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Effect of photon-assisted Andreev reflection in the accuracy of a SINIS turnstile
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We consider a hybrid single-electron transistor constituted by a gate-controlled normal-metal island (N)
connected to two voltage-biased superconducting leads (S) by means of two tunnel junctions (SINIS), operated
as a turnstile. We show that the exchange of photons between this system and the high-temperature electromagnetic
environment where it is embedded enhances Andreev reflection, thereby limiting the single-electron tunneling
accuracy.

DOI: 10.1103/PhysRevB.92.094514 PACS number(s): 73.23.Hk, 74.78.Na, 85.25.−j, 74.55.+v

I. INTRODUCTION

The experimental realization of a quantum electric current
standard is one of the scientific and technological challenges
of the present time. This is a key goal in metrology because
it would lead to a modern definition of ampere as well as to
the most accurate comparison of the fundamental constants
RK = h/e2 and KJ = 2e/h [1]. Among the devices proposed
up to now [2–7], the hybrid SINIS single-electron transistor
(SET) depicted in Fig. 1 is one of the most interesting
candidates [8]. Such a device is formed of a normal-metal
(N) island joined to two superconducting (S) electrodes via
two tunnel junctions with capacitances CS for the source
(S) and CD for the drain (D). The entire structure is biased
with a constant voltage VD − VS = V . The amount of electric
charge localized on the island is controlled using a gate
potential Vg(t), capacitively coupled to N by means of a
gate with capacitance Cg . Typically, the charging energy of
the island EC = e2/2C� , with C� = CS + CD + Cg , governs
the tunneling processes in the SET, i.e., the system works in
the Coulomb blockade regime. Additional energy filtering is
provided by the two outer superconductors which protect the
device against unwanted tunneling events. In this context, if
single-electron tunneling is the dominant process, a periodic
Vg(t) signal with frequency f generates an electric current I

through the SET which is equal to ef . In other words, the
SET is a frequency-to-current converter. However, high-order
tunneling events occur in addition to the single-particle ones.
They limit the conversion accuracy of this electronic turnstile,
thereby acting as error sources. The main contribution to
the total error is usually provided by elastic and inelastic
cotunneling [9,10] as well as Andreev reflection and Cooper-
pair cotunneling [11,12]. From a theoretical point of view, it
has been shown that all these processes can be eliminated
efficiently, thereby reaching the metrological requirements
[11]. Nevertheless, in real experiments the achievement of the
accuracy needed for the completion of the so-called quantum
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FIG. 1. Hybrid SINIS single-electron transistor (SET). The black
parts stand for the insulating barriers of the tunnel junctions.

metrological triangle remains a difficult task. In particular, a
noise-induced residual Andreev tunneling current affects the
I -V characteristic of the SET turnstile, although the increase of
the charging energy EC , with respect to the gap parameter � of
the superconductors, leads to a decrease of Andreev reflection
probability [12]. Such a two-electron current may be due to the
effect of the high-temperature electromagnetic environment
the SINIS device is coupled with. The energy provided by
such an external thermal bath to the SET via the exchange
of photons can promote tunneling of particles through the
single junction [13–15]. In this paper, we show that, indeed,
the environment-assisted Andreev reflection limits the turnstile
accuracy, unless it is properly taken care of.

II. ELECTRONIC TRANSPORT IN A SINIS TURNSTILE

In the Coulomb blockade regime, the electronic transport
in the SINIS device of Fig. 1 is determined by the charging
energy EC . For a symmetric device, CS = CD = C, assuming
that initially the excess electric charge localized on the island
is −ne, with n an integer, the energy cost to add (+N , in)
or remove (−N , out) N extra electrons to or from the central
normal-metal electrode is given by

E
in/out
D (n,N ) ≡ ED

island(n ± N ) − ED
island(n)

= ECN2 ± 1
2eV N ± 2EC(n − ng)N, (1)

if the tunneling process occurs through the drain (D), and

E
in/out
S (n,N ) ≡ ES

island(n ± N ) − ES
island(n)

= ECN2 ∓ 1
2eV N ± 2EC(n − ng)N, (2)
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FIG. 2. (Color online) Close view of the overlapping region between the Coulomb diamonds for n = 0 and n = 1 obtained using
(a) EC/� = 1, (b) EC/� = 0.6, and (c) EC/� = 2. Also shown are the single- (dashed blue lines) and two-particle (dashed red lines)
thresholds and the optimal loop (solid black lines) at eV � � from ng = ng,1 to ng = ng,2.

when the insulating barrier of the source (S) is overcome.
In Eqs. (1) and (2), the total energy of the island Ei

island(n ±
N ), with i = S,D, is the difference between the electrostatic
energy due to the Coulomb interactions involving also the
induced charge, and the work done by all the voltage sources to
increase or decrease n with the tunneling of N particles through
one of the insulating layers; ng = CgVg/e is the gate-induced
charge [16,17].

A. Single-electron tunneling

Due to the energy gap in the BCS density of states of a
superconductor, single-electron tunneling events (N = 1) are
energetically allowed above the gap, i.e., when the changes
in energy Eqs. (1) and (2) are smaller than −�. On the
contrary, above −� the excess charge −ne of the island
remains fixed to its initial value. Per each n, the threshold
conditions E

in/out
D (n,1) = −� and E

in/out
S (n,1) = −� give rise

to four crossing lines in the plot of the total bias voltage V as a
function of the gate-induced charge ng . The four intersection
points between these lines are the edges of the so-called
Coulomb diamond, which is a stability region for the system.
This means that no single-electron tunneling process can occur
for the values of V and ng within its area. Unlike the case of a
fully normal SET, NININ, the Coulomb diamonds for a SINIS
device corresponding to different n overlap. Specifically, when
EC ∼ �, the stability region for a given n shares two distinct
portions of the V vs ng plane with the n + 1 and n − 1
diamonds, i.e., in each overlapping area at most two different
values of n are stable. This feature is at the basis of the
generation of a controlled and synchronized single-electron
current through the hybrid single-island structure of Fig. 1. In
this regard, let us consider, for instance, the plot of Fig. 2(a)
where a close view of the Coulomb diamonds corresponding to
n = 0 and n = 1 and their shared part are shown. In principle,
to have a cycle corresponding to a single-particle transfer from
the source to the drain, ng has to move along a closed path in
the V vs ng plane which connects the diamonds where n = 0
and n = 1 are stable. Owing to the presence of the overlapping
region, this kind of connection can be realized by avoiding the
part of the plane where both n = 0 and n = 1 are unstable.
As a result, each single-electron tunneling event to/from the
central island can be controlled by means of the gate potential
Vg . During each cycle of ng along the working loop, the
bias voltage V is usually kept fixed close to �/e. For this

optimal value, the superconducting energy gap � guarantees
an efficient suppression of thermally activated tunneling events
and quasiparticle excitations as well as elastic and inelastic
cotunneling processes [8,11]. A typical loop used in real
experiments with these features is shown in Fig. 2(a). Starting
from ng = ng,1, the number of excess electrons localized on
the island, whose initial value is n = 0, remains constant until
the threshold Sin(0,1), defined by the equation Ein

S (0,1) = −�,
is crossed. At that point one electron can enter in the central
electrode via the source junction and n passes from 0 to 1. Once
ng = ng,2 is reached, the closed path is covered backward. The
extra electron on the island can tunnel out through the drain
only after overcoming the threshold Dout(1,1), given by the
equation Eout

D (1,1) = −�. When ng is again equal to ng,1, the
island is back in its initial state and a new cycle can start.
Since per each cycle exactly one electron is transferred from
the source to the drain, driving ng from ng,1 to ng,2 and back
to ng,1 with a signal with frequency f allows one to generate
the single-electron current I = ef .

B. Andreev reflection and higher-order processes

In addition to single-electron tunneling events, the current
flowing through a SINIS transistor is, in general, also affected
by the Andreev reflection, i.e., the transfer of two electrons
per unit of time inside or outside the island [18,19]. This
second-order tunneling process is insensitive to the energy
barrier provided by the superconducting gap. This means
that the rate of the transitions n → n ± 2 can be relevant
although the device is working at the optimal bias, eV � �.
As a result, the Coulomb diamonds for the Andreev reflection
events are obtained just imposing that the energies Eqs. (1)
and (2) for N = 2 are smaller than zero. However, as shown in
Figs. 2(b) and 2(c), the energy �, together with the charging
energy EC , plays an important role in the determination of
the two-electron tunneling probability. If the ratio EC/� is
smaller than 1, the Andreev diamonds are contained within
the single-particle stability regions. In this case, we see
from Fig. 2(b) that the optimal loop crosses the two-particle
threshold Sin(0,2), given by the equation Ein

S (0,2) = 0, before
the single-electron line Sin(0,1), while going from ng,1 to
ng,2. When ng is decreased back to ng,1, the closed path
overcomes Dout(1,1) after Dout(1,2), the line corresponding
to Eout

D (1,2) = 0. It follows that, in this regime, the control
of single-electron tunneling is compromised by the Andreev
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transitions 0 → 2 and 1 → −1. On the other hand, when
EC/� > 1, the single-particle diamonds are smaller than the
ones for Andreev reflection. Now, the two-particle thresholds
can be avoided, as shown in Fig. 2(c), thereby suppressing the
probability to increase/decrease the charge of the island by two
electrons per each tunneling event.

However, higher-order processes, such as the cotunneling
of one electron and one Cooper pair [11], can occur while
ng covers the loop of Fig. 2(c). They can limit the single-
electron transfer accuracy even if EC/� > 1. In particular,
the more the system stays in the overlapping region where
more than one charge state is stable, the bigger the effect
of unwanted transitions would be. To decrease the influence
of the higher-order error events, the signal ng(t), which is
usually used to go from ng,1 to ng,2 and back to ng,1, is a
square wave. This choice guarantees that the time spent in
between ng,1 and ng,2 is minimized. On the other hand, the
period τ = 1/f of ng(t) has to be long enough in order for the
single-particle tunneling processes to take place. If the number
n changes by one electron with the rate �1e, then the tunneling
error or probability that the charge of the island remains the
same is ε ∼ exp(−�1e/2f ). In particular, the requirement
ε � εmetr = 10−8 has to be satisfied for the definition of the
quantum current standard. This means that �1e � 109 s−1

because the trade-off between the missed tunneling discussed
above and the leakage by Cooper-pair–electron cotunneling
limits the maximum operation frequency to f ∼ 60 MHz to
achieve the metrologically accurate current I = ef ∼ 10 pA
for a single SINIS turnstile [11,20,21].

III. ENVIRONMENT-ASSISTED ANDREEV REFLECTION

A. Effect of the electromagnetic environment
on the electronic transport

As discussed in the previous section, the tunneling pro-
cesses involving more than one electron may be reduced by
biasing the SINIS turnstile at the optimal value eV � �,
considering EC/� > 1 and using for ng(t) a square-wave-like
signal which oscillates with frequency f between the two
induced-gate charges ng,1 and ng,2 of Fig. 2(c). Under these
conditions, one expects to measure the current I = ef with a
relatively high accuracy. In principle, it should be possible even
to go below the relative error εmetr required by the metrological
applications. However, in real experiments, the achievement of
the accuracy needed for the definition of the quantum current
standard still remains a difficult task.

The coupling of the hybrid turnstile with its surrounding
high-temperature electromagnetic environment may be a detri-
mental source of error [13]. Indeed, the absorption/emission
of energy from/to such a thermal bath allows the tunneling
of electrons, even when overcoming the insulating barrier is
energetically forbidden for a well isolated SET. Nevertheless,
the environment-assisted tunneling of quasiparticles can be
efficiently suppressed using, for instance, an on-chip capaci-
tively coupled ground plane [13] and/or by means of a highly
resistive transmission line [14,22]. The main contribution
to the leakage current observed in the I -V characteristic
is typically due to the Andreev reflection. Although large
charging energies, EC > �, should reduce the probability for

RTRT
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FIG. 3. Circuit representation of the hybrid SINIS single-electron
transistor (SET). The two NIS junctions constituting the device have
the same capacitance C and tunnel resistance RT and are connected
to the source VS = −V/2 and drain VD = V/2 voltages via the
impedances Z1(ω) and Z2(ω), respectively. The normal-metal island
is controlled by means of the gate voltage Vg via the capacitance Cg .
The gate impedance Zg(ω), together with Z1(ω) and Z2(ω), represent
the electromagnetic environment at temperature Tenv.

this two-particle process to occur, the tunneling of Cooper pairs
still can have a strong influence on the current flowing through
the transistor [12,20]. The enhancement of the Andreev
tunneling events due to the coupling of the system with the
external bath may account for this behavior [15]. To understand
under which conditions the environment-assisted Andreev
reflection can be relevant, we consider the circuit of Fig. 3,
where we introduce the effective impedances Z1(ω), Z2(ω),
and Zg(ω) to model the thermal bath. We assume also that the
two junctions in the system have the same tunnel resistance
RT .

B. Single-photon-assisted two-electron tunneling rate

In order to find the tunneling rate of the Andreev reflection
process under the effect of the electromagnetic environment,
we start by considering the tunneling Hamiltonian

ĤT = eiϕ̂env
∑
k,p,σ

tk,p(upγ̂
†
p,σ + vpγ̂−p,−σ )âk,σ + H.c., (3)

which accounts for the transfer of two electrons between the
normal-metal island and one of the superconducting electrodes
of the SINIS SET of Fig. 3. Equation (3) is written in terms of
the creation γ̂

†
p,σ (â†

k,σ ) and annihilation γ̂p,σ (âk,σ ) operators
of quasiparticles (electrons) in S (N) with wave vector p (k)
and spin σ = ↑,↓. The tunnel matrix elements tk,p, in general,
depend on p and k. The BCS coherence factors up and vp are
spin independent and satisfy the relations

u2
p = 1 − v2

p = 1

2

(
1 + ξp

εp

)
, upvp = �(

ε2
p − �2

)1/2 , (4)

where ξp is the energy of an electron in S with mo-
mentum p measured with respect to the Fermi level, and
εp = (ξ 2

p + �2)
1/2

is the quasiparticle energy. The translation
operator eiϕ̂env in Eq. (3) accounts for the change of the charge
of the electrodes due to the environment-assisted tunneling
of one electron. Considering the environment as an infinite
ensemble of quantum harmonic oscillators with temperature
Tenv (Caldeira-Leggett model [23–25]), the fluctuating phase

094514-3



DI MARCO, MAISI, HEKKING, AND PEKOLA PHYSICAL REVIEW B 92, 094514 (2015)

S

S

N

N

k1

k1

k2

k2 p

p

ωλ

hωλ

h

FIG. 4. Feynman diagrams of the two possible single-photon
absorption processes giving rise to the environment-assisted Andreev
reflection.

ϕ̂env can be written as

ϕ̂env =
∑

λ

ϕ̂λ =
∑

λ

ρλ(ĉ†λ + ĉλ), (5)

where the phase ϕ̂λ represents the position operator of the har-
monic oscillator λ with mass Cλ and characteristic frequency
ωλ = 1/

√
LλCλ. The coupling term is ρλ = (e/�)

√
�/2Cλωλ,

and the operators ĉ
†
λ and ĉλ create and annihilate one photon

with energy �ωλ (see Appendix A). Hereafter, we assume
that the coupling of the SINIS with the environment is weak,
meaning that at most a single photon is involved in the
exchange of energy between the system and the thermal bath
[14]. In other words, we consider the limit where ρλ 
 1 and
the series expansion of the charge translation operator Eq. (5)
in ĤT can be truncated at the first order, i.e., eiϕ̂env � 1 + iϕ̂env.
The validity of this assumption will be discussed in the
following.

Let us focus on the Andreev process 1 → −1, characterized
by the transfer of two electrons from the normal-metal island
to the superconducting drain electrode as a Cooper pair.
According to perturbation theory in ĤT , the total probability
amplitude to have such a second-order event in the system of
Fig. 3 is given by

Aλ
k1,k2

=
∑
mλ

〈fλ|ĤT |mλ〉〈mλ|ĤT |iλ〉
ζmλ

− ζiλ + iη
, (6)

for fixed values of the environmental index λ, and of the initial
wave vectors k1 and k2. Here, the initial state is

|iλ〉 = ∣∣1k1↑,1k2↓
〉
N
|npairs,0p〉S |nλ + 1〉env, (7)

with two electrons in N with opposite spin and momenta k1

and k2, npairs Cooper pairs and no quasiparticle excitations in
S, and nλ + 1 photons with energy �ωλ in the environment.
On the other hand, the final state is

|fλ〉 = ∣∣0k1↑,0k2↓
〉
N
|npairs + 1,0p〉S |nλ〉env, (8)

with an additional Cooper pair in S, two less electrons in
N, and one less photon in the Caldeira-Leggett bath. The
transition from the state (7) to the state (8) is determined
by all the possible intermediate virtual states |mλ〉 such that
a quasiparticle with momentum p is created in S after the
annihilation of one of the two electrons in N. As illustrated
in Fig. 4, only one of the two tunneling electrons can absorb
the energy of the only available photon, in the weak coupling
limit. As a result, for a fixed wave vector p of the virtual

quasiparticle in S, only the four intermediate states

|1λ〉 = ∣∣1k1↑,0k2↓
〉
N
|npairs,1p〉S |nλ + 1〉env,

|2λ〉 = ∣∣1k1↑,0k2↓
〉
N
|npairs,1p〉S |nλ〉env,

(9)|3λ〉 = ∣∣0k1↑,1k2↓
〉
N
|npairs,1p〉S |nλ + 1〉env,

|4λ〉 = ∣∣0k1↑,1k2↓
〉
N
|npairs,1p〉S |nλ〉env,

can give a nonzero contribution to Aλ
k1,k2

. The difference
between the energies ζmλ

of these virtual states and the energy
ζiλ − iη of the initial state |iλ〉 determines the amplitude
Eq. (6). The imaginary part η = ��1→0/2 accounts for the life-
time broadening of |iλ〉 due to the competing single-electron
tunneling processes occurring with rate �1→0. According to
perturbation theory in the tunneling Hamiltonian ĤT , the
first-order rate, describing one electron going out of the island
through the drain, can be written as

�
Dynes
1→0 = 1

2π

�

�

RK

RT

∫ |Eout
D (1,1)|

0

N
Dynes
S (E/�)

�
dE (10)

in terms of the Dynes density of states of a superconductor
[26],

N
Dynes
S (E/�) =

∣∣∣∣∣Re

[
E/� + iγDynes√

(E/� + iγDynes)2 − 1

]∣∣∣∣∣, (11)

which depends on the phenomenological Dynes parameter
γDynes. In Eq. (10), Eout

D (1,1) = 2EC(ng − 1/2) − eV/2 is the
energy cost that has to be paid by the voltage sources in order
for the transition 1 → 0 to occur [see Eq. (1)]; RK = h/e2 is
the resistance quantum. The Dynes rate Eq. (10) is valid in the
zero-temperature limit, kBTSINIS 
 �, and takes into account
the most relevant single-electron error sources, such as the
environment.

Using Eqs. (7)–(9), the amplitude Eq. (6) reads as

Aλ
k1,k2

= it2
0

√
fk1

√
fk2ρλ

√
nλ

∑
p

(upvp)Sp,λ, (12)

for a low-temperature hybrid single-electron transistor,
kBTSINIS 
 �, and assuming constant tunneling matrix ele-
ments, tk,p = t∗k,p = t0 (point tunnel junction). In Eq. (12),
we introduced the Fermi-Dirac distribution function fk =
[exp(ξk/kBTSINIS) + 1]−1 for the normal-metal electrons and
the sum of the intermediate-state denominators

Sp,λ ≡ 1

εc
p − ξk1 + iη

+ 1

εc
p − ξk2 − �ωλ + iη

+ 1

εc
p − ξk2 + iη

+ 1

εc
p − ξk1 − �ωλ + iη

. (13)

Here, εc
p ≡ εp + Eout

D (1,1) is the virtual state energy and ξk is
the energy of an electron in N with momentum k measured
with respect to the Fermi level. Summing over all the possible
initial states and considering the spin degeneracy, one obtains
the total rate

�env
AR = 4π

�

∑
k1,k2

∑
λ

∣∣Aλ
k1,k2

∣∣2
δ
(
ξ c

k1,k2
+ �ωλ

)
, (14)

where ξ c
k1,k2

≡ ξk1 + ξk2 − Eout
D (1,2) is determined by the

energy cost Eout
D (1,2) = 4ECng − eV needed for the second-
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order transition 1 → −1 to occur [see Eq. (1)]. The
environment-assisted Andreev rate Eq. (14) is written in terms
of the probability∣∣Aλ

k1,k2

∣∣2 = t4
0 fk1fk2ρ

2
λnλ

∑
p,p′

(upvp)(up′vp′)Sp,λS
∗
p′,λ.

Approximating the sums over k1, k2, p, and p′ by the
corresponding integrals, assuming that nλ is given by the Bose-
Einstein distribution nBE(ωλ) = [exp(�ωλ/kBTenv) − 1]−1, and
using the properties of the Dirac delta function, Eq. (14) can
be written as

�env
AR � 1

(2π )3

1

2�

(
RK

RT

)2 ∫ +∞

−∞
dξk1 dξk2

∫ +∞

−∞
dξp dξp′

× (upvp)(up′vp′)fk1fk2nBE
( − ξ c

k1,k2

)/( − ξ c
k1,k2

)
× (SpS

∗
p′)

∑
λ

ρ2
λωλδ

(
ξ c

k1,k2
+ �ωλ

)
. (15)

Here, Sp and S∗
p′ are Sp,λ and S∗

p′,λ evaluated for �ωλ = −ξ c
k1,k2

.
Owing to the fluctuation-dissipation theorem, the sum over λ in
Eq. (15) can be related to the effective impedance Re[Zeff(ω)]
“seen” by the drain (see Appendixes A–C). Then, in the low-
temperature limit kBTSINIS 
 �, Eq. (15) can be recast in the
form

�env
AR � 1

(2π )3

�2

�RKN

(
RK

RT

)2 ∫ 0

−∞
dξk1 dξk2

∫ +∞

�

dεp dεp′

× (√
ε2

p − �2
√

ε2
p′ − �2

)−1
nBE

( − ξ c
k1,k2

)/( − ξ c
k1,k2

)
× (SpS

∗
p′) Re

[
Zeff

(
ξ c

k1,k2
/�

)]
, (16)

using the BCS relation for upvp given in Eq. (4), and the
quasiparticle energies εp and εp′ as integration variables. In
this last formula, we also introduced the number of conducting
channels N of the junction [11,12]. The environment-assisted

Andreev rate Eq. (16) is valid in the single-photon regime
ρλ 
 1, i.e., for small values of the effective impedance,
Re[Zeff(ω)]/RK 
 �/kBTenv [14]. Additionally, since we
assumed that only the absorption process can occur, one has
to impose that ξ c

k1,k2
� 0 in Eq. (14), namely, Eout

D (1,2) � 0.
This means that Eq. (16) applies only for those values of
the induced-gate charge ng equal to and larger than the
two-particle threshold eV/4EC .

For the circuit depicted in Fig. 3, Re[Zeff(ω)] is equal to
the right-hand side of Eq. (B4). The latter is the sum of three
terms which are of the same order of magnitude for the typical
experimental values of the capacitances C and Cg ∼ C, and
of the impedances Z1(ω) ∼ Z2(ω) ∼ Zg(ω). Consequently,
because of the symmetry of the circuit of Fig. 3 with respect
to the gate, we focus hereafter on the case where the voltage
fluctuation across CD is produced only by Zg(ω), considering
Z1(ω) and Z2(ω) as noiseless. In addition, we assume that
the effect of Z1 and Z2 can be neglected with respect to CS

and CD , namely, Z1,2[Eout
D (1,2)/�] 
 �/Eout

D (1,2)CS,D . As a
result, setting δV1 = δV2 = 0 as well as Z1(ω) = Z2(ω) = 0,
Eq. (B4) yields

Re[Zeff(ω)] ≈ R

(C�/Cg)2 + (2ωRC)2
, (17)

for a purely resistive environment Zg(ω) = R and a symmetric
turnstile ZCS

= ZCD
= ZC .

In the particular case where Re[Zeff(ω)] can be approxi-
mated with a frequency-independent resistance R, Eq. (16)
becomes

�hT
AR ≈ γ D

env
�2

(2π )4

�

�N

(
RK

RT

)2 ∫ 0

−∞
dξk1 dξk2

∫ +∞

�

dεp dεp′

× (√
ε2

p − �2
√

ε2
p′ − �2

)−1
(SpS

∗
p′)/

(
ξ c

k1,k2

)2
, (18)

(a) (b) (c)

FIG. 5. (Color online) Photon-assisted Andreev rates, given by the numerical evaluation of Eq. (16), as a function of the gate-induced
charge ng with � = 210 μeV (aluminum), RT = 430 k�, Cg = 10−16 F, N = 100, and γDynes = 10−5. In (a), for each rate R = 1100 �

and EC/� = 1.4 with C = 0.86 × 10−16 F; the values of Tenv are 70 mK (red), 140 mK (blue), 780 mK (green), 1.5 K (orange), and 4.2 K
(purple). In (b), for each curve Tenv = 1.5 K and EC/� = 1.4 with C = 0.86 × 10−16 F; the resistances R are 1100 � (red), 10 � (blue),
0.1 � (green), and 0.001 � (orange). In both (a) and (b), the dashed black line is the Andreev rate valid in the absence of environment
(see Ref. [11]). In (c), for fixed R = 1100 �, the curves with the same color are obtained using the same charging energy, EC/�: 1.4 with
C = 0.86 × 10−16 F (red lines), 1.8 with C = 0.558 × 10−16 F (blue lines), and 2.5 with C = 0.262 × 10−16 F (green lines); the values of
Tenv are 4.2 K (solid curves), 500 mK (dashed curves), and 100 mK (dotted-dashed curves). In all three panels, also shown are the single-
and two-particle thresholds, 1/2 − �/4EC (light-blue vertical dotted lines) and �/4EC (light-red vertical dotted lines), respectively.
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(a) (b)

(c) (d)

FIG. 6. (Color online) Plot of the ratio εacc as a function of the gate-induced charge ng with � = 210 μeV (aluminum), RT = 430 k�,
Cg = 10−16 F, and N = 100. In (a), for each rate γDynes = 10−5, R = 10 � and EC/� = 1.4 with C = 0.86 × 10−16 F; the values of Tenv

are 70 mK (red), 140 mK (blue), 780 mK (green), 1.5 K (orange), and 4.2 K (purple). In (b), for each curve γDynes = 10−5, Tenv = 1.5 K
and EC/� = 1.4 with C = 0.86 × 10−16 F; the resistances R are 1100 � (red), 10 � (blue), 0.1 � (green), and 0.001 � (orange). In
(c), for fixed γDynes = 10−5 and R = 10 �, the curves with the same color are obtained using the same charging energy, EC/�: 1.4 with
C = 0.86 × 10−16 F (red lines), 1.8 with C = 0.558 × 10−16 F (blue lines), and 2.5 with C = 0.262 × 10−16 F (green lines); the values of
Tenv are 1.5 K (solid curves), and 500 mK (dashed curves). In (d), the Dynes parameter γDynes is equal to 10−4 (solid lines) and 10−7 (dashed
lines). The curves with the same color are obtained using the same charging energy, EC/�: 1.4 (red lines), 1.8 (blue lines), and 2.5 (green
lines). In all the four panels, the single- and two-particle thresholds, 1/2 − �/4EC (light blue vertical dotted lines) and �/4EC (light red
vertical dotted lines), respectively, are also shown.

in the high-temperature limit, kBTenv � Eout
D (1,2) =

4ECng − � with (1/4) � ng � (3/4), assuming that
the system is working at the optimal point eV = �,
and for large charging energy EC > �. In Eq. (18),
we introduced the high-temperature Dynes parameter
γ D

env = 2π (R/RK )(kBTenv/�) [13,14], which is the only term
of �hT

AR which depends on R and Tenv.

C. Numerical results

Using Eq. (17), the numerical integration of Eq. (16)
is relatively straightforward. Figure 5(a) shows the photon-
assisted Andreev rate, Eq. (16), as a function of the gate-
induced charge ng , for a single-electron transistor biased at the
optimal voltage, eV = �, and with charging energy EC > �.
Each curve is obtained for different values of the temperature
of the environment Tenv. The other parameters are fixed to
the values of sample S3 of Ref. [12], as indicated in the

figure. We see that the probability to have the tunneling of
a Cooper pair can be different from zero also away from the
two-particle tunneling threshold, unlike the case without an
environment. In particular, the exchange of energy with the
thermal bath in which the SET is embedded can make the
Andreev reflection relevant even around the single-particle
threshold. As a result, although the boundary of the Coulomb
diamond corresponding to the transition 1 → −1 is avoided
by means of the loop of Fig. 2(c), a Cooper pair can tunnel
through the barrier of the drain, while ng goes back to ng,1,
before crossing the 1 → 0 line. The decrease of Tenv leads to
smaller values of �env

AR [see Fig. 5(a)], as well as the use of
an electromagnetic environment with a smaller resistance R

[see Fig. 5(b)]. Whereas, in the latter case, the whole Andreev
rate curve is shifted down proportionally to the ratio between
initial and final resistances, the modulus of the first derivative
of Eq. (16) for ng > �/4EC increases proportionally to Tenv

[see Fig. 5(a)].
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The dependence of the photon-assisted Andreev rate,
Eq. (16), on the charging energy EC is shown in Fig. 5(c).
The increase of the ratio EC/� > 1 allows one to reduce the
effect of the two-particle tunneling on the total electric current
sustained by the SINIS turnstile. In particular, the lower is
the effective temperature of the environment with respect to
the critical temperature of the superconductor, the larger is
the reduction of �env

AR upon increasing EC/�. Notice that the
main effect of the change of the charging energy EC is the
shifting of the environment-assisted Andreev rate along the
induced-gate charge axis by the difference between the initial
and final inverse ratios �/4EC .

Assuming that the number of electrons of the metallic island
of the circuit of Fig. 3 decreases because of the tunneling of
quasiparticles and Cooper pairs only, the total rate can be
written as

�tot � �
Dynes
1→0 + 2�env

AR .

As a result, the error εacc ≡ 2�env
AR/�

Dynes
1→0 determines how

much the environment-assisted Andreev reflection affects
the charge transport in the SINIS transistor. In particular,
the condition εacc < 10−8 is required for the metrological
applications [1]. Figures 6(a)–6(c) show the ratio εacc obtained
from a numerical evaluation of Eqs. (16) and (10), as a
function of ng , when Eq. (17) holds. We see that εacc is a
nonmonotonic function of ng . Starting from the two-particle
threshold occurring for ng = �/4EC , this error first decreases
exponentially as ng is increased. Then, close to the single-
particle threshold, it rises up again, reaching a local maximum
value around ng = 1/2 − �/4EC . For larger ng it tends
exponentially to zero. Because of this kind of behavior, εacc

can be smaller than or of the order of 10−8 when �/4EC <

ng < 1/2 − �/4EC , and, at the same time, much larger than
the value required by metrology around the single-particle
threshold. Consequently, the time spent by the signal used
to drive ng around ng = 1/2 − �/4EC has to be as small
as possible in order to minimize the environment-assisted
Andreev reflection.

From the experimental point of view, the determination,
with a relatively high accuracy, of the values of the effective
parameters of the environment, R and Tenv, is a tough chal-
lenge. The use of the Dynes parameter γDynes, which in general
depends also on R and Tenv, is preferred because it can be
determined from the measured current-voltage characteristic
of the SINIS turnstile. In this regard, the high-temperature
two-particle tunneling rate Eq. (18) allows one to study the
photon-assisted Andreev reflection in terms of γDynes only. In
Fig. 6(d), we plot the error εacc obtained using Eq. (18) as
a function of ng . We see that the Dynes parameter, which
typically ranges from 10−4 to 10−7, strongly affects �hT

AR in the
range �/4EC < ng < 1/2 − �/4EC . On the contrary, γDynes

plays a minor role in the reduction of εacc when ng is close to
the single-particle threshold.

IV. EFFECT OF A RESISTIVE TRANSMISSION LINE ON
THE PHOTON-ASSISTED ANDREEV RATE

The results presented in the previous section have been
obtained considering a SINIS turnstile directly connected to

RTRT

V
2Vg

Z1 Z2Zg

Cg

source island drain

−V
2

(1)
(g)

(2)

FIG. 7. Circuit representation of the hybrid SINIS single-electron
transistor (SET) connected to the impedances of the electromagnetic
environment Z1(ω), Z2(ω), and Zg(ω) by means of three transmission
lines, (1), (2), and (g), respectively.

the external electromagnetic environment, as illustrated in
Fig. 3. Using Eq. (17), we have shown that the smaller are the
temperature Tenv and the resistance R of the external circuit,
as well as the total capacitance C� , the lower is the Andreev
tunneling rate Eq. (16) with respect to the single-particle one.
In particular, we have seen that metrological accuracy may be
reached for certain values of Tenv, R, and C� . However, in
real experiments, the control of these parameters is typically
limited. In general, their tuning to the desired values can be
a difficult task. As discussed in Ref. [14], the insertion of
cold and lossy transmission lines between the turnstile and the
environment can help in overcoming this problem. One expects
that such an indirect coupling allows a further reduction of the
environment-assisted two-particle tunneling.

We therefore consider the circuit of Fig. 7 where the three
impedances of the environment are connected to the SINIS
turnstile by means of three transmission lines. We assume
that the latter are noiseless, i.e., at zero temperature. The
noise across the drain of a SINIS device in such an indirect
configuration is derived in Appendix C. In this case, the
effective impedance Re[Zeff(ω)] appearing in Eq. (16) is given
by Eq. (C6). Let us assume again that Z1(ω) ∼ Z2(ω) ∼ Zg(ω)
and C ∼ Cg as well as that the three transmission lines have
length � and are all described by the same parameters R0, C0,
and L0, the resistance, the capacitance, and the inductance per
unit length, respectively. Then, the three terms in the right-hand
side of Eq. (C6) contribute in a similar way to Re[Zeff(ω)].
In particular, they have the same order of magnitude for large
R0 and �. On the basis of these considerations and given
the symmetry of the circuit of Fig. 7, we assume that the
detrimental noise comes only from Zg(ω), i.e., the voltage
noises are δVg �= 0 and δV1 = δV2 = 0, neglecting the effect
of Z1(ω) and Z2(ω) as well as of the transmission lines (1) and
(2). As a result, the effective impedance “seen” by the drain
reduces to

Re[Zeff(ω)] ≈ R|αg(ω)|2|Tg(ω)|2, (19)
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(a) (b)

FIG. 8. (Color online) (a) Plot of the photon-assisted Andreev rate Eq. (16) and (b) of the corresponding ratio εacc as a function of the
gate-induced charge ng . In (a), the solid and the dashed lines are obtained using Eqs. (19) and (21), respectively, setting z0 = c0 = r0 = 0 (red
lines) and using z0 = 0.7 and c0 = 1 with r0 = 5 × 103 (blue lines), r0 = 5 × 104 (green lines), and r0 = 5 × 105 (orange lines). In (b), the
parameters for the plotted ratios are z0 = c0 = r0 = 0 (solid lines) and z0 = 0.7 and c0 = 1 with r0 = 5 × 104 (dashed lines) and r0 = 5 × 105

(dotted-dashed lines). The curves with the same color are obtained using the same charging energy, EC/�: 1.4 with C = 0.86 × 10−16 F (red
lines), 1.8 with C = 0.558 × 10−16 F (blue lines), and 2.5 with C = 0.262 × 10−16 F (green lines). In both panels, we set � = 210 μeV
(aluminum), RT = 430 k�, Cg = 10−16 F, N = 100, γDynes = 10−5, Tenv = 1.5 K, and R = 10 �. The single- and two-particle thresholds,
1/2 − �/4EC (light-blue vertical dotted lines) and �/4EC (light-red vertical dotted lines), respectively, are also shown.

with

αg(ω) = −
[

2
ZCg

ZC

+ 1

2

ZCg

Z
(g)
∞

(
λCg

+ 1
)

+λg

(
λCg

+ 1

λg + 1

)
eiKg (ω)�Tg(ω)

]−1

, (20)

for Zg(ω) = R and under the condition Z1,2[Eout
D (1,2)/�] 


�/Eout
D (1,2)CS,D . The effective impedance Eq. (19) tends to

the asymptotic expression

Re[Zeff(ω)] ≈ R

(
Cg

2C

)2
e−�

√
2ωR0C0

1 + ωR0C2
g/C0

, (21)

if the transmission line is highly resistive, R0 �
L0E

out
D (1,2)/�, and long enough, �

√
2Eout

D (1,2)R0C0/� � 1,
and when the resistance of the environment is small,
R 
 R0Cg/2C0 [14]. We see that Eq. (21) and in turn
the environment-assisted Andreev rate Eq. (16) decay
exponentially in terms of � and R0.

In Fig. 8, we show the plots of the Andreev rates and the
ratios εacc resulting from the numerical integration of Eq. (16)
with Re[Zeff(ω)] given by Eqs. (19) and (21). In both panels,
we used the dimensionless parameters z0 = √

L0/C0/R, c0 =
�C0/C, and r0 = �R0/R, whose values are chosen according
to the analysis about the transmission function given in
Ref. [14] and in agreement with the currently achievable
experimental values of �, L0, C0, and R0. Similar results hold
also in the configuration obtained restoring the fluctuations
due to Z1(ω) and Z2(ω) and treating Zg(ω) as a noiseless
impedance.

From Fig. 8(a) we see that the bigger is r0, the smaller is
�env

AR. In other words, a long and highly resistive transmission
line allows for a reduction of the environment-assisted Cooper-
pair tunneling. By comparing the solid and the dashed lines

obtained using Eqs. (19) and (21), respectively, we note that
this decreasing is exponential-like. Eventually, the increase of
� and/or R0 leads to a decrease of εacc below 10−8, even close
to the single-particle threshold [see Fig. 8(b)]. As a result,
the use of a highly resistive and noiseless transmission line
allows one to filter out effectively the photon-assisted Andreev
tunneling and, in particular, to reach the accuracy needed for
metrological applications.

V. CONCLUSIONS

In this paper, we studied environment-assisted Cooper-pair
tunneling in a SINIS turnstile working in the Coulomb block-
ade regime. Specifically, we derived the Andreev reflection rate
when only a single photon of the thermal bath is involved in the
process. We found that the single-photon absorption enhances
the two-electron tunneling from N to S. In particular, the
probability per unit of time to have Andreev events is different
from zero even for values of the induced-gate charge ng close
to the single-particle threshold 1/2 − �/4EC . As a result, the
single-electron current, which is expected to be the dominant
one in the device when ng follows the loop shown in Fig. 2(c),
is also affected by the tunneling of Cooper pairs due to the
environment. The influence of this source of error on the total
current can be reduced by decreasing the effective resistance
R and temperature Tenv of the environment or, equivalently,
the Dynes parameter γDynes. The achievement of metrological
accuracy is also possible by increasing the charging energy EC

with respect to the superconducting energy gap �. We finally
show that using a cold and lossy transmission line to couple
indirectly the environment with the SINIS turnstile allows
one to reduce further the probability of having two-electron
tunneling events, especially when ng crosses the single-particle
threshold while covering the optimal loop. Given the limited
controllability and tunability of R, Tenv, and C� [27,28],
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the connection of the SINIS transistor to relatively long and
highly resistive transmission lines, for instance, in the form
of chromium lines on the chip [22,29], seems to be the most
promising way to produce experimentally a metrologically
accurate single-electron current.

ACKNOWLEDGMENTS

The authors thank D. V. Averin for useful discussions.
Financial support from the Marie Curie Initial Training
Network (ITN) Q-NET (Project No. 264034), from Institut
Universitaire de France and from Aalto University’s ASCI
visiting professor program is gratefully acknowledged. The
work was partially supported by the Academy of Finland
through its LTQ (Project No. 250280) COE grant (VFM and
JPP), and the National Doctoral Program in Nanoscience,
NGS-NANO (VFM).

APPENDIX A: CALDEIRA-LEGGETT MODEL AND
FLUCTUATION-DISSIPATION THEOREM

According to the Caldeira-Leggett model, the impedance
Z(ω) of an electric circuit can be modeled as an ensemble of
infinite quantum harmonic LC oscillators with the Hamiltonian

Ĥenv =
∑

λ

[
Q̂2

λ

2Cλ

+ 1

2
Cλω

2
λ

(
�

e
ϕ̂λ

)2
]
.

The charge Q̂λ and phase (�/e)ϕ̂λ operators play the role of the
momentum and position, respectively, of the particle/oscillator
λ with mass Cλ and characteristic frequency ω2

λ = 1/LλCλ.
Each oscillator λ of the ensemble/environment affects both
the charge Q̂ and phase ϕ̂ of the circuit. In particular, the
total phase fluctuation ϕ̂env of ϕ̂ due to Z(ω) is given by
the superposition of all the phases of the oscillators of the
environment, i.e., ϕ̂env = ∑

λ ϕ̂λ. Since ϕ̂λ is the position
operator of a harmonic oscillator, ϕ̂env can be written as

ϕ̂env =
∑

λ

ρλ(ĉ†λ + ĉλ), (A1)

in terms of the creation ĉ
†
λ and annihilation ĉλ operators of one

photon. In Eq. (A1), we introduced the coupling term ρλ =
(e/�)

√
�/2Cλωλ. In the Heisenberg picture, ϕ̂env depends

explicitly on time, with ĉ
†
λ(t) = e+iωλt ĉ

†
λ and ĉλ(t) = e−iωλt ĉλ.

The first time derivative of Eq. (A1) gives the fluctuating
voltage operator

V̂env(t) = �

e

dϕ̂env(t)

dt
= �

e

∑
λ

ρλiωλ[ĉ†λ(t) − ĉλ(t)], (A2)

whose mean value over the eigenstates of Ĥenv is zero.
On the other hand, the voltage-voltage correlation function
δV̂env(t,0) ≡ 〈{V̂env(t),V̂env(0)}〉 is

δV̂env(t,0) =
(

�

e

)2 ∑
λλ′

ρλρλ′(iωλ)(iωλ′)Cλ(t,0), (A3)

with

Cλ(t,0) ≡ 〈{[ĉ†λ(t) − ĉλ(t)],[ĉ†λ(0) − ĉλ(0)]}〉. (A4)

C1 C2

Cg

ΔV1 ΔVc ΔV2

Z1 Z2
Zg

δ I1
δ Ig

δ I2
ΔVg

FIG. 9. Circuital scheme of a SINIS turnstile connected to an
electromagnetic environment which produces current noise.

The symbols {,} and 〈· · · 〉 in Eq. (A4) indicate the anticom-
mutator and quantum mean value over the eigenstates of Ĥenv,
respectively. Assuming that the number of photons of the
environment is infinite, the terms in Eq. (A3) which create or
destroy more than one photon can be neglected. Consequently,
the correlation function δV̂env(t,0) becomes

δV̂env(t,0) �
(

�

e

)2 ∑
λ

ρ2
λω

2
λ(eiωλt + e−iωλt )(1 + 2nλ),

(A5)
where nλ is the mean value of photons with frequency ωλ.
The Fourier transform of Eq. (A5) gives the spectral density
function of the thermal bath,

[δV̂env(t,0)]ω �
(

�

e

)2 ∑
λ

ρ2
λω

2
λ coth

(
1

2

�ωλ

kBTenv

)

×2π [δ(ω − ωλ) + δ(ω + ωλ)]. (A6)

To obtain Eq. (A6) we assumed that nλ is given by the Bose-
Einstein distribution function nBE(ωλ) = [exp(�ωλ/kBTenv) −
1]−1, which satisfies the relation 1 + 2nBE(x) = coth(x/2).
Tenv is the temperature of the environment.

On the other hand, assuming that the Fourier-transformed
correlation function [δV̂env(t,0)]ω satisfies the quantum
fluctuation-dissipation relation,

[δV̂env(t,0)]ω = 2�ω Re[Z(ω)] coth

(
1

2

�ω

kBTenv

)
, (A7)

and comparing Eq. (A6) with Eq. (A7), we finally get the
expression

Re[Z(ω)] = RK

2

∑
λ

ρ2
λωλ[δ(ω − ωλ) + δ(ω + ωλ)], (A8)

which allows one to relate the macroscopic impedance Z(ω)
with the microscopic quantities characterizing the environ-
ment.

APPENDIX B: VOLTAGE FLUCTUATIONS
ACROSS THE DRAIN

In this Appendix, we consider the circuit of Fig. 9. We
proceed in the evaluation of the voltage noise δV = �Vc −
�V2 across the capacitor C2 and of its correlation function.
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The latter can refer, for instance, to the drain of the SINIS
transistor.

We start by considering clockwise currents in the two
meshes of the circuit of Fig. 9. Then, assuming that the
impedances Z1, Z2, and Zg produce the current noises δI1,
δI2, and δIg , respectively, the following equations

�I1 = δI1 − �V1

Z1
= −�Vc − �V1

ZC1

,

�I2 = δI2 + �V2

Z2
= �Vc − �V2

ZC2

,

�Ig = δIg + �Vg

Zg

= −�Vc − �Vg

ZCg

,

�Ig = �I1 − �I2,

hold. They can be rewritten as

ZC1δV1 = (
ZC1 + Z1

)
�V1 − Z1�Vc,

ZC2δV2 = −(
ZC2 + Z2

)
�V2 + Z2�Vc,

ZCg
δVg = −(

ZCg
+ Zg

)
�Vg + Zg�Vc,

0 = −ZCg
Zc2�V1 − ZCg

Zc1�V2 − ZC1ZC2�Vg

+ (
ZCg

ZC2 + ZCg
ZC1 + ZC1ZC2

)
�Vc,

in terms of the voltage noises δV1 = Z1δI1, δV2 = Z2δI2, and
δVg = ZgδIg . By solving this system of equations one can get
the unknown potentials �V1, �V2, �Vg , and �Vc. After some
algebra, the voltage drop δV reads as

δV = 1

Z (ω)
[Z1(ω)δV1 + Z2(ω)δV2 − Z3(ω)δVg], (B1)

where we introduced the impedances

Z (ω) = Z3(ω)
[
Z2(ω) + ZC2 (ω)

]
/ZC2 (ω)

+Z1(ω)
[
Z3(ω) + Z2(ω) + ZC2 (ω)

]
/ZC2 (ω),

Z1(ω) = Zg(ω) + ZCg
(ω), (B2)

Z2(ω) = Z1(ω) + ZC1 (ω) + Zg(ω) + ZCg
(ω),

Z3(ω) = Z1(ω) + ZC1 (ω).

Here, ZCj
(ω) = i/(ωCj ) is the impedance of the j th ca-

pacitor with j = 1,2,g. If δV1, δV2, and δVg satisfy the
quantum fluctuation-dissipation theorem [see Eq. (A7)], then
the voltage-voltage correlation function of δV is

[δV̂ (t,0)]ω = 2�ω

∣∣∣∣Z1(ω)

Z (ω)

∣∣∣∣
2

Re[Z1(ω)] coth

(
1

2

�ω

kBT1

)

+ 2�ω

∣∣∣∣Z2(ω)

Z (ω)

∣∣∣∣
2

Re[Z2(ω)] coth

(
1

2

�ω

kBT2

)

+ 2�ω

∣∣∣∣Z3(ω)

Z (ω)

∣∣∣∣
2

Re[Zg(ω)] coth

(
1

2

�ω

kBTg

)
.

(B3)

In Eq. (B3), we introduced the temperatures T1, T2, and Tg

of the impedances Z1, Z2, and Zg , respectively. Similarly
to Appendix A, the function [δV̂ (t,0)]ω can be related to
the microscopic properties of the environment acting on the

C1 C2

Cg

V1(0) ΔVc V2(0)

Z1 Z2
Zg

δ I1
δ Ig

δ I2

Vg(0)

x
x

x

0

0

0

�1

�g

�2

(1)

(g)

(2)

FIG. 10. Circuital scheme of a SINIS turnstile connected to a
noisy electromagnetic environment by means of transmission lines.

capacitance C2 by comparing Eqs. (A6) and (B3):

RK

2

∑
λ

ρ2
λωλδ(|ω| − ωλ)

=
∣∣∣∣Z1(ω)

Z (ω)

∣∣∣∣
2

Re[Z1(ω)] +
∣∣∣∣Z2(ω)

Z (ω)

∣∣∣∣
2

Re[Z2(ω)]

+
∣∣∣∣Z3(ω)

Z (ω)

∣∣∣∣
2

Re[Zg(ω)]. (B4)

To obtain Eq. (B4) we imposed that the temperature of the
environment is uniform, T1 = T2 = Tg = Tenv.

APPENDIX C: VOLTAGE FLUCTUATIONS ACROSS THE
DRAIN IN THE PRESENCE OF TRANSMISSION LINES

In this Appendix, we analyze the circuit of Fig. 10 where
the transmission lines (1), (2), and (g) are inserted between
the capacitances of the turnstile C1, C2, and Cg and the
effective impedances Z1, Z2, and Zg which give rise to the
current noises δI1, δI2, and δIg , respectively. The j th line,
with j = 1,2,g, has length �j and is characterized by the
parameters R

(j )
0 , C(j )

0 , and L
(j )
0 , the resistance, the capacitance,

and the inductance per unit length, respectively. As in
Appendix B, we focus on the derivation of the voltage-voltage
correlation function of the potential δV = �Vc − V2(0)
across C2.

Imposing clockwise currents in the two main meshes of the
circuit of Fig. 10, one can write the system of equations

I1(�1) = δI1 − V1(�1)

Z1
, I1(0) = −�Vc − V1(0)

ZC1

,

Ig(�g) = δIg + Vg(�g)

Zg

, Ig(0) = �Vc − Vg(0)

ZCg

,

I2(�2) = δI2 + V2(�2)

Z2
, I2(0) = �Vc − V2(0)

ZC2

,

Ig(0) = I1(0) − I2(0), (C1)
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where

Vj (x) = Aje
iKj (ω)x + Bje

−iKj (ω)x,

Ij (x) = [Aje
iKj (ω)x − Bje

−iKj (ω)x]/Z(j )
∞ (ω) (C2)

are the voltage and the current at a given point x along
the j th transmission line. In Eqs. (C2), we introduced the
wave vector K2

j (ω) = ω2L
(j )
0 C

(j )
0 + iωR

(j )
0 C

(j )
0 of the signal

propagating along the j th line, and the impedance Z
(j )
∞ (ω) =

i(R(j )
0 − iωL

(j )
0 )/Kj (ω) (see also Refs. [14,17]). The unknown

coefficients Aj and Bj and the potential drop �Vc are the
solutions of the system of equations presented in Eq. (C1).
After some algebra, one can derive the voltage noise δV across
C2:

δV = α1(ω)T1(ω)δV1 + αg(ω)Tg(ω)δVg + α2(ω)T2(ω)δV2.

(C3)

Here, δV1 = Z1δI1, δV2 = Z2δI2, and δVg = ZgδIg . In
Eq. (C3), we introduced the coefficients

α1,g(ω) = − F (ω)

ZC1,g
(ω)Y (ω)

, α2(ω) = 1 − F (ω)

ZC2 (ω)Y (ω)
,

(C4)

with

F (ω) = 1

2
(1 − λC2 ) + λ2

(
λC2 + 1

λ2 + 1

)
eiK2(ω)�2T2(ω),

Y (ω) = λC1 + 1

2Z
(1)
∞

− λ1

(
λC1 + 1

λ1 + 1

)
e−iK1(ω)�1

T1(ω)

ZC1 (ω)

+ λCg
+ 1

2Z
(g)
∞

+ λg

(
λCg

+ 1

λg + 1

)
eiKg (ω)�g

Tg(ω)

ZCg
(ω)

+ λC2 + 1

2Z
(2)
∞

+ λ2

(
λC2 + 1

λ2 + 1

)
eiK2(ω)�2

T2(ω)

ZC2 (ω)
, (C5)

where

T1(ω) = 1

2

(1 − λC1 )(λ1 + 1)

λ1λC1e
−iK1(ω)�1 − eiK1(ω)�1

,

T2(ω) = 1

2

(1 − λC2 )(λ2 + 1)

e−iK2(ω)�2 − λ2λC2e
iK2(ω)�2

,

Tg(ω) = 1

2

(1 − λCg
)(λg + 1)

e−iKg (ω)�g − λgλCg
eiKg (ω)�g

are the transmission functions, and

λj (ω) = Z
(j )
∞ (ω) − Zj (ω)

Z
(j )
∞ (ω) + Zj (ω)

, λCj
(ω) = Z

(j )
∞ (ω) − ZCj

(ω)

Z
(j )
∞ (ω) + ZCj

(ω)

the reflection coefficients [14].
Assuming that δV1, δV2, and δVg satisfy the fluctuation-

dissipation theorem [see Eq. (A7)], and that Z1, Z2, and Zg

are at the same temperature, we can finally get the relation
RK

2

∑
λ

ρ2
λωλδ(|ω| − ωλ) = |α1(ω)|2|T1(ω)|2 Re[Z1(ω)]

+|α2(ω)|2|T2(ω)|2 Re[Z2(ω)]

+|αg(ω)|2|Tg(ω)|2 Re[Zg(ω)]

(C6)

by means of Eq. (A6).
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