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Collective modes in superconductors with competing s- and d-wave interactions
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We calculate the collective-mode spectrum in models of superconductors with attractive interactions in s and
d channels as a function of their relative strength, across a phase diagram that includes transition between s-,
(s + id)-, and d-wave ground states. For one-band systems, we recover the largely known results for the phase,
amplitude, and Bardasis-Schrieffer modes of pure s or d states, and show how the well-defined Bardasis-Schrieffer
mode softens near the s + id phase boundary and evolves in a characteristic manner through the s + id phase as
a mixed-symmetry mode. For two-band systems, we consider a model of hole-doped Fe-based superconductors,
and find in the case of an s-wave ground state a well-defined Bardasis-Schrieffer mode below the lowest gap edge,
as well as a second, damped mode of this type between the two gap energies. Both modes soften as the s + id

phase is approached, and only a single “mixed-symmetry Bardasis-Schrieffer mode” below the pair-breaking
continuum propagates in the s + id phase itself. These modes coexist with a damped Leggett mode with collective
frequency between the two gap scales. In the pure d state, no Bardasis-Schrieffer type s excitonic mode exists at
low T . We briefly discuss Raman scattering experiments and how they can be used to identify an s + id state,
and to track the evolution of competing s and d interactions in these systems.
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I. INTRODUCTION

In contrast to cuprate superconductors, which are believed
to have universal d-wave symmetry [1,2], the Fe-based
superconductors (FeSC) appear to manifest generic s-wave
pairing, with an order parameter that likely changes sign
between Fermi surface (FS) sheets [3–5]. On the other hand,
calculations of pairing by exchange of spin fluctuations have
suggested from the early days of research on these materials
that the d-wave channel can be strongly competitive, and
might under some circumstances become the dominant pair
symmetry [6,7]. Within a random phase approximation (RPA)
treatment, it was argued that overdoping either by holes or
electrons away from a six-electron/Fe parent material should
lead to a d-wave ground state [8,9]. This gave rise to the
possibility that the symmetry-broken s-wave phase could make
a low-temperature transition to a d-wave phase, and several
authors argued that this should proceed through an intervening
s + id state, in which s- and d-wave functions are combined
with fixed relative phase π/2 and time-reversal symmetry T
is broken [10,11]. While such a transition would be of great
potential interest, and represent the first example of its kind,
an s + id state is not trivial to detect. Although T is broken,
the state is not chiral, and thus does not manifest spontaneous
edge currents as discussed, e.g., in the context of the p + ip′
state of Sr2RuO4. Its quasiparticle excitations are fully gapped,
but so are those of the s-wave state out of which it evolves,
so thermodynamic signatures of the transition are likely to be
weak.

The proximity of different pairing channels is an unusual
situation in superconductors (SC), but was studied quite early
in the pioneering work of Bardasis and Schrieffer [12], where
the effect of fluctuations in a subdominant pairing channel
was investigated in a conventional s-symmetry ground state.
The motion of the order parameter was found to include a
collective mode corresponding to the oscillation of the phase
of the subdominant pairing channel, with the q → 0 frequency

dependent on the difference between the inverse of the two
pairing interaction components. This frequency is located
below the pair-breaking edge of the condensed s-wave system.
This “Bardasis-Schrieffer (BS)” mode (sometimes referred
to as a particle-particle exciton) was never convincingly
observed in conventional superconductors owing, presumably,
to a dearth of systems exhibiting a strong s-d competition.
Taking a hint from the proximity of s and d channels
predicted by spin fluctuation theory, FeSC can be viewed as
excellent candidates to probe such modes. A search using
Raman scattering was proposed in FeSC by Devereaux and
Scalapino [13]. Recently, two electronic Raman measurements
on Ba1−xKxFe2As2 [14,15] and NaFe1−xCoxAs [16] found
features associated with BS modes. The exact identification
of these features with a BS mode is hindered by the fact that
these systems possess multiple gaps and the exact nature of
possible collective modes and their evolution across a typical
doping phase diagram is not clearly known. Nevertheless,
these discoveries raise the prospect of systematic studies of the
interaction strengths and collective modes in different channels
in FeSC.

To facilitate the interpretation of experimental results in
this area as they develop, we provide here the collective
mode spectrum in a simplified model of an unconventional
superconductor with competing pairing in s and d channels.
The prime focus of this work is the study of collective modes in
a non-s-wave ground state. We thus explicitly account for the
possibility of a transition to an s + id state between pure s and
d phases and investigate collective modes in the s + id state.
We find a mixed-symmetry collective mode which couples
the amplitude and phase sectors of the fluctuations in the
SC order parameter and exhibits oscillations in both s- and
d-symmetry channels. As a demonstration of our approach,
we also study the simpler, one-band case, and drive it through
s to s + id to d transitions. We reproduce the well-known
results for collective modes in single-band superconductor
and use them as a benchmark to discuss the differences in a
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multiband system. We demonstrate the existence of the mixed-
symmetry collective mode in both one-band and multiband
cases.

The study of collective modes in “exotic” non-pure-s-wave
superconductors has some history: Hirschfeld et al. [17]
studied the analog of the 3He-B “squashing modes” in the
Balian-Werthamer p-wave ground state, discussing how such
modes could be observed in optical conductivity. Wu and
Griffin [18] studied the possibility of an s excition for systems
with d-wave ground states, and showed that this mode does
not propagate at low T . More recently, in the context of
the FeSC, Devereaux and Scalapino investigated the role of
a BS particle-particle exciton on the Raman spectrum of
an s± superconductor [13]. Khodas et al. studied Raman
signature of this mode and the role of density fluctuations in
Fe-selenides [19]. Bittner et al. derived general expressions
for the collective modes in the s-wave ground state for
noncentrosymmetric systems [20].

Works on collective modes in T -broken superconductors
are somewhat rarer. Several papers generalized the well-
known collective modes of the 3He-A phase [21] to p + ip′
and d + id ′ superconductors in situations where the two
harmonics in question corresponded to the basis functions
of a two-dimensional (2D) representation of the symmetry
group [22,23]. Balatsky et al. [24] phenomenologically dis-
cussed a “clapping”-type orbital mode analogous to those
discussed in Ref. [23], but for a general situation where the
two harmonics d and d ′ were not necessarily degenerate. The
same mode and its detection in Raman experiments were also
discussed in Lee et al. [25].

This mode corresponded to an oscillation of the relative
phase of the two components dx2−y2 (d) and dxy(d ′), two
distinct representations of the tetragonal group. More recently,
one of the authors [26] and Marciani et al. [27] studied, in the
context of FeSC, the Leggett modes (the oscillations of the
relative phase between order parameters on two bands: see
Ref. [28]) in a special s-wave T -broken s + is ′ SC where it
was found that the mode softened at the boundaries of the
s + is ′ state (see also Refs. [29–31]).

This work is more along the spirit of the last work above
in the sense that the collective modes in a multiband s + id

SC are investigated. The mixed-symmetry collective mode
that we find also softens at the boundaries of the s + id state.
Aside from the mixed-symmetry collective mode in the s + id

ground state, we also find, in the s-wave ground state, a damped
Leggett mode (which has s-wave symmetry) residing between
the multiple gaps in the system (in our language we do not
consider them to be true collective modes of the system, but
nevertheless appropriate response functions will show broad
peaks). Additionally, aside from the usual BS mode residing
below the minimum gap in the system, we report another
damped BS mode residing between the multiple gaps. Within
our model, we can show that there is only one BS mode below
the minimum gap for any interaction. The presence of multiple
BS modes is therefore expected to be a generic feature of
multiband systems.

In this work, we have ignored the coupling to density
fluctuations. The main qualitative effect of ignoring the density
fluctuations is related to the Bogoliubov-Anderson-Goldstone
(BAG) mode. Although the BAG mode is expected due

to spontaneous breaking of U(1) symmetry during the SC
transition, coupling to charge density fluctuations implies that
the oscillation of the gauge degree of freedom is identical
to the usual plasmon (“Anderson-Higgs mechanism”) [32].
In conventional cases of one- and two-band SC, it is well
known that coupling to density fluctuations does not affect
the mass of the Leggett [26–28] or the BS modes [12]. Since
the arguments are based on gauge invariance and symmetries,
we assume without proof that same hold for our multiband
system. We expect our work to provide useful insight in terms
of number of collective modes to be expected in a system
and detecting a nontrivial multiband SC ground states (s + id

is our case). Although there are many ways to model the
multiband scenario, we limit our considerations to a minimal
model that can be readily applied to FeSC, as will be described
later.

We study the collective modes by studying the possible
excitations in the system within linear response in different
angular momentum channels. This method is sometimes
referred to as a generalized RPA, and is known to yield
results identical to those obtained from the kinetic equation
method [21]. We explicitly derive a one-band case and extend
the formula to the multiband scenario. We stress that the
formulation has the great advantage of identifying all the
collective modes in a clean SC in all angular momentum
channels with minimal effort. The biggest advantage is its
scalability to multiband or multiorbital systems. The rest of
the paper is organized as follows: In Sec. II, we specify
our one-band model, derive the collective-mode equation,
and study the collective modes, reproducing the well-known
results. In Sec. III, we discuss the modeling of a FeSC with
three pockets, discuss the collective modes, and highlight
the differences with one-band model. In Sec. IV, we discuss
our results in connection to FeSC and some of the recent
Raman experiments. We summarize our main findings in
Sec. V. The Appendixes present details of some of the
calculations.

II. COLLECTIVE MODES IN A ONE-BAND MODEL

We revisit this simple model as this helps us in two ways:
we can systematically tune the system through a s to s + id

to d transition and trace the collective modes across the
phase diagram (through the s + id phase whose collective
modes have not been addressed before); we will then use this
result as the benchmark against which the multiband case
will be compared. Since we are interested in studying the
collective modes in the SC state, we only retain the interactions
in the particle-particle (p-p) channel. As discussed in the
Introduction, the interactions in the particle-hole (p-h) channel
(which couples the SC fluctuations to density fluctuations)
will be dropped. The logic of our presentation will be the
following: we start with an s-wave ground state; use the d-wave
interaction as our tuning parameter to generate a phase diagram
that scans through the s-, (s + id)-, d-wave regions; we then
find the collective modes with both s and d symmetries in each
region and consistently track them as the d-wave interaction
is tuned.
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A. Model and phase diagram

Our one-band model is a 2D Fermi liquid (FL) with
the interaction V ( �p, − �p; �k, − �k) ≡ V ( �p,�k) in the pairing
channel. We decompose this interaction into different singlet
angular momentum channels (limiting ourselves up to the
d-wave harmonic):

V ( �p,�k) = Us + Udf�kf �p, (1)

where f�k = √
2 cos 2θ�k . All the vectors are by definition on the

circular fermi surface (FS) and θ�k is the angle of �k measured
from the kx axis. We follow the convention where repulsion
is denoted by the positive sign of U ’s. We keep Us fixed
and tune Ud . Within weak coupling, this results in the usual
self-consistency relation for the order parameter � �p [33]:

� �p = −
∫

K

V ( �p,�k)
��k

ω2
n + ε2

�k + |��k|2
, (2)

where
∫
K

stands for T
∑

n

∫
d2k

(2π)2 . Taking as input that the only
stable solutions are s, s + id, and d states (no s + d) [11], and
writing � �p = �s + �df �p (with �s,d as constants) we arrive
at

�s = −Us

∫
K

�s

ω2
n + ε2

�k + |��k|2
,

(3)

�d = −Ud

∫
K

f 2
�k �d

ω2
n + ε2

�k + |��k|2
.

Since we work in the FL regime, we implement
∫

�k =
ν2D
∫

dθ
2π

dε which leads to the definition of two dimensionless
parameters us ≡ ν2DUs and ud ≡ ν2DUd where ν2D is the 2D
density of states at the Fermi surface. This model is then easily
solved (see Appendix A) and the resulting phase diagram is
schematically plotted in Fig. 1(a).

The quantities that change with ud are Tc, �s , and �d .
To remove the energy cutoff (�) dependence of our results,
these quantities are normalized to �s

0, the gap value at ud = 0
(the pure s-wave state). We thus work with the normalized pa-
rameters: αs ≡ �s/�s

0, αd ≡ �d/�s
0, η ≡ αd/αs . The most

relevant points that define the boundaries of the s + id phase

are at T = Tc and T = 0. Tc (obtained by setting αs,d → 0)
across the phase diagram is given by

ln
2γ�

πTc

= min

{
− 1

us

, − 1

ud

}
> 0, (4)

where γ ≈ 1.78. The boundaries of the s + id state can be
found after rewriting the self-consistency equations as (see
Appendix A for details)

lnαs = −
∫

dθ

2π
ln
√

1 + η2f 2
�k ,

1

us

− 1

ud

= −
∫

dθ

2π

(
f 2

�k − 1
)
ln
√

1 + η2f 2
�k (5)

and setting η → 0 and η → ∞ in the second equation. This
results in the s/(s + id) boundary at us = ud and the (s + id)/d
boundary at ud = 2us/(2 + us) [11]. Figure 1(b) shows the
calculated gaps αs,d as ud is tuned through the s + id state.

B. Collective modes: Formulation and results

We employ standard linear response to study the collective
modes in this system. We provide a simple derivation for the
one-band model as this will help us generalize the formula to
the multiband case with ease. The Hamiltonian in the SC state
is given by

H =
∑

k

�
†
�kH�k��k, where �

†
�k = (c†�k↑,c�k↓),

H�k = ε�kσ3 − �R
�k σ1 + �I

�kσ2, (6)

�∗
�k = −

∑
�q

V (�k,�q)〈c†−�q↑c
†
�q↓〉,

where σ0 is a 2 × 2 identity matrix, �σ is a vector of Pauli
matrices, and R,I stand for real and imaginary parts of
the order parameter. The perturbing fields (originating from
fluctuations of density and the order parameter) that couple to
this Hamiltonian have the form

δH�q,�k(t) = (δD�q,�kσ3 − δ�R

�q,�kσ1 + δ�I

�q,�kσ2
)
e−iωt . (7)

udus
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FIG. 1. (Color online) (a) The schematics of the phase diagram of the one-band model. (b) The calculated evolution of the s- and d-wave
gaps αs and αd (normalized to the pure s-wave gap) as a function of the d-wave interaction strength ud . (c) The evolution of the collective modes
(solid lines) in a one-band model as |ud | is increased. The BS mode softens as the s + id boundary(shown in light blue dots) and acquires a
mixed-symmetry (MS) character in the s + id state and softens again at the other boundary. The dashed black line denotes the minimum gap
in the system. Collective modes are well defined only below the minimum gap. There are no other damped resonances in this model. Here,
us = −0.5.
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It is convenient to deal with perturbing fields independent of
the internal variable �k in order to formulate the linear-response
problem. This is achieved by writing

δ�
j

�q,�k =
∑
L

δ�
j,L

�q f L
�k ,

(8)
δD�q,�k =

∑
L

δDL
�q f L

�k ,

where L are the different orthogonal angular momentum chan-
nels. (These will correspond to the irreducible representations
of the point symmetry group in the presence of a lattice.) In
the usual case of density fluctuations, there is no dependence
of δD�q,�k on �k (as it corresponds to nonequilibrium fluctuations
of total density). This is why the higher angular momentum
channels, in this simple model, are not affected by the Coulomb
force. This will be utilized later. For now, proceeding in
complete generality, we are then led to

δH�q(t)

=
∑
k,L

f L
�k �

†
�k
(
δDL

�q σ3 − δ�
R,L

�q σ1 + δ�
I,L

�q σ2
)
��ke

−iωt

=
∑
L,i

δFL
i (�q)RL

i (�q)e−iωt , (9)

where

RL
i (�q) =

∑
k

f L
�k �

†
�kσi��k, (10)

and the perturbing field

δFL
i = (−δ�R,L,δ�I,L,δDL). (11)

The self-consistency equation in Eq. (6) is then written as

(�∗)L = −
∑

�k
V LL′

f L′
�k 〈c†−�k↑c

†
�k↓〉, (12)

where V LL′
is defined through

V (�k,�q) =
∑
L,L′

V LL′
f L

�k f L′
�q . (13)

Starting from

δ�∗
�q = −

∑
�k

V (�q,�k)δ〈c†−�k↑c
†
�k↓〉, (14)

we can make use of the following relations

�†σ1� = c
†
↑c

†
↓ − c↑c↓,

�†σ2� = −i(c†↑c
†
↓ + c↑c↓), (15)

�†σ3� = c
†
↑c↑ + c

†
↓c↓,

to write

2δ�R
�q = −

∑
�k

V (�q,�k)δ〈�†
�kσ1��k〉,

−2δ�I
�q = −

∑
�k

V (�q,�k)δ〈�†
�kσ2��k〉, (16)

δD�q = V�q
∑

�k
δ〈�†

�kσ3��k〉,

where V�q = 2πe2/q. Following the argument around Eq. (13)
and abbreviating V LL as V L, we can write Eq. (16) as

2δ�
R,L

�q = −V Lδ
〈
RL

1

〉
,

−2δ�
I,L

�q = −V Lδ
〈
RL

2

〉
(17)

δDL
�q = V L

�q δ
〈
RL

3

〉
.

We will work in the limit of �q → 0 so that �q will only
be retained in D�q to account for the singular nature of the
Coulomb interaction.

The statement of linear response is that the change in an
operator due to the applied perturbation is given by (recalling
that G = −〈��†〉)

δ
〈
RL

i

〉
(Q) =

∑
j,L′

�LL′
ij (Q)δFL′

j (Q),

�LL′
ij (Q) =

∫
K

f L
�k f L′

�k Tr[G(K)σiG(K + Q)σj ]. (18)

Combining Eqs. (14)–(18), we arrive at the one-band system
of equations∑

j,L′

{
�LL′

ij − 2[V L]−1δLL′
δij
}
δFL′

j = 0. (19)

See Appendix B for explicit form of the mode equation. The
nontrivial solutions of this set of equations are the collective
modes of the system.

1. General considerations

We see from Eq. (19) that the collective modes can be found
once the interactions V L and the polarization bubbles �LL′

ij are
known. These depend on the specifics of a microscopic model
and can be easily computed. In a particle-hole symmetric
system, quite generally, we will have

�LL′
11 (i�n) =

∫
K

2f L
θ f L′

θ

D+D−

[−ω+ω− − ε2 + �2
R − �2

I

]
,

�LL′
22 (i�n) =

∫
K

2f L
θ f L′

θ

D+D−

[−ω+ω− − ε2 − �2
R + �2

I

]
,

�LL′
33 (i�n) =

∫
K

2f L
θ f L′

θ

D+D−

[−ω+ω− + ε2 − �2
R − �2

I

]
,

�LL′
13 (i�n) =

∫
K

2f L
θ f L′

θ

D+D−
[�n�I ] = −�LL′

31 (i�n),

�LL′
23 (i�n) =

∫
K

2f L
θ f L′

θ

D+D−
[−�n�R] = −�LL′

32 (i�n),

�LL′
12 (i�n) =

∫
K

2f L
θ f L′

θ

D+D−
[2�R�I ] = �LL′

21 (i�n). (20)

D± = (ωm ± �n

2 )
2 + ε2 + |�|2. �R,I are the ground-state

properties and are taken as input from the analysis in the
previous section. Although the temperature evolution can
be tracked, we shall perform calculations at T = 0 as the
calculations are tractable and already very informative. We
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will also make use of the following integrals:∫
K

ω2
m

D+D−
= 1

�0
s

∫
�k

1

4E
, (21)∫

K

1

D+D−
= 1(

�0
s

)3
∫

�k

1

4E

1

E2 + ( �n

2�0
s

)2 , (22)

where E2 = ( ε�k
�0

s
)
2 + α2

s + α2
df

2
�k , and

ν2D�0
s I0(i�n) =

∫
�k

1

E

1

E2 + ( �n

2�0
s

)2 , (23)

ν2D�0
s I2(i�n) =

∫
�k

1

E

f 2
θ

E2 + ( �n

2�0
s

)2 , (24)

ν2D�0
s I4(i�n) =

∫
�k

1

E

f 4
θ

E2 + ( �n

2�0
s

)2 , (25)

where f s
θ = 1; f d

θ = √
2 cos 2θ . It is worth noting that in the

s-wave ground state (αd = 0), I2 = I0 and I4 = 3
2I0. Analytic

continuation to real frequencies is performed by i�n → � +
iδ. As one tunes ud , the ground state changes, and the �LL′

ij ’s
need to be calculated at every ud .

In what follows, we will ignore the coupling of the
collective modes to the charge sector as justified in the
Introduction. We refer the reader to discussion in Ref. [26] and
references therein where explicit coupling to the charge sector,
within the same formalism, is presented. The results from now
on therefore pertain, strictly speaking, to the collective modes
in a “neutral” SC. This simplification allows the formulation
of the whole problem in a 4 × 4 space of δ�

R,I
s,d . In the chosen

gauge (where the s-wave condensate is chosen to be real), R

maps onto the amplitude sector and I maps onto the phase
sector. We now investigate the individual cases.

2. Collective modes: s-wave ground state

It can be seen from Eq. (20) that in a pure angular
momentum ground state (pure s or pure d), �LL′ = 0 if L �= L′
(due to orthogonality) and in noncomplex order-parameter
ground state, �12 = 0. Thus, in the s-wave ground state, the
only surviving bubbles are

�ss
11(�) = ν2D

{
−4Lg +

[
1 −

(
�

2�s
0

)2
]
I0(�)

}
,

�ss
22(�) = ν2D

[
−4Lg −

(
�

2�s
0

)2

I0(�)

]
,

�dd
ii (�) = I0 → I2(= I0), i ∈ (1,2) (26)

where Lg = ∫�k
1

4E
= 1

2 ln 2�
�s

0
. This implies that (1) s and d

channels are completely decoupled and (2) amplitude and
phase sector are completely decoupled. As a result, the
collective-mode equation (det[Eq. (19)]= 0) in the amplitude
(phase) sector of angular momentum L reads as

�LL
11(22) − 2

V L
= 0, (27)

where V L is the interaction in the Lth angular momentum
channel (s or d).

Collective modes in the amplitude sector. The solutions to
the mode equation are contained in

[
1 −

(
�

2�s
0

)2
]
I0(�) = 0, (28)[

1 −
(

�

2�s
0

)2
]
I2(�) = 2

ud

− 2

us

. (29)

Neither of these equations has an undamped solution (see
Appendix C).

Collective modes in the phase sector. The solutions to the
mode equation are contained in

(
�

2�s
0

)2

I0(�) = 0, (30)

−
(

�

2�s
0

)2

I2(�) = 2

ud

− 2

us

. (31)

The first equation yields the soft BAG mode (� = 0) and the
second (arising from the d-wave sector) yields the well-known
BS mode [12,34]. Looking at Eqs. (4) and (31), we see that
the BS mode frequency is related to the competing Tc values
for the s and d channels. Thus, detecting the BS mode at
low temperatures and recording the Tc of a sample gives
direct quantitative estimate of the competing d-wave pairing
interaction [13]. This feature will change for a multiband
system.

The above modes lie below the minimum gap in the system
and hence are not damped. Notice that at boundary of the
s and s + id states, where us = ud , the BS mode softens as
expected.

3. Collective modes in the s + i d ground state

The collective modes in the s + id ground state are
interesting. The surviving bubbles in this state are

�ss
11(�) = ν2D

{
−2
∫

θ

ln
2�

|�θ | +
[
α2

s −
(

�

2�s
0

)2
]
I0(�)

}
,

�ss
22(�) = ν2D

[
−2
∫

θ

ln
2�

|�θ | + α2
dI2(�) −

(
�

2�s
0

)2

I0(�)

]
,

�dd
11 (�) = ν2D

{
−2
∫

θ

f 2
θ ln

2�

|�θ | +
[
α2

s −
(

�

2�s
0

)2
]
I2(�)

}
,

�dd
22 (�) = ν2D

[
−2
∫

θ

f 2
θ ln

2�

|�θ | + α2
dI4(�)−

(
�

2�s
0

)2

I2(�)

]
,

�sd
12(�) = ν2DαsαdI2(�), (32)

where αs,d are to be found from T = 0 solutions of the gap
equation as discussed in Appendix A. The nonzero �sd

12 couples
the s and d channels and also the amplitude and phase sector.
This is expected from Eq. (20) because the ground state itself
is a mixture of the two angular momentum channels and the
order parameter is complex. The physical consequence of this
nonzero bubble is that the four decoupled sectors now coalesce
into two 2 × 2 sectors formed out of the following: (1) s-phase
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and the d-amplitude components which yield

(
�

2�s
0

)2

I2

[
−
(

�

2�s
0

)2

I0 + α2
s I0 + α2

dI2

]
= 0. (33)

This sector contains the gauge mode at � = 0. (2) s-amplitude
and the d-phase components which yield

[
α2

dI4 −
(

�

2�s
0

)2

I2

][
α2

s −
(

�

2�s
0

)2
]
I0 − α2

s α
2
dI

2
2 = 0.

(34)

This contains the collective mode with mixed symmetry that
adiabatically continues to the Bardasis-Schrieffer mode in
the s-wave phase; we will refer to this mode henceforth as
the mixed-symmetry Bardasis-Schrieffer mode (MSBS). This
mixed-symmetry mode is the analog of the d + id ′ and p + ip′
clapping modes discussed in Refs. [21,23,24].

The d ground state can be similarly worked out (see
Appendix C). There are no collective modes (other than the
BAG mode) that propagate and hence we do not dwell on this
further.

Figure 1(c) traces all the collective modes below the
minimum gap across the phase diagram. It is worth noting
that all the collective modes could be found essentially from
one mode equation.

III. COLLECTIVE MODES IN A THREE-POCKET MODEL

We now move to the three-pocket model which is more
relevant for the FeSCs. Other than the multiband aspect, the
approach is identical to the one-band model. We shall thus
focus on discussing the results and highlight the differences
with the one-band model.

A. Model and phase diagram

Here, we study a prototypical FeSC system with one �-
centered hole pocket and two M-centered electron pockets
(the latter two are from the same band and hence are related by
symmetry). The model and the pairing interactions between the
fermions are schematically shown in Fig. 2. The interactions
in explicit form can be written as (only the leading harmonics
are retained; e1 → +1 and e2 → −1)

Vhh(�k, �p) = Us
h + Ud

h fkfp,

Ve1e1 (�k, �p) = Us
e + Ud

e (1)(1),

Ve2e2 (�k, �p) = Us
e + Ud

e (−1)(−1),
(35)

Ve1e2 (�k, �p) = Us
e1e2

+ Ud
e1e2

(1)(−1),

Vhe1 (�k, �p) = Us
he + Ud

hefk(1),

Vhe2 (�k, �p) = Us
he + Ud

hefk(−1),

FIG. 2. (Color online) The interactions in a three-pocket (one
hole and two electron) model. The interactions in light gray font are
unimportant as far as the main message of the work with applications
to hole-doped FeSC is concerned and are thus set to zero.

where fk = √
2 cos θk . The self-consistency gap equations for

this model read as

�h
�p = −

∫
�k

[
V h

�p,�k�
h
�kW

h
�k + V

he1

�p�k �
e1
�k W

e1
�k + (e1 ↔ e2)

]
,

�e1 = −
∫

�k

[
V

he1

�p�k �h
�kW

h
�k
]
, (36)

�e2 = −
∫

�k

[
V

he2

�p�k �h
�kW

h
�k
]
,

where Wx
�k = 1

2Ex
�k

tanh
Ex

�k
2T

, with x ∈ {h,e1,e2}. We further

assume, for the sake of simplicity of presentation, that the
electron and hole bands have identical dispersions, resulting in
the same density of states. This choice of interactions requires
the gap structure to assume the form

�h
�p = �h

s + �h
df �p,

�
e1
�p = �e

s + �e
d, (37)

�
e2
�p = �e

s − �e
d.

To minimize the parameter space we set the following
interactions to zero: Us

h , Us,d
e,e1e2

. The rationale behind this lies
in the fact that we want to model a system driven to a d-wave
state by the hole pockets (hence we retain Ud

h ) and the d-wave
character in the rest is induced due to the interband coupling
terms (hence we retain Ud

he). The reason behind the choice of
this model is related to our desire to eventually address the
Raman experiments on the hole-doped FeSC, and is explained
further in Sec. IV. The s-wave character in this system driven
by Us

he. For brevity, we introduce the following dimensionless
constants for the interactions

vs,d ≡ ν2DU
s,d
he , ud ≡ ν2DUd

h . (38)

Recognizing the vs and ud are the main ingredients for our
problem and that vd is only needed to induce SC in the electron
pockets, we set vd = zud , where the ratio z is set to some
constant. Keeping vs fixed (as in the one-band case), the system
now has ud (and z if one so desires) as the tuning parameter
of the model. This is sufficient to generate the s to s + id

094506-6



COLLECTIVE MODES IN SUPERCONDUCTORS WITH . . . PHYSICAL REVIEW B 92, 094506 (2015)

to d phase diagram. We will then need to define a few more
dimensionless parameters in analogy with the one-band case

αx
s ≡ �x

s /�0; αx
d ≡ �x

d/�0, x ∈ (h,e)

rs ≡ αe
s

αh
s

; rd ≡ αe
d

αh
d

, (39)

where �0 is the s-wave gap on the hole pocket when vd = 0.
This model is easily solved at T = 0 and Tc (see Appendix D).
The results for the boundaries of the s + id state are given
as follows: at T = Tc, the critical ud (< 0) is the solution to
(larger |ud | favors a d-wave state)(

zud

vs

)2

= 1 + 1√
2

(
ud

vs

)
. (40)

There are two points marking the boundary of the s + id state
at T = 0. The s-wave side boundary is obtained by setting
�

e,h
d → 0 and requiring rd to be arbitrary. This yields

1

rs

− 2rs = 2vs ln |rs |,

u
crit,1
d = −rs −√r2

s + 4z2

2z2
vs. (41)

The d-wave side boundary (with �h,s
s → 0, rs arbitrary) u

crit,2
d

is the solution to

1

2v2
s

=
[
− rd

zud

+ 1

2

][
− rd

zud

+ c2 − ln |rd |
]
,

and rd satisfies

1

rd

− 2rd = zud (c2 − ln |rd |), (42)

where c2 ≡ ∫ f 2 ln |f | = 0.153. These boundaries are shown
in Fig. 3(a). The detailed solution for the gap components as a
function of ud is presented in Fig. 3(b).

B. Collective modes

For multiband systems, we follow the same procedure
to derive the collective-mode equation. Unless we consider
Cooper pairing between different bands, there will be no

interband �LL′
ij ’s of the type

∫
GhGe. Then, Eq. (19) will

be generalized to matrix equation in the band space. �LL′
ij is

then evaluated in the relevant ground state. This generalization
is given by∑

j,L′,b

{
�LL′

ij,a[δab] − 2
[
V −1

L

]
ab

δLL′
δij
}
δFL′

j,b = 0, (43)

where a,b are the band indices. The explicit form of this
equation is discussed in Appendix E. The only off-diagonal
elements (in the band space) arise from [V L]−1. As before,
we drop the coupling to the density channel and work with a
2s/d × 2real/imag × 2bands = 8 × 8 matrix space. The interaction
matrices in each angular momentum channel are given by

[Vs] =
(

0 vs

vs 0

)
, [Vd ] =

(
ud vd

vd 0

)
. (44)

1. Collective modes in the s-wave ground state

As in the one-band scenario, �sd and �12 are zero due to the
symmetry of the ground state. The nonzero �’s are given by

�ss
11,h = ν2D

{
−4Lh +

[
1 −

(
�

2�0

)2
]
Ih

0 (�)

}
,

�ss
11,e = ν2D

{
−8Le + 2

[(
αe

s

)2 −
(

�

2�0

)2
]
I e

0 (�)

}
,

(45)

�ss
22,h = ν2D

[
−4Lh −

(
�

2�0

)2

Ih
0 (�)

]
,

�ss
22,e = ν2D

[
−8Lh − 2

(
�

2�0

)2

I e
0 (�)

]
,

where Lh,e = 1
2 ln 2�

|�h,e
s | . �dd involves changing I0 → I2, but

in the s-wave ground state I0 = I2. Also for x ∈ (h,e),

ν2D�0I
x
m(i�n) =

∫
�k

1

Ex

(fx)m

(Ex)2 + ( �n

2�0

)2 ,

(Ex)2 =
(

εx

�0

)2

+ (αx
s

)2 + (αx
d

)2
f 2

x . (46)

ud

sd

s+id

udud ud

sd

s+id

ud

sd

s+id

ud

sd

s+id

udud
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FIG. 3. (Color online) (a) The phase diagram in the three-pocket model. (b) The evolution of the gap components with ud in the three-pocket
model at T = 0. The boundaries of the s + id phase are marked with arrows. Red (blue) represents the hole (electron) pocket and the solid
(dashed) line corresponds to s-wave (d-wave) component of the gap. The gray line at zero is the size of error in the numerical calculation due to
the choice of grid and resolution parameters. (c) The (undamped) collective modes across the phase diagram in different channels. The dashed
black line is 2�min in the system. The dots indicate the s + id phase boundaries at T = 0. In all the figures, z = 1

2 and vs = 0.2.
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For the s-wave ground state, sectors in the s and d channels
decouple. Further, the amplitude and phase sectors decouple.
This leads to the following four decoupled equations:

�ss
11,h�

ss
11,e = 4

v2
s

, (47)

�ss
22,h�

ss
22,e = 4

v2
s

, (48)

�dd
11,h

(
�dd

11,e + 2ud

v2
d

)
= 4

v2
d

, (49)

�dd
22,h

(
�dd

22,e + 2ud

v2
d

)
= 4

v2
d

. (50)

It helps to note that at T = 0 the self-consistency equations
tell us that

2Le = − 1

2rsvs

,

(51)
2Lh = − rs

vs

.

Equation (47) is the s-amplitude sector which has no solution.
Equation (48) is the s-phase sector. This sector contains the
BAG mode and the damped Leggett mode [blue dots in Fig. 4
(top) where the real part of left-hand side = right-hand side).
Using T = 0 relations, Eq. (48) gives(

�

2�0

)2
[

4LhI
e
0 + 4LeI

h
0 +

(
�

2�0

)2

Ih
0 I e

0

]
= 0. (52)

Since I0 > 0, the only solution is � = 0 the BAG mode. The
other solution, a Leggett resonance, has an imaginary part and
is thus damped. Equation (49) is the d-amplitude sector which
also has no solution. Equation (50) is the d-phase sector which
contains the BS mode. Note that there is one true mode (below
the minimum gap) and a resonance in the continuum as shown
by the blue dots in Fig. 4 (bottom). To see that this is true
generically in the model, we again substitute for �’s and use
T = 0 relations to find(

�

2�0

)4

Ih
0 I e

0 +
(

�

2�0

)2

A − 2

v2
d

S = 0, (53)

where

S = 1 − rs

ud

vs

− v2
d

v2
s

, (54)

A = − 2

vs

(
1

2rs

+ rs + udvs

2v2
d

)
> 0. (55)

Comparing Eqs. (40) and (54), we see that in the s-wave phase
S > 0. The mode equation can be cast into L�4 + A�2 − S =
0. This clearly has two solutions with �2 > 0 and < 0. The
�2 > 0 solution is given by the implicit in � equation

�2 = −A + √
A2 + 4LS

2L
, A > 0, L > 0. (56)

This is the only real solution, representing the well-defined BS
collective mode. As we approach the s + id boundary in the s

state, S → 0+ and the mass of the collective mode approaches
zero (as expected). Note at this stage the following differences
with the one-band model: (1) we get a damped Leggett mode;
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−100
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Ω/Δ
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Im[LHS]
RHS

0 0.5 1 1.5 2 2.5 3
−200
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400

600

800

Ω/Δ
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Re[LHS]
Im[LHS]
RHS

FIG. 4. (Color online) Collective-mode solutions in the multi-
band s-wave ground state. Top: the s-wave order-parameter phase
fluctuation sector [solution to Eq. (48)]. The blue dots indicate
the frequency of the collective mode/resonance (if the imaginary
part is nonzero). The � = 0 solution is the BAG mode, and the
� between the coherence peaks is the Leggett resonance (as in
MgB2 [35]). Bottom: the d-wave order-parameter phase fluctuation
sector [solution to Eq. (50)]. The dots indicate the frequency of the
collective mode/resonance. There is a conventional BS mode below
the minimum gap and another resonance in-between the two s-wave
gaps. Here, we used parameters vs = 0.2, ud = −0.18, z = 1

2 .

(2) we get two BS modes where one is damped; (3) the BS
mode frequency is no longer related to parameters determined
at Tc because of temperature dependence of the gap ratios.
Depending on the magnitude of the effect (which depends on
a chosen microscopic model), this should be important for
quantifying the experiment with the model.

2. Collective modes in the s + i d ground state

As in the one-band case, the s, d amplitude and phase
sectors get coupled due to �sd

12 �= 0. The nonzero �’s are

�ss
11,h = ν2D

{
−4
∫

θ

Lh +
[(

αh
s

)2 −
(

�

2�0

)2
]
Ih

0 (�)

}
,

�ss
11,e = ν2D

{
−8Le + 2

[(
αe

s

)2 −
(

�

2�0

)2
]
I e

0 (�)

}
,
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�ss
22,h = ν2D

[
−4
∫

θ

Lh + (αh
d

)2
Ih

2 (�) −
(

�

2�0

)2

Ih
0 (�)

]
,

�ss
22,e = ν2D

[
−8Le + 2

(
αe

d

)2
I e

2 (�) − 2

(
�

2�0

)2

I e
0 (�)

]
,

�sd
12,h = ν2D

[
αh

s αh
d I h

2 (�)
]
,

�sd
12,e = ν2D

[
2αe

s α
e
dI

e
2 (�)

]
,

�dd
11,h = ν2D

{
−4
∫

θ

f 2Lh +
[(

αh
s

)2 −
(

�

2�0

)2
]
Ih

2 (�)

}
,

�dd
11,e = ν2D

{
−8Le + 2

[(
αe

s

)2 −
(

�

2�0

)2
]
I e

2 (�)

}
,

�dd
22,h = ν2D

[
−4
∫

θ

f 2Lh + (αh
d

)2
Ih

4 (�) −
(

�

2�0

)2

Ih
2 (�)

]
,

�dd
22,e = ν2D

[
−8Le + 2

(
αe

d

)2
I e

2 (�) − 2

(
�

2�0

)2

I e
2 (�)

]
,

(57)

where Lh,e = 1
2 ln 2�√

(�h,e
s )2+f 2

�k (�h,e
d )2

.

The T = 0 solutions suggest the following useful relations:

1 = −2vsrs[2Le],

1 = −vs

rs

∫
[2Lh],

(58)

1 = −ud

∫
f 2[2Lh] − 2vdrd [2Le],

1 = −vd

rd

∫
f 2[2Lh].

We thus get two decoupled 4 × 4 sectors formed out of 22ss −
21sd − 11dd and 11ss − 12sd − 22dd parts, of the form

det

⎛
⎜⎜⎜⎜⎝

�ss
22,h − 2

vs
�sd

21,h 0

− 2
vs

�ss
22,e 0 �sd

21,e

�sd
12,h 0 �dd

11,h − 2
vd

0 �sd
12,e − 2

vd
�dd

11,e + 2ud

v2
d

⎞
⎟⎟⎟⎟⎠ = 0. (59)

The other equation is given by (1 ↔ 2). The solutions are
plotted in Fig. 5. We obtain the BAG mode and a single mixed-
symmetry collective mode. The result of tracking the collective
modes (with no imaginary part) as function of ud is shown in
Fig. 3(c). There are no other damped resonances.

IV. DISCUSSION

Having understood the spectrum of collective modes that
can exist in a specific multiband model for a SC with competing
s and d channels, we now discuss in some detail the practical
motivation behind the choice of our model. As mentioned
earlier, FeSC are complicated systems with a varying range
of FS topologies and usually the minimal model depends on
the particular family of FeSC of interest. We chose to study
the case of s to d transition as it is supposed to host the
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FIG. 5. (Color online) Solutions to Eq. (59) (top) and its coun-
terpart with Nambu components 1 and 2 exchanged (bottom) in the
s + id phase. Solution to Eq. (59) contains the BAG mode (blue dot
at � = 0) and the other equation has the mixed-symmetry collective
mode (blue dot at finite �). This mode goes soft at the boundaries of
the s + id state. Note that in the s + id state, phase and amplitude
degrees of freedom are mixed in both equations. Here, we used
parameters vs = 0.2, ud = −0.231, z = 1

2 .

exotic s + id state whose detection is challenging. We propose
the identification of the MSBS collective mode to detect the
s + id state. Heavily hole- or electron-doped FeSC are the best
candidates for the detection of the s + id state. Our model
was designed keeping in mind Ba1−xKxFe2As2 near x ∼ 1.
This is an interesting material which is known to be a fully
gapped s± SC at x ∼ 0.4 [36–38]. It is also known to be nodal
at x ∼ 1. The symmetry of the latter compound is heavily
debated: thermal conductivity [39] data are interpreted in favor
of d wave which is in line with functional renormalization
group prediction [40]. This is strongly contradicted by the
photoemission data [41,42] which support s wave and also
has theoretical support [43]. In either case, traversing from
x ∼ 0.4 to x ∼ 1 may require the system to go through exotic
states such as s + id or s + is ′. The collective modes in
the s + is ′ state [26,27] have Leggett-type collective modes
(with s symmetry) that soften at the transition. We have now
shown that the collective modes in the s + id state have a
mixed-symmetry BS mode (with contributions in both s- and
d-symmetry channels) which also softens at the boundary of
the s + id state. The onset of the s + id state can thus be
identified by simultaneous (and/or correlated) observation of
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the onset of modes in both the s and d channels of Raman
spectroscopy. Experimentally, there is strong indication of a
mode in the d channel as claimed in some recent works [14,15].
The signal in the s channel is not conclusive which leaves us
with two possibilities: (i) the system is still in the s-wave
ground state, (ii) the screening effects in the s channel of
Raman spectroscopy wash out the mode features, in which case
the intensity of the s component in the MSBS must be carefully
analyzed. Both scenarios are unexplored theoretically as far as
the material is concerned.

Its worth mentioning that the proposed d-wave state in
the x ∼ 1 sample has the property that SC is driven by
the hole pockets [40]. We thus chose to study the model
where SC was driven by d-wave interaction within the hole
pocket.

We should warn the readers, however, that the existence of
collective modes is different from actually observing them
through experimental probes. One of the most promising
probes to detect these modes (along with their symmetries)
is electronic Raman spectroscopy. However, the coupling of
the modes to a Raman probe needs a special attention due to
screening effects in the s channel. The distribution of intensi-
ties across the s and d parts of the mixed-symmetry collective
modes is another aspect which requires careful attention. Thus,
while a quantitative mapping of our results to Raman still
needs more work, we are in a position to at least suggest the
number and nature of the collective modes to be expected
in FeSC.

Finally, although we know from Ref. [18] the possible
modes in a “conventional” nodal d-wave state, there are other
d-wave models like fully gapped d-wave state proposed for
systems such as alkali intercalated FeSe [44,45] that need
exploration in terms of the behavior of collective modes and
is left for a future effort. It is also worth noting that as far as
mixed-symmetry modes are concerned, such an analysis could
be applied to systems under uniaxial strain where we generate
a similar s-d competition [46].

V. CONCLUSIONS

To summarize, we used a simple linear-response approach
to study collective modes in a SC with competing s- and
d-channel instabilities. We worked close to the region where
s and d channels are nearly degenerate such that the system
supports an exotic s + id state. We model a system that can
be tuned from a pure s state to pure d state through the s + id

state. Although our goal was the description of a multiband
FeSC system, we first used a one-band model to demonstrate
the simplicity of the approach. In this one-band model, we
find the massless BAG mode throughout the phase diagram
in the s channel. In the d channel, in the s-wave ground
state we find the BS mode and in the s + id ground state
find a mixed-symmetry collective mode that softens at the
boundaries of the s + id state. These boundaries were also
calculated analytically. This mixed-symmetry mode, which
couples amplitude and phase sectors, oscillates with both
s- and d-wave components and only exists in the T -broken
s + id SC state. It is interesting to note that such a mode,
which we refer to as a mixed-symmetry Bardasis-Schrieffer
mode, corresponds, in a certain sense, to modes in T -breaking

ground states that have been discussed before, usually in
situations where the two competing interactions correspond
to degenerate basis functions of a 2D representation, e.g.,
“clapping modes” in p + ip′ or d + id ′ situations [22,23].
More generally, if there are two competing representations, a
mode of this type is possible [24].

We generalized our approach for a multiband system and
found (1) the usual BAG mode in the s channel across the phase
diagram; (2) damped Leggett mode between the electron and
hole gaps in the s-wave state; (3) two BS modes (where one
is damped, like the Leggett mode) in the s-wave state; (4)
a mixed-symmetry collective mode in the s + id state that
softens at the boundaries. Based on the multiband model that
was designed to minimally reproduce the qualitative effects
of Ba1−xKxFe2As2 near x ∼ 1, we suggest detection of the
above “symmetry-selective” collective modes. We propose
that such a systematic search can eventually settle the long-
standing debate about the pairing symmetry for the x ∼ 1
samples.
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APPENDIX A: SOLVING THE ONE-BAND MODEL

We solve the model described by Eq. (3). For analytical
answers we will only look at T = 0 and Tc points to study the
special points in the phase diagram of the model. We conjecture
(based on continuity) that there are no other special points in
the phase diagram. At T = Tc (�s,d → 0), Eq. (3) leads to

�s = −us�
s[2Lc],

�d = −ud

∫
θ

f 2
�k �d [2Lc], (A1)

where
∫
θ

stands for the angular integral at the Fermi surface
Lc = 1

2 ln 2γ�

πTc
. Using

∫
θ
f 2

�k = 1 we see that

2Lc = min

{
− 1

us

, − 1

ud

}
(A2)

with the s + id state being realized when ud = us . At T = 0,
as discussed, there are three regions. For the s-wave state,
Eq. (3) yields

1 = −us ln
2�

�s
, �d = 0. (A3)
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This requires us < 0 (attractive) and also gives the T = 0 value
for �s . We shall now define

2L ≡ ln
2�

�s
0

= − 1

us

. (A4)

�s
0 is the s-wave gap in the model at T = 0 with no competing

d-wave interaction. As the d-wave interaction (ud ) grows, �d

remains zero up to the point where the second equation in
Eq. (3) first has a nontrivial solution, then �d begins to grow
and �s begins to suppress. In the s + id state we have

1 = −us

∫
θ

ln
2�√

�2
s + �2

df
2
�k

,

1 = −ud

∫
θ

f 2
�k ln

2�√
�2

s + �2
df

2
�k

. (A5)

In the notation of the main text, Eq. (A5) can then be cast into
a simpler form

− 1

us

= 2Lg +
∫

θ

ln
1√

α2
s + η2α2

s f
2
�k

,

− 1

ud

= 2Lg +
∫

θ

f 2
�k ln

1√
α2

s + η2α2
s f

2
�k

, (A6)

or

lnαs = −
∫

θ

ln
√

1 + η2f 2
�k ,

1

us

− 1

ud

= −
∫

θ

(
f 2

�k − 1
)
ln
√

1 + η2f 2
�k , (A7)

where 2Lg = ln 2�
�s

0
. This system of equations gives the gap

ratios αs,d as a function of the parameter ud .

APPENDIX B: EXPLICIT FORM FOR THE ONE-BAND MODE EQUATION

In explicit form for the one-band case, the collective-mode equation is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�ss
11 − 2V −1

s �ss
12 �ss

13 �sd
11 �sd

12 �sd
13

�ss
21 �ss

22 − 2V −1
s �ss

23 �sd
21 �sd

22 �sd
23

�ss
31 �ss

32 �ss
33 − V −1

s,q �sd
31 �sd

32 �sd
33

�ds
11 �ds

12 �ds
13 �dd

11 − 2V −1
d �dd

12 �dd
13

�ds
21 �ds

22 �ds
23 �dd

21 �dd
22 − 2V −1

d �dd
23

�ds
31 �ds

32 �ds
33 �dd

31 �dd
32 �dd

33 − V −1
d,q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−δ�R,s

δ�I,s

δDs

−δ�R,d

δ�I,d

δDd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0. (B1)

Ignoring the density channel we get

⎛
⎜⎜⎜⎜⎝

�ss
11 − 2V −1

s �ss
12 �sd

11 �sd
12

�ss
21 �ss

22 − 2V −1
s �sd

21 �sd
22

�ds
11 �ds

12 �dd
11 − 2V −1

d �dd
12

�ds
21 �ds

22 �dd
21 �dd

22 − 2V −1
d

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

−δ�R,s

δ�I,s

−δ�R,d

δ�I,d

⎞
⎟⎟⎟⎟⎠ = 0. (B2)

All information about collective modes is obtained by looking at the determinant of the above matrices. Depending on the relevant
ground state, some of the �’s (as discussed in the main text) are zero, thereby simplifying the matrix structure.

APPENDIX C: FINDING SOLUTIONS TO THE ONE-BAND COLLECTIVE-MODE EQUATION

Here, we present the graphical solutions to some of the equations presented in the main text. Figure 6 shows the s-wave sector
solutions (amplitude and phase) to the collective-mode equation in the one-band s-wave ground state. Figure 7 shows the d-wave
sector solutions (amplitude and phase) to the collective-mode equation in the one-band s-wave ground state. Figure 8 shows the
collective-mode solutions in the two coupled sectors in the one-band s + id ground state.

In the s + id ground state, the matrix equation in Eq. (19) becomes block diagonal in the 1s-2d and 2s-1d sectors. This mixes
amplitude and phase and the s and d channels. The equations in the two sectors are

(
�ss

11 − 2

us

)(
�dd

22 − 2

ud

)
− α2

s α
2
dI

2
2 = 0,

(C1)(
�ss

22 − 2

us

)(
�dd

11 − 2

ud

)
− α2

s α
2
dI

2
2 = 0,
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FIG. 6. (Color online) (Left) Graphical solution to the amplitude sector Eq. (28) in one-band s-wave ground state with s-wave fluctuations.
No solution for � < 2�s

0. (Right) Graphical solution to the phase sector Eq. (30) with one-band s-wave fluctuations. We get the BAG mode at
� = 0.

which simplifies to [
α2

dI4 −
(

�

2�s
0

)2

I2

][
α2

s −
(

�

2�s
0

)2
]
I0 − α2

s α
2
dI

2
2 = 0,

(C2)[
α2

dI2 −
(

�

2�s
0

)2

I0

][
α2

s −
(

�

2�s
0

)2
]
I2 − α2

s α
2
dI

2
2 = 0.

The final forms are given in Eqs. (33) and (34).

The d-wave ground state

�ss
11 = ν2D

[
−
∫

�k

1

E
−
(

�

2

)2

I0

]
,

�ss
22 = ν2D

[
−
∫

�k

1

E
−
(

�

2

)2

I0 + α2
dI2

]
,

�dd
11 = ν2D

[
−
∫

�k

f 2

E
−
(

�

2

)2

I2

]
,

�dd
22 = ν2D

[
−
∫

�k

f 2

E
−
(

�

2

)2

I2 + α2
dI4

]
. (C3)

The gap equation yields

1

ud

= −
∫

�k

f 2

2E
= − ln

2�

αd�
s
0

+ c2. (C4)

Also, ∫
�k

1

E
= 2

ud

− 1. (C5)

These yield the mode equations(
�

2

)2

I0 = 2

ud

− 2

us

− 1,

(
�

2

)2

I0 − α2
dI2 = 2

ud

− 2

us

− 1,

(
�

2

)2

I2 = 0,

(
�

2

)2

I2 − α2
dI4 = 0. (C6)

It can be explicitly checked that, other than the BAG mode
(� = 0), there is no solution to these equations.

APPENDIX D: SOLVING THE THREE-POCKET MODEL

Using the interaction form defined in Eq. (36) and perform-
ing
∫

�k → ν2D
∫

dθ
2π

∫
dε, the gap equations at Tc can be written

as

�h
�p = −

[
udf �p

∫
θ

f�k�
h
�k + vd

√
me

mh

f �p
∫

θ

�
e1
�k

+ vs

√
me

mh

f �p
∫

θ

�
e1
�k + (e1 ↔ e2)

]
[2LTc

],

�
e1
�p = −

√
mh

me

[
vs

∫
θ

�h + vd

∫
θ

f�k�
h
�k

]
[2LTc

],

�
e2
�p = −

√
mh

me

[
vs

∫
θ

�h − vd

∫
θ

f�k�
h
�k

]
[2LTc

],

(D1)
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FIG. 7. (Color online) (Left) Graphical solution to the amplitude sector Eq. (29) in one-band s-wave ground state with d-wave fluctuations.
No solution for � < 2�s

0. (Right) Graphical solution to the phase sector Eq. (31) with d-wave fluctuations. We get the BS mode at finite �

that softens when ud = us . Here, us = −1 and ud = −0.6.

where
∫

dε Wx
�k = 2LTc

≡ ln 2γ�

πTc
. In the pure s-wave state, we

get

�h
s = −vs

√
me

mh

[
2�e

s

]
[2LTc

],

�e
s = −vs

√
mh

me

�h
s [2LTc

]

⇒ 2LTc
= 1√

2vs

,
�h

s

�e
s

= −
√

2

√
me

mh

. (D2)

In the pure d-wave state, we get

�h
s = −ud�

h
d [2LTc

] − vd

√
me

mh

[
2�e

d

]
[2LTc

],

�e
d = −vd

√
mh

me

�h
d [2LTc

]

⇒ 2LTc
=

ud +
√

u2
d + 8v2

d

4v2
d

,

�h
s

�e
s

= − 4vd

ud +
√

u2
d + 8v2

d

√
me

mh

. (D3)

The s-wave solution will be dominant when

(
vd

vs

)2

� 1 + 1√
2

(
ud

vs

)
, (D4)

with the equality reaching when the two solutions are degener-
ate. This will be the s + id point at T = Tc. We shall now set
me = mh to continue. It is going to be cumbersome otherwise.

At T = 0, we get the following system of nonlinear
equations:

�h
s = −vs

[
2�e

s

]
[2Le],

�e
s = −vs�

h
s

∫
θ

[2Lh],

�h
d = −ud�

h
d

∫
θ

f 2
�k [2Lh] − vd

[
2�e

d

]
[2Le],

�e
d = −vd�

h
d

∫
θ

f 2
�k [2Lh], (D5)
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FIG. 8. (Color online) (Left) “Amplitude” sector Eq. (33), with �2 removed, in the s + id ground state. No solution. (Right) “Phase” sector
Eq. (34) in the s + id state. There is only one solution indicated by the intersection of left-hand side and right-hand side. As ud is tuned, this
solution starts from 0 at the s boundary and reaches 2�s at the other boundary, which in turn → 0.

094506-13



SAURABH MAITI AND P. J. HIRSCHFELD PHYSICAL REVIEW B 92, 094506 (2015)

where

2Lh = ln
2�√(

�h
s

)2 + f 2
�k
(
�h

d

)2 ,

2Le = ln
2�√(

�e
s

)2 + f 2
�k
(
�e

d

)2 . (D6)

In the pure s or d phase, we simply set the other gap to zero.
At T = 0, there are two points: where �d → 0 (the s-wave
boundary) and where �s → 0 (the d-wave boundary).

1. s-wave boundary

At this boundary, we have

�h
s = −vs

[
2�e

s

]
[2Le],

�e
s = −vs�

h
s [2Lh],

�h
d (1 + ud [2Lh]) = −vd

[
2�e

d

]
[2Le],

�e
d = −vd�

h
d [2Lh]. (D7)

The way to proceed is to realize that �h/e

d → 0 but �h
d/�

e
d can

be arbitrary. This arbitrariness can be removed by eliminating
the �d ’s from the last two equations. This will later give
the constraint equation for ud to get a nontrivial d-wave
component. The first two equations should be used to compute
the �

h/e
s . These yield (

vd

vs

)2

= 1 − rs

ud

vs

,

where rs ≡ �e
s

�h
d

and rs satisfies

1

rs

− 2rs = 2vs ln |rs |. (D8)

Note that at T = Tc, rs = − 1√
2
. At T = 0, this will obviously

depend on vs . Recall that vd = zud and ud is our tuning
parameter for the phase diagram. This yields the critical ud

to be

ucrit
d = −rs −√r2

s + 4z2

2z2
vs, (D9)

and rs is to be solved as before. The result is presented in
Fig. 3(a).

2. d-wave boundary

At this boundary, we have

�h
s = −vs

[
2�e

s

]
[2Le],

�e
s = −vs�

h
s [2L̃h − c0],

�h
d (1 + ud [2L̃h − c2]) = −vd

[
2�e

d

]
[2Le],

�e
d = −vd�

h
d [2Lh − c2], (D10)

where c0 ≡ ∫ ln |f | = −0.347 and c2 ≡ ∫ f 2 ln |f | = 0.153,
such that c2 − c0 = 1

2 . We then follow the same logic as for

the s-wave boundary and eliminate �
h/e
s and get

1

2(vs)2
=
[

2L̃h − c2 + 1

2

]
[2L̃h − ln |rd |],

2L̃h − c2 = − rd

zud

, (D11)

rd satisfies

1

rd

− 2rd = zud (c2 − ln |rd |), (D12)

where z ≡ vd

ud
and rd ≡ �e

d

�h
d

. We just find the ud for which

Eq. (D11) is satisfied. The result is presented in Fig. 3(a).

APPENDIX E: EXPLICIT FORM OF THE THREE-POCKET MODE EQUATION

Please note the following: The explicit form of the three pocket mode equation is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�ss
11,h 0 �ss

12,h 0 �ss
13,h �sd

11,h 0 �sd
12,h 0 �sd

13,h

0 �ss
11,e 0 �ss

12,e �ss
13,e 0 �sd

11,e 0 �sd
12,e �sd

13,e

�ss
21,h 0 �ss

22,h 0 �ss
23,h �sd

21,h 0 �sd
22,h 0 �sd

23,h

0 �ss
21,e 0 �ss

22,e �ss
23,e 0 �sd

21,e 0 �sd
22,e �sd

23,e

�ss
31,h �ss

31,e �ss
32,h �ss

32,e Mss
33 �sd

31,h �sd
31,e �sd

32,h �sd
32,e Msd

33

�ds
11,h 0 �ds

12,h 0 �ds
13,h �dd

11,h 0 �dd
12,h 0 �sd

13,h

0 �ds
11,e 0 �ds

12,e �ds
13,e 0 �dd

11,e 0 �dd
12,e �sd

13,e

�ds
21,h 0 �ds

22,h 0 �ds
23,h �dd

21,h 0 �dd
22,h 0 �dd

23,h

0 �ds
21,e 0 �ds

22,e �ds
23,e 0 �dd

21,e 0 �dd
22,e �dd

23,e

�ds
31,h �ds

31,e �ds
32,h �ss

32,e Mds
33 �dd

31,h �dd
31,e �dd

32,h �dd
32,e Mdd

33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−δ�
R,s
h

−δ�R,s
e

δ�
I,s
h

δ�I,s
e

δDs

−δ�
R,d
h

−δ�R,d
e

δ�
I,d
h

δ�I,d
e

δDd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (E1)
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−2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 Vs 0 0 0 0 0 0 0 0

Vs 0 0 0 0 0 0 0 0 0

0 0 0 Vs 0 0 0 0 0 0

0 0 Vs 0 0 0 0 0 0 0

0 0 0 0 2V s
�q 0 0 0 0 0

0 0 0 0 0 Ud Vd 0 0 0

0 0 0 0 0 Vd 0 0 0 0

0 0 0 0 0 0 0 Ud Vd 0

0 0 0 0 0 0 0 Vd 0 0

0 0 0 0 0 0 0 0 0 2V d
�q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−δ�
R,s
h

−δ�R,s
e

δ�
I,s
h

δ�I,s
e

δDs

−δ�
R,d
h

−δ�R,d
e

δ�
I,d
h

δ�I,d
e

δDd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0, (E2)

where MLL′
33 = �LL′

33,h + �LL′
33,e.
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