symmetrically located around zero energy,
clearly resemble superconducting gaps with their pronounced
BCS-like coherence peaks. However, the DOS in the gap
regions are not zero, but instead equal to the partial DOS
at these energies. Still, we here refer to these features as
hybridization-induced gaps. The hybridization-induced gaps
grow in size and move to higher energies for larger band
hybridizations, and we thus associate these features with
interband superconducting pairing. Their position in energy
can be explained from the numerically obtained spectrum
of Hamiltonian (1), shown in Fig. 5. Panel (a) shows the
hybridized bands close to the Fermi energy in the normal
state, while in panel (b), the two bands are superconducting
and two full gaps thus exist at the Fermi energy. However, at the
position where the electron band εk1 crosses the hole band −εk2
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FIG. 4. (Color online) Total (N ) and partial densities of states
(N1, N2) when �1 = 3 meV and �2 = 0, i.e., only one band with
native superconductivity, for different values of � = 1,2,3,5 meV
[(a)–(d)] with the band structure specified in the main text.

(and opposite, i.e., εk2 crosses −εk1), hybridization-induced in-
terband gaps also open in the superconducting state. Since the
superconducting gaps �1,2 are generally the smallest energy
scale, the hybridization-induced gaps will be located beyond
the BCS gaps Eg1,2. Thus the position of the hybridization-
induced gaps is determined by the normal state band structure,
but they only appear when superconductivity is present.
This phenomenon is similar to what has very recently been
observed in nanoscale superconductors [55]. The reason for
multiple bands and interband pairing in that case is the spatial
confinement and the spatially dependent gap amplitude �(	r).
We note that beyond the hybridization-induced gaps, we see
no other distinctive features associated with interband pairing.
Notably, there are no zero-energy or subgap states, otherwise
often associated with odd-frequency pairing [43,48,49,56–59].
Recent works have pointed out that zero-energy states do not
always accompany odd-frequency pairing [41,54,60,61], and
odd-frequency, odd-interband pairing studied here provides
another example when this happens.

In Fig. 3, we instead fix � = 3 meV, and �2 = 2.5 meV but
vary �1. Distinct hybridization-induced gaps are again present
at energies beyond the original gap edges, independent on the
relative size of the two original gaps. The only exception is
exactly when �1 = �2, then the hybridization-induced gaps
completely disappear, despite the finite band hybridization,
see Fig. 3(c). Detuning the value of �1 slightly from that
of �2 results in small, but noticeable, dips in the DOS,
at the positions where the full gaps develop for increasing
differences between �1 and �2. We thus find that the
hybridization-induced gaps are only present in the DOS when
both � �= 0 and �1 �= �2. These are exactly the two key
criteria for odd-frequency pairing, as seen in Eq. (5). In
fact, only the odd-frequency interband pairing disappears at
�1 = �2, the even-frequency part is in general nonzero as
soon as � �= 0. Specifically, the even- and odd-frequency
interband pairing amplitudes corresponding to the parameters
in Figs. 3(c)–3(e) are plotted in Fig. 1. From there it is clear
that the even-frequency interband pairing is large and not
changing significantly around ω = 0, while the odd-frequency

FIG. 5. (Color online) Hybridized bands in the normal state
(a) (bands are doubled due to particle-hole symmetry in the
Hamiltonian) and in the superconducting state (b). Green (light) color
corresponds to hole character, blue (dark) to electron character. The
band structure is specified in the main text and the density of states
for (b) is shown in Fig. 3(a).

part changes from identically zero in Fig. 3(c) to a notable
nonzero derivative at ω = 0 for Figs. 3(d) and 3(e). We can thus
conclude that odd-frequency interband pairing is necessary
for producing the hybridization-induced gaps. Detecting gaps
beyond the original two superconducting gaps in multiband
superconductors is therefore a clear sign of the presence of
odd-frequency pairing. Intriguingly, additional gap features
have already been reported in the multiband superconductor
Ba8Si46 [27].

Finally, we also show that only one band has to be natively
superconducting for the hybridization-induced gaps to be
present. In Fig. 4, we display how the hybridization-induced
gap grows with increasing � when �2 = 0. A finite single-
particle hybridization � results in a proximity-induced gap
also in the second band, which is manifested as a gap around
zero energy, although always smaller than Eg1 = �1. For all
parameter choices in Fig. 4, the spectrum always has a gap at
zero energy, i.e., there are no zero-energy states. This is not
clearly seen in Fig. 4(a) due to the finite smearing parameter,
but it is clearly visible in the numerical diagonalization results
which do not suffer from the same problem. In addition, a
finite � results in finite odd-frequency interband pairing, and
we consequently also see hybridization-induced gaps beyond
the �1 gap, which also grow with �. In fact, these gaps are
much more pronounced than the proximity-induced gap in
band 2 at zero energy.
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III. CONCLUSIONS

In summary, we have studied the effect of single-
quasiparticle hybridization or scattering in a two-band su-
perconductor. By performing perturbation theory to infinite
order in the hybridization term, we have obtained the ex-
act, fully frequency dependent, expression for the interband
pairing, which can be divided up into odd-frequency, odd-
interband, and even-frequency, even-interband pairing. The
conditions for finite odd-frequency interband pairing are (a)
finite single-quasiparticle hybridization and (b) a nonzero
difference between the original superconducting gaps; no
applied magnetic field, inhomogeneity, or interface is required.
Furthermore, we have shown that the DOS develops nontrivial
gap features with distinct coherence peaks beyond the original
gap edges only if the conditions for odd-frequency pairing
are satisfied, otherwise the spectrum is just a sum of two
BCS spectra. Detecting such additional gaps thus provides
experimental evidence of odd-frequency pairing in multiband
superconductors.
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APPENDIX: DERIVATION OF THE INTERBAND
PAIRING AMPLITUDE

In this Appendix, we derive in detail the exact result (within
perturbation theory) of the interband pairing amplitude in a
two-band superconductor with hybridized bands.

The Hamiltonian for a generic multiband superconductor
can be written as [same as Eq. (1) in the main text]

H =
∑
kσ

εk1a
†
kσ akσ + εk2b

†
kσ bkσ +

∑
kσ

�(k)a†
kσ bkσ + H.c.

+
∑

k

�1(k)a†
k↑a

†
−k↓ + �2(k)b†k↑b

†
−k↓ + H.c. (A1)

It describes two superconducting bands coupled by a hy-
bridization, or scattering, term �(k), which we treat as a
perturbation. We thus start with two copies of the single-band
superconducting Green’s functions [same as Eq. (2) in the
main text]:(

Gj Fj

F
†
j

←−
G j

)
= 1

(iω)2 − E2
j

(
iω + εkj �j

�∗
j iω − εkj

)
, (A2)

which we use together with the hybridization term to build
up the full Green’s functions of the system. Here, G is the
normal electron propagator, which we schematically denote

by , and
←−
G is the hole propagator denoted

by . Moreover, F is the anomalous propagator,
denoted by , and F † is its Hermitian conjugate

. We will furthermore use solid lines to denote
the propagators in band 1 and dashed lines for band 2. The
hybridization term is represented by ×, which always connects
two propagators from different bands with the same direction
of the arrow (due to momentum conservation).

Now, we want to calculate the interband pairing ampli-
tude F12, which corresponds to the sum of all processes
of the type . The simplest processes,
here indicated by the superscript (1), include just
one scattering event ×: F

(1)
12 = −

= F1�G2 − ←−
G 1�F2. The sign of a

particular process is simply given by (−1)l , where l is the
number of hole scattering events, i.e., scattering connecting
two left-going arrows.

Since F12 of any given order has to end with a right-pointing
arrow in band two, there are only two possibilities, either it
ends with or with . Similarly, it
needs to start with a left-going solid arrow, which also limits
the options. By drawing all possible processes and translating
them into formulas, we can write

F
(n)
12 = −←−

G
(n−1)
1 + F

(n−1)
1 . (A3)

Carrying this procedure one step further, we write
←−
G

(n−1)
1 and

F
(n−1)
1 using F

(n−2)
12 and

←−
G

(n−2)
12 as

←−
G

(n−1)
1 = F

(n−2)
12 − ←−

G
(n−2)
12 (A4)

F
(n−1)
1 = F

(n−2)
12 − ←−

G
(n−2)
12 . (A5)

Plugging these into Eq. (A3), we arrive at

F
(n)
12 = ←−

G
(n−2)
12 [ − ]+

F
(n−2)
12 [ − ]. (A6)

By a similar procedure, we get

←−
G

(n)
12 = ←−

G
(n−2)
12 [ − ]+

F
(n−2)
12 [ − ]. (A7)

Thus we get a closed set of equations if we con-
sider F12 and

←−
G 12 together, which is easiest done

in a matrix formalism. Note that all arrow diagrams
can be directly translated to specific formulas using
Eq. (2), e.g., = −�

←−
G 1(−�)F2 =

(−�)2(iω − εk1)�2/{[(iω)2 − E2
1][(iω)2 − E2

2]}.
Summarizing, we arrive at the matrix recursion relation in

Eq. (3) in the main text:(←−
G

(n)
12

F
(n)
12

)
= g

(
e f

−f ∗ e∗

)(←−
G

(n−2)
12

F
(n−2)
12

)
, (A8)
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KOMENDOVÁ, BALATSKY, AND BLACK-SCHAFFER PHYSICAL REVIEW B 92, 094517 (2015)

where g = �2/[(ω2 + E2
k1)(ω2 + E2

k2)], e = (iω − εk1)(iω −
εk2) − �1�

∗
2, and f = −iω(�∗

1 − �∗
2) + �∗

1εk2 + �∗
2εk1.

This is a matrix geometric series and is thus easily summed
giving

(←−
G 12

F12

)
= q

(
1 − ge∗ gf

−gf ∗ 1 − ge

)(←−
G

(1)
12

F
(1)
12

)
, (A9)

where q = [(1 − ge)(1 − ge∗) + g2|f |2]−1 and
←−
G

(1)
12 =

− =
�[�1�

∗
2 − (iω − εk1)(iω − εk2)]/[(ω2 + E2

1)(ω2 + E2
2)].

Some terms cancel and we get F12 = qF
(1)
12 . Finally, F12 =

�[iω(�1 − �2) + �2εk1 + �1εk2]/D, where D = (ω2 +
E2

1)(ω2 + E2
2) − �2[2(εk1εk2 − ω2) − �∗

2�1 − �∗
1�2] +

�4. For the normal propagator G1, needed for calculating the
DOS, we create a matrix equation together with F

†
1 , otherwise

the procedure proceeds in the same manner as above.
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