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Hard-core boson approach to the spin-1
2 triangular-lattice antiferromagnet Cs2CuCl4 at finite

temperatures in magnetic fields higher than the saturation field
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We study the high magnetic field regime of the antiferromagnetic insulator Cs2CuCl4 by expressing the
spin-1/2 operators in the relevant Heisenberg model in terms of hard-core bosons and implementing the hard-
core constraint via an infinite on-site interaction. We focus on the case where the external magnetic field exceeds
the saturation field Bc ≈ 8.5 T and is oriented along the crystallographic a axis perpendicular to the lattice plane.
Because in this case the excited states are separated by an energy gap from the ground state, we may use the
self-consistent ladder approximation to take the strong correlations due to the hard-core constraint into account.
In Cs2CuCl4, there are additional interactions besides the hard-core interaction which we treat in self-consistent
Hartree-Fock approximation. We calculate the spectral function of the hard-core bosons from which we obtain
the in-plane components of the dynamic structure factor, the magnetic susceptibility, and the specific heat.
Our results for the specific heat are in good agreement with the available experimental data. We conclude that
the self-consistent ladder approximation in combination with a self-consistent Hartree-Fock decoupling of the
non-hard-core interactions gives an accurate description of the physical properties of gapped hard-core bosons
in two dimensions at finite temperatures.
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I. INTRODUCTION

The magnetic behavior of the antiferromagnetic insulator
Cs2CuCl4 can be described by a spin-1/2 Heisenberg model
on a triangular lattice where the interlayer coupling is much
weaker than the intralayer couplings. Due to the relatively
weak exchange couplings, a field-induced ferromagnetic
ground-state can be reached at fields larger than the saturation
field Bc ≈ 8.5 T where the magnetic field is along the
crystallographic a axis perpendicular to the lattice plane.
This allows a precise measurement of the exchange couplings
via inelastic neutron scattering experiments where the single
magnon dispersion gives direct access to the exchange cou-
plings [1]. Cs2CuCl4 has been intensively studied due to its
interesting properties, e.g., spin-liquid behavior with spinon
excitations [2–14], Bose-Einstein condensation of magnons at
the quantum critical point [1,15–18], and a rich phase diagram
for in-plane magnetic fields [2,19–24]. A diverse range of
observables have been experimentally investigated: dynamic
structure factor [1–3], electron spin resonance spectra [25],
magnetic susceptibility [20], magnetocaloric effect [26],
nuclear magnetic resonance relaxation rate [12], specific
heat [15,16], and ultrasound velocity and attenuation [27–29].

In this work, we consider the case of a large magnetic
field B > Bc along the a axis, where the magnon excitations
are gapped and the ground state is the fully magnetized
ferromagnet. Our goal is to describe the thermal excitations
above the ground state and to compare with experimental
results for the specific heat [15,16]. We base our theoretical
approach on a mapping of the spin-1/2 operators to hard-core
bosons [30,31]. For magnetic fields B > Bc and low temper-
atures, we then have a dilute gas of gapped hard-core bosons
where the ladder approximation captures the leading order
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low-temperature contributions to the self-energy. Although
the ladder approximation has been extensively applied to the
Bose-condensed phase of dilute gases of hard-core bosons
(see Ref. [18], and references therein), some subtleties related
to the hard-core limit in the gapped phase have only recently
been discussed by Fauseweh, Stolze, and Uhrig (FSU) [32,33].
Benchmarking the ladder approximation for an exactly solv-
able one-dimensional model of hard-core bosons, FSU found
that the ladder approximation indeed reproduces the correct
low-temperature behavior and that a self-consistent ladder
approximation even extends the applicability to arbitrarily high
temperatures [32]. In this work, we apply the self-consistent
ladder approximation to the relevant two-dimensional model
for Cs2CuCl4. For a realistic description of this material,
we have to include additional interactions apart from the
infinite on-site interaction describing the hard-core constraint.
To further explore the range of validity of the self-consistent
ladder approximation, we have also applied this method to the
exactly solvable one-dimensional XY model; extending the
analysis of FSU [32], we have examined the breakdown of
the self-consistent ladder approximation in the vicinity of the
quantum critical point of this model.

The rest of this work is organized as follows. In the next
section, we introduce the relevant spin model for Cs2CuCl4 and
describe the mapping of this model to an effective hard-core
boson model. Then, in Sec. III, we describe our theoretical
approach based on the self-consistent ladder approximation
for the hard-core interaction and a self-consistent Hartree-
Fock decoupling for the remaining non-hard-core interactions.
In Sec. IV, we investigate the breakdown of the ladder
approximation near the quantum critical point for the exactly
solvable one-dimensional XY model, and in Sec. V, we present
our numerical results for Cs2CuCl4, which we compare with
experimental data for the specific heat. Finally, in Sec. VI,
we summarize our main results. In three Appendices, we give
additional technical details of our calculations.
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FIG. 1. (Color online) Part of the anisotropic triangular lattice
formed by the spins of Cs2CuCl4. The stronger exchange coupling
J connects nearest-neighbor spins along the crystallographic b axis,
while the weaker exchange coupling J ′ connects nearest-neighbor
spins along the diagonals. There are also weak Dzyaloshinskii-
Moriya interactions D = ±D ẑ connecting neighboring spins along
the diagonals where the direction of D is indicated by � for + ẑ and ⊗
for − ẑ. We consider only the case where the magnetic field B = B ẑ
is along the a axis perpendicular to the plane of the lattice.

II. HARD-CORE BOSON MODEL FOR Cs2CuCl4

It has been established that the magnetic behavior of
Cs2CuCl4 can be described by the following two-dimensional
antiferromagnetic spin-1/2 Heisenberg model in an external
magnetic field along the crystallographic a axis [1],

H = 1

2

∑
ij

[Jij Si · Sj + Dij · (Si × Sj )] − h
∑

i

Sz
i , (2.1)

where the summations run over all N lattice sites, h = gμBB is
the Zeeman energy associated with an external magnetic field
B = B ẑ, and g = 2.19(1) is the effective g factor [1]. The spin-
1/2 operators Si = S(Ri) are located at the lattice sites Ri of
an anisotropic triangular lattice with lattice constants b and c,
as shown in Fig. 1. The exchange couplings Jij = J (Ri − Rj )
connect nearest neighbors along the crystallographic b axis
and along the diagonals with J (±δ1) = J and J (±δ2) =
J (±δ3) = J ′, where the three elementary lattice vectors are

δ1 = bx̂, δ2 = −b

2
x̂ + c

2
ŷ, δ3 = −b

2
x̂ − c

2
ŷ. (2.2)

Here, x̂, ŷ, and ẑ are the unit vectors of our Cartesian
coordinate system. Due to the fact that inversion symmetry
is broken for Cs2CuCl4, there are also Dzyaloshinskii-Moriya
(DM) interactions Dij = D(Ri − Rj ) ẑ connecting neighbor-
ing spins along the diagonals with D(±δ2) = D(±δ3) = ∓D.
The precise form of the Hamiltonian (2.1) and the values
of the interaction constants have been measured by inelastic
neutron scattering experiments in magnetic fields higher than
the saturation field Bc = 8.44(1) T. The accepted values
are [1] J = 0.374(5) meV = 4.34(6) K, J ′/J = 0.34(3), and
D/J = 0.053(5). There is also a weak interlayer coupling
J ′′/J = 0.045(5), which we neglect because it is only impor-
tant at very low temperatures T � 0.1 K and in the antiferro-
magnetically ordered phase in magnetic fields B < Bc, which
we do not consider here. Recently, additional DM interactions,
including in-plane components, have been measured via
electron spin resonance experiments [25]. We neglect these
additional DM interactions because they are mainly important
for in-plane magnetic fields [21]. Furthermore, our theoretical
approach relies on the U(1) symmetry due to the spin-rotational

invariance with respect to the z axis, which would be broken
by in-plane DM interactions.

In this work, we will use the hard-core boson representation
of the spin-1/2 operators [30,31]. Recall that the spin-1/2
operators fulfill the commutation relations

[S+
i ,S−

j ] = 2δijS
z
i ,

[
S±

i ,Sz
j

] = ∓δijS
±
i , (2.3)

where S±
i = Sx

i ± iS
y

i and S2
i = 3/4. Additionally, the spin-

1/2 operators obey an on-site exclusion principle [34],

S+
i S−

i + S−
i S+

i = 1, (S+
i )2 = (S−

i )2 = 0. (2.4)

To realize these relations, we can express the spin operators in
terms of hard-core boson creation and annihilation operators,

S+
i = bi, S−

i = b
†
i , Sz

i = 1/2 − b
†
i bi, (2.5)

where the hard-core boson operators satisfy the commutation
relation

[bi,b
†
j ] = δij (1 − 2b

†
i bi), (2.6)

and the occupation number per site is restricted to n̂i = 0
or 1, with n̂i = b

†
i bi . The hard-core boson constraint and the

commutation relation (2.6) can be realized by treating the
hard-core bosons as canonical bosons with an infinite on-site
repulsion,

HU = U

2

∑
i

b
†
i b

†
i bibi, with U → ∞. (2.7)

Note that the magnon excitations of the underlying spin system
correspond to hard-core boson excitations.

Using Eq. (2.5) to express the spin operators in our
Hamiltonian (2.1) in terms of hard-core bosons, we obtain
the following hard-core boson Hamiltonian:

H =
∑

k

ξkb
†
kbk + 1

2N

∑
k,k′,q

(Jq + U )b†k+qb
†
k′−qbk′bk + E0,

(2.8)
where we have Fourier transformed the hard-core boson
creation and annihilation operators,

bk = 1√
N

∑
i

bie
−ik·Ri , b

†
k = 1√

N

∑
i

b
†
i e

ik·Ri . (2.9)

In the following, we will neglect the unimportant constant
energy term

E0 = N

(
J0

8
− h

2

)
. (2.10)

The excitation energy ξk in the quadratic part of the Hamilto-
nian can be written as

ξk = εk − μ, (2.11)

where we have introduced the chemical potential

μ = hc − h (2.12)

and the energy dispersion

εk = 1
2

(
JD

k − JD
Q

)
. (2.13)

Here,

JD
k = Jk − iDk, (2.14)
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FIG. 2. (Color online) Contour plot of the energy dispersion εk

defined in Eq. (2.13). The white cross marks the minimum of εk at
Q ≈ (3.474/b,0).

where the Fourier transforms of the exchange and
Dzyaloshinskii-Moriya interactions are

Jk =
∑

R

J (R)e−ik·R

= 2J cos(kxb) + 4J ′ cos

(
kxb

2

)
cos

(
kyc

2

)
, (2.15)

Dk =
∑

R

D(R)e−ik·R

= −4iD sin

(
kxb

2

)
cos

(
kyc

2

)
. (2.16)

In Eq. (2.13), JD
Q ≈ −2.325J is the absolute minimum

of JD
k at Q ≈ (3.474/b,0). Finally, the saturation field is given

by

Bc = hc

gμB

= 1

2gμB

(
JD

0 − JD
Q

) ≈ 8.4 T. (2.17)

A contour plot of εk is shown in Fig. 2. In the following,
we will use the direct experimental value of the saturation
field Bc = 8.44(1) T instead of Bc ≈ 8.4 T because the ex-
perimental value is more accurate than a calculation via the
Hamiltonian (2.8). The reason is that the interaction constants
in Eq. (2.8) have some experimental uncertainty and we have
also neglected the interlayer coupling J ′′; including J ′′ in the
calculation would result in Bc ≈ 8.5 T [15,17]. The value
of the saturation field Bc is important because, for a given
magnetic field, it determines the energy gap

� = −μ = h − hc. (2.18)

We note that a small change of Bc by 0.04 T changes the gap by
about 0.014J , which is only significant close to the quantum
critical point.

III. IMPLEMENTING THE SELF-CONSISTENT
LADDER APPROXIMATION

In this section, we explain our theoretical approach to the
hard-core boson Hamiltonian (2.8). The central problem is
how to deal with the interaction part of the Hamiltonian,

Hint = 1

2N

∑
k,k′,q

(Jq + U )b†k+qb
†
k′−qbk′bk, (3.1)

containing the exchange interaction Jq and the infinite hard-
core interaction U → ∞. We will deal with both interactions
using different methods: for the Jq part we use a self-consistent
Hartree-Fock decoupling, while for the hard-core interaction
U we use the self-consistent ladder approximation [32]. This is
necessary because the Jq interaction cannot be easily included
in the self-consistent ladder approximation, as this would not
allow a direct solution for the effective interaction � from the
Bethe-Salpeter equation which would significantly complicate
matters, especially regarding the limit U → ∞.

A. Hartree-Fock decoupling

We approximate the Jq interaction term in Eq. (3.1) using a
self-consistent Hartree-Fock decoupling. Therefore we write
this term in real space

1

2N

∑
k,k′,q

Jqb
†
k+qb

†
k′−qbk′bk = 1

2

∑
i,j

Jij b
†
i bib

†
j bj , (3.2)

and then we apply the usual Hartree-Fock decoupling

b
†
i bib

†
j bj ≈ nib

†
j bj + njb

†
i bi − ninj

+ τjib
†
i bj + τij b

†
j bi − τij τji , (3.3)

giving

1

2

∑
i,j

Jij b
†
i bib

†
j bj ≈

∑
i,j

Jij (njb
†
i bi + τjib

†
i bj ) + EMF, (3.4)

where the Hartree-Fock parameters are given by

ni = 〈b†i bi〉, τij = 〈b†i bj 〉, (3.5)

and the constant energy term is

EMF = −1

2

∑
i,j

Jij (ninj + τij τji). (3.6)

Due to translational invariance, we have

ni = n, τij = τ (Ri − Rj ). (3.7)

Because there is no inversion symmetry, τ (R) is a complex
number satisfying τ ∗(R) = τ (−R). Since the exchange cou-
pling J (R) is only nonzero for R = ±δi , there are three
complex Hartree-Fock parameters related to τ (R),

τ1 = τ (δ1), τ2 = τ (δ2), τ3 = τ (δ3). (3.8)

However, the Hamiltonian (2.8) is invariant under the trans-
formation ky → −ky and therefore τ2 = τ3. Transforming
Eq. (3.4) back to momentum space, we get

1

2N

∑
k,k′,q

Jqb
†
k+qb

†
k′−qbk′bk ≈

∑
k

(
J τ

k + nJ0
)
b
†
kbk + EMF,

(3.9)
where

J τ
k = 2JRe(τ1e

ik·δ1 ) + 2J ′Re(τ2e
ik·δ2 + τ3e

ik·δ3 ), (3.10)

EMF = −N

[
J0

2
n2 + J |τ1|2 + J ′(|τ2|2 + |τ3|2)

]
. (3.11)
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The Hartree-Fock approximation gives a constant energy
shift EMF, which depends on the magnetic field and the
temperature; moreover, the Hartree-Fock approximation leads
to a renormalization of single-particle excitation energies
ξk → ξ̃k, where the renormalized excitation energies are

ξ̃k = εk − μ + J τ
k + nJ0. (3.12)

The self-consistency equations for the Hartree-Fock parame-
ters are given by

τi = τ (δi) = 1

N

∑
k

nke
−ik·δi , (3.13a)

n = 1

N

∑
k

nk, (3.13b)

where the occupation number of a state with momentum k is
given by

nk = 〈b†kbk〉. (3.14)

If we neglect the hard-core interaction, we simply obtain the
Bose-Einstein distribution,

nHF
k = 1

eβξ̃k − 1
, (3.15)

where β = 1/T is the inverse temperature and the renormal-
ized excitation energy ξ̃k can be obtained in a straightfor-
ward way by solving the self-consistency equations for the
Hartree-Fock parameters for U = 0. Neglecting the hard-core
interaction is possible only for small temperatures T � J

when the bosons are so dilute that the hard-core interaction
does not contribute significantly.

B. Self-consistent ladder approximation

After the Hartree-Fock decoupling of the Jq interaction, we
obtain a Hamiltonian where the only remaining interaction is
the infinite on-site repulsion,

H =
∑

k

ξ̃kb
†
kbk + U

2N

∑
k,k′,q

b
†
k+qb

†
k′−qbk′bk + EMF. (3.16)

We will deal with this hard-core interaction using the self-
consistent ladder approximation developed in Ref. [32].

1. Imaginary time path integral formalism

To derive the self-consistent ladder approximation, it is
convenient to formulate the problem in terms of an imaginary
time path integral [35]. The Euclidean action associated with
the Hamiltonian (3.16) is

S[b̄,b] = −
∫

K

G−1
0 (K)b̄KbK

+ U

2

∫
K,K ′,Q

b̄K+Qb̄K ′−QbK ′bK. (3.17)

Here, we have introduced the composite index K = (k,iωk)
with the corresponding sum∫

K

= 1

βN

∑
k

∑
ωk

, (3.18)

Σ
K K = − Γ

Q

− Γ

Q

FIG. 3. Diagrammatic representation of the self-energy in terms
of the effective interaction as given in Eq. (3.27).

where ωk are bosonic Matsubara frequencies. The complex
boson fields in imaginary time have been Fourier transformed
to frequency space as

bk(τ ) = 1

β
√

N

∑
ωk

e−iωkτ bK, (3.19a)

b̄k(τ ) = 1

β
√

N

∑
ωk

eiωkτ b̄K . (3.19b)

The Green function G(K) and the corresponding self-energy

(K) are defined via the functional average

〈b̄KbK〉 = −βNG(K) = −βN
1

G−1
0 (K) − 
(K)

, (3.20)

where the bare Green function G0(K) is given by

G0(K) = 1

iωk − ξ̃k
. (3.21)

From this path integral formalism, a perturbative diagrammatic
expansion of the one-particle irreducible self-energy 
(K) can
be obtained in terms of the bare Green function G0(K) and the
interaction U .

2. Self-consistent ladder approximation

Since we are dealing with a strictly nonperturbative problem
(U → ∞), it is necessary to sum over a suitable infinite
set of diagrams containing infinite powers of U . Here, we
approximate the self-energy by summing over all particle-
particle ladder diagrams, where we express the self-energy in
terms of the effective interaction �, as shown in Fig. 3. The
effective interaction then includes the infinite series of particle-
particle ladder diagrams indicated in Fig. 4. Formally, this
approximation is justified for β� � 1 because the neglected
diagrams are of order exp(−β�) smaller than the ladder
diagrams. The neglected diagrams for the self-energy include
at least two lines going backwards in imaginary time while the
ladder diagrams only include a single line of this type; each
such line gives a suppression of exp(−β�). This can be seen

Γ ≈ − + ...

FIG. 4. Ladder approximation for the effective interaction �

including all particle-particle ladder diagrams.

094442-4



HARD-CORE BOSON APPROACH TO THE SPIN- 1
2 . . . PHYSICAL REVIEW B 92, 094442 (2015)

Γ

K K′

P − K P − K′

= − Γ

K′′

P − K′′

FIG. 5. Diagrammatic representation of the Bethe-Salpeter equa-
tion (3.24) for the effective interaction �.

by considering the bare Green function in imaginary time,

G0(k,τ ) =
{

−(1 + nB(ξ̃k))e−ξ̃kτ , τ > 0

−nB(ξ̃k)e−ξ̃kτ , τ < 0
, (3.22)

where nB(x) denotes the Bose function,

nB(x) = 1

eβx − 1
. (3.23)

We see that nB(ξ̃k) ∝ exp(−β�) for β� � 1 and therefore
G0(k,τ ) ∝ exp(−β�) for τ < 0.

We can go beyond the ladder approximation and include
higher-order terms by using the full Green function G(K) in
the diagrammatic expansion instead of the bare Green function
G0(K) and then finding a self-consistent solution. In this
self-consistent ladder approximation, the effective interaction
fulfills the Bethe-Salpeter equation shown in Fig. 5,

�(K ′,K; P ) = U − U

∫
K ′′

�(K ′′,K; P )G(K ′′)G(P − K ′′).

(3.24)
Because the hard-core interaction U is a constant independent
of the momentum transfer, the Bethe-Salpeter equation has the
simple solution

�(K ′,K; P ) = �(P ) = U

1 + U�(P )
, (3.25)

where we have defined the particle-particle bubble

�(P ) =
∫

Q

G(Q)G(P − Q). (3.26)

The self-energy in the self-consistent ladder approximation is
given by


(K) = −2
∫

Q

G(Q)�(Q + K)eiωq0+
, (3.27)

which is shown diagrammatically in Fig. 3. The convergence
factor eiωq0+

implements the correct time ordering at the
interaction vertex in the first order term in U where a
propagator line starts and ends at the same vertex [35]. The
Green function has the spectral representation

G(K) =
∫ ∞

−∞
dx

A(k,x)

iωk − x
, (3.28)

where the spectral function is given by

A(k,ω) = − 1

π
ImG(k,ω + i0+)

= − 1

π

Im
R(k,ω)

[ω − ξ̃k − Re
R(k,ω)]2 + [Im
R(k,ω)]2
,

(3.29)

and the retarded self-energy is obtained by analytic continua-
tion to real frequencies,


R(k,ω) = 
(k,ω + i0+). (3.30)

We note that the spectral function of hard-core bosons fulfills
the following sum rule [32]:∫ ∞

−∞
dω A(k,ω) = 〈[bk,b

†
k]〉 = 1 − 2n, (3.31)

with

n = 1

N

∑
k

nk = 1

N

∑
k

∫ ∞

−∞
dx A(k,x)nB (x). (3.32)

Our goal is to calculate the self-consistent solution for the
spectral function A(k,ω). But before we can do this, we have
to take the limit U → ∞ analytically.

3. Taking the limit U → ∞
We can write the effective interaction �(P ) as

�(P ) = 1

�(P )
+ δ�(P ), (3.33)

where the second term

δ�(P ) = − 1

�(P )

1

1 + U�(P )
(3.34)

does also contribute to the U → ∞ limit because the denom-
inator of δ�(P ) can vanish at high frequencies ωp ∼ O(U )
leading to an additional delta-function contribution, which has
to be taken into account. This subtlety of the U → ∞ limit has
been noticed only quite recently by FSU [32]. We now follow
FSU to derive the correct hard-core limit for our model. First
of all, we note that �( p,ω) ∝ 1/ω for ω → ∞. This allows
us to introduce the spectral representation

�( p,ω) =
∫ ∞

−∞
dx

ρ( p,x)

ω − x
, (3.35)

where

ρ( p,ω) = − 1

π
Im�( p,ω + i0+)

= − 1

N

∑
q

∫ ∞

−∞
dx A(q,x)A( p − q,ω − x)

× [nB(x) − nB(−x)]. (3.36)

Now, we use the fact that for ω → ∞,

�( p,ω) − U = −U 2�( p,ω)

1 + U�( p,ω)
∝ 1

ω
, (3.37)
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because �( p,ω) ∝ 1/ω for ω → ∞. This implies that
�( p,ω) − U has the spectral representation

�( p,ω) − U =
∫ ∞

−∞
dx

ρ̄( p,x)

ω − x
, (3.38)

where

ρ̄( p,ω) = − 1

π
Im[�( p,ω + i0+)]

= f ( p,ω) − 1

π
Im[δ�( p,ω + i0+)], (3.39)

with

f ( p,ω) = −ρ( p,ω)[
P

∫ ∞
−∞ dx

ρ( p,x)
ω−x

]2 + [πρ( p,ω)]2
. (3.40)

Here, P denotes the Cauchy principal value which arises
from the identity 1/(ω + i0+) = P(1/ω) − iπδ(ω). For the
contribution of δ� to ρ̄( p,ω), we recall that the denominator
of δ�( p,ω) can vanish when ω ∼ O(U ) and only in that case
there can be a contribution from δ�. Therefore we expand
�( p,ω) for large frequencies ω ∼ O(U ) (we take U to be
very large but finite),

�( p,ω) ≈ ρ0( p)

ω
+ ρ1( p)

ω2
+ O

(
1

ω3

)
, (3.41)

where

ρ0( p) =
∫ ∞

−∞
dxρ( p,x), (3.42a)

ρ1( p) =
∫ ∞

−∞
dx xρ( p,x). (3.42b)

We find

δ�(P ) ≈ − 1
ρ0( p)

ω
+ ρ1( p)

ω2 + O
(

1
ω3

)
× 1

1 + U
ρ0( p)

ω
+ U

ρ1( p)
ω2 + O

(
U
ω3

) , (3.43)

where the terms O(1/ω3) and O(U/ω3) vanish at the pole
ω ∼ O(U ) in the limit U → ∞, justifying the expansion to
order 1/ω2. Therefore we have

δ�(P ) ≈ − 1
ρ0( p)

ω
+ ρ1( p)

ω2

ω2

(ω − ω1( p))(ω − ω2( p))
, (3.44)

where the poles are given by

ω1( p) = −Uρ0( p)

2
−

√
U 2ρ2

0 ( p)2

4
− Uρ1( p)

∼ −Uρ0( p), U → ∞, (3.45a)

ω2( p) = −Uρ0( p)

2
+

√
U 2ρ2

0 ( p)

4
− Uρ1( p)

∼ −ρ1( p)

ρ0( p)
, U → ∞. (3.45b)

Only the pole at ω1 ∼ O(U ) is relevant for the analytic contin-
uation in Eq. (3.39) because the other pole at ω2 ∼ O(U 0)

is spurious, since we have expanded for large frequencies
ω ∼ O(U ). In total, we get

ρ̄( p,ω) = f ( p,ω) − 1
ρ0( p)

ω
+ ρ1( p)

ω2

ω2

ω − ω2( p)
δ(ω − ω1( p)).

(3.46)
We can now use the spectral representation (3.38) in Eq. (3.27)
and take the limit U → ∞ to get the following expression for
the self-energy:


(K) = − 2

N

∑
q

∫ ∞

−∞
dx

∫ ∞

−∞
dx ′A(q,x ′)f (q + k,x)

×nB(x) − nB(x ′)
iωk + x ′ − x

+ 2

N

∑
q

∫ ∞

−∞
dx A(q,x)nB (x)

×
[

x + iωk

ρ0(q + k)
− ρ1(q + k)

ρ2
0 (q + k)

]
. (3.47)

By analytic continuation to real frequencies, we obtain the real
and imaginary parts of the retarded self-energy:

Re
R(k,ω) = 2

N

∑
q

∫ ∞

−∞
dx A(q,x)nB (x)

×
[

x + ω

ρ0(q + k)
− ρ1(q + k)

ρ2
0 (q + k)

]

+P
∫ ∞

−∞
dx

ρ
(k,x)

ω − x
, (3.48a)

Im
R(k,ω) = −πρ
(k,ω), (3.48b)

where

ρ
(k,ω) = 2

N

∑
q

∫ ∞

−∞
dx A(q,x)f (q + k,x + ω)

×[nB(x) − nB(x + ω)]. (3.48c)

To summarize, we have obtained the self-energy in the limit
U → ∞, which we can calculate starting from an initial
spectral function. Via Eq. (3.29) we can then calculate the
next iteration of the spectral function allowing us to find
a self-consistent solution for the spectral function. After
each iteration, the Hartree-Fock parameters n, τ1, τ2, and τ3

have to be updated via the self-consistency equations (3.13a)
and (3.13b) using

nk = 〈b†kbk〉 =
∫ ∞

−∞
dx A(k,x)nB (x). (3.49)

IV. NUMERICAL RESULTS FOR THE
ONE-DIMENSIONAL XY MODEL

Before applying the above approach to the hard-core boson
model for Cs2CuCl4, it is instructive to test its validity for
the exactly solvable one-dimensional spin-1/2 XY model
in a magnetic field. Although a similar model has been
already studied in detail in Ref. [32], the breakdown of the
self-consistent ladder approximation in the vicinity of the
quantum critical point has not been investigated.
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The XY model in one dimension is given by

H1D = J
∑

i

(
Sx

i Sx
i+1 + S

y

i S
y

i+1

) − h
∑

i

Sz
i , (4.1)

which can again be mapped to hard-core bosons (neglecting
constant terms)

H1D =
∑

k

ξkb
†
kbk + U

2N

∑
k,k′,q

b
†
k+qb

†
k′−qbk′bk, (4.2)

with excitation energy

ξk = J [cos(kxb) + 1] − μ, (4.3)

where μ = hc − h = −� and hc = J . An exact solution can
be found by mapping the hard-core bosons to fermions via the
Jordan-Wigner transformation,

bj = e−iπ
∑

l<j c
†
l cl cj , b

†
j = c

†
j e

iπ
∑

l<j c
†
l cl , (4.4)

resulting in the quadratic Hamiltonian

H1D =
∑

k

ξkc
†
kck, (4.5)

where the operators c
†
k and ck are fermionic creation and an-

nihilation operators. The hard-core boson density is therefore
exactly given by

n = 1

N

∑
k

1

eβξk + 1
, (4.6)

which can be compared to the approximate solution from the
self-consistent ladder approximation for the hard-core boson
model. We note that for low temperatures at μ = 0, the exact
density (4.6) has the following asymptotic behavior:

n ∼
√

2T/J

π

∫ ∞

0
dx

1

ex2 + 1
≈ 0.241

√
T/J , (4.7)

in agreement with the expected behavior of one-dimensional
bosons at the quantum critical point [36].

In Fig. 6, we compare the approximate result for the
boson density n obtained within the self-consistent ladder
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T/J
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0.2

0.3

0.4

0.5

n Δ/J = 0

Δ/J = 0.2

Δ/J = 0.5

Δ/J = 1.0

FIG. 6. (Color online) Comparison of the results for the boson
density n obtained from the self-consistent ladder approximation
(symbols) with the exact result (solid lines) at different energy gaps
� for the one-dimensional XY model.
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FIG. 7. (Color online) Relative error δn/n of the boson density
[see Eq. (4.8)] in the self-consistent ladder approximation for the
one-dimensional XY model as a function of temperature at different
energy gaps �.

approximation with the exact solution. The relative error δn/n

of the approximate result is shown in Fig. 7 where we define

δn/n = nladder − nexact

nexact
. (4.8)

Here, nladder is the result from the self-consistent ladder
approximation and nexact is the exact result. For a finite gap, we
see that the error vanishes for low and high temperatures with
a maximum error at T ≈ �, while the error becomes smaller
for larger energy gaps. For � = 0, the error keeps increasing
for smaller temperatures, getting closer to the quantum critical
point at T = 0, but decreases for higher temperatures. We
conclude that the self-consistent ladder approximation gives
good results over the whole temperature range for finite energy
gaps � � 0.1J .

V. NUMERICAL RESULTS FOR Cs2CuCl4

In this section, we apply our hard-core boson approach
described in Sec. III to the relevant model for Cs2CuCl4 given
in Sec. II. From the numerical solution of the self-consistent
ladder approximation we calculate the spectral function of the
hard-core bosons at finite temperatures for different magnetic
fields in the regime B > Bc where the energy gap � > 0
is finite. Given the spectral function, we can calculate the
magnetization, the internal energy, and the transverse part of
the spin dynamic structure factor. From the magnetization
and internal energy, we obtain the magnetic susceptibility
and the specific heat by numerical differentiation. Finally, we
compare our results with experimental data for the specific
heat [15,16]. Technical details of the numerical solution of
the self-consistent ladder approximation can be found in
Appendices A and B.

1. Spectral function

Due to the finite energy gap � > 0, at zero temperature
the spectral function is exactly given by the noninteracting
spectral function,

A(k,ω) = A0(k,ω) = δ(ω − ξk). (5.1)
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FIG. 8. (Color online) Contour plots of the spectral function A(k,ω) of the hard-core bosons at ky = 0 for temperatures of 1 and 4 K in a
magnetic field B = 9 T corresponding to an energy gap � = 0.19J . The white dashed line is the bare excitation energy ξk given by Eq. (2.11).

At finite temperatures, interactions will lead to a renormal-
ization of the excitation energy ξk and a broadening of the
delta peaks. Since we are treating the Jq interaction term on
a Hartree-Fock level, this alone would only renormalize the
excitation energy by ξk → ξ̃k resulting in

A(k,ω) = δ(ω − ξ̃k). (5.2)

Taking in addition the hard-core interaction via the self-
consistent ladder approximation into account will lead to a
broadening of the spectral function with rising temperature, as
shown in Fig. 8. Besides the broadening, we notice that the
bandwidth shrinks with rising temperature and the minimum of
the spectral function gets shifted to higher energies increasing
the effective energy gap from its bare value � at T = 0. In
Fig. 9, we contrast the behavior of the spectral function at
k = 0 and at the minimum of the dispersion k = Q. While
at k = 0 the position of the peak only moves to slightly
higher energies, at the minimum of the dispersion the peak
gets considerably shifted to higher energies. Due to the
finite frequency resolution in our numerical calculation (see
Appendix A), we cannot reach arbitrarily low temperatures
and are restricted to temperatures T � 0.2� where the spectral
function is not too narrow to be resolved. However, in the
temperature range T � 0.2�, the hard-core interaction can
be neglected and we can then just use the self-consistent
Hartree-Fock decoupling without hard-core interaction, as we
will show further below.

The spectral function can be related to the in-plane
components of the spin dynamic structure factor. The spin
dynamic structure factor is defined by

Sαβ(k,ω) =
∫ ∞

−∞

dt

2π
eiωt

〈
Sα

−k(t)Sβ

k (0)
〉
, (5.3)

where α,β = x,y,z and the Fourier transforms of the spin
operators are defined via

Sα
k = 1√

N

∑
i

e−ik·Ri Sα
i . (5.4)

The in-plane components of the spin dynamic structure factor
are given by

Sxx(k,ω) = Syy(k,ω)

= 1

4

1

1 − e−βω
(A(k,ω) + A(−k,ω)), (5.5a)

Sxy(k,ω) = −Syx(k,ω)

= 1

4

1

1 − e−βω
(A(k,ω) − A(−k,ω)), (5.5b)

where Sxy(k,ω) and Syx(k,ω) do not vanish due to the
broken inversion symmetry. The U(1) symmetry due to the
spin-rotational invariance with respect to the z axis requires
that

Sxz(k,ω) = Szx(k,ω) = Syz(k,ω) = Szy(k,ω) = 0. (5.6)
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FIG. 9. (Color online) Spectral function A(k,ω) at k = 0 and at k = Q (at the minimum of the dispersion) in a magnetic field B = 9 T
corresponding to an energy gap � ≈ 0.19J .

094442-8



HARD-CORE BOSON APPROACH TO THE SPIN- 1
2 . . . PHYSICAL REVIEW B 92, 094442 (2015)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

T (K)

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

m B = 9 T

B = 9.5 T

B = 10 T

B = 11.5 T

FIG. 10. (Color online) Numerical results for the magnetic mo-
ment m at different magnetic fields between 9 and 11.5 T.

The Szz component of the spin dynamic structure factor cannot
be simply expressed in terms of the spectral function because
it is a two-particle Green function in terms of the hard-core
boson operators:

Szz(k,ω) = 1

N

∑
q,q ′

∫ ∞

−∞

dt

2π
eiωt 〈b†q(t)bq−k(t)b†q ′(0)bq ′+k(0)〉.

(5.7)

2. Magnetic moment and magnetic susceptibility

The magnetic moment per site is given by

m = 〈
Sz

i

〉 = 1
2 − n, (5.8)

where n is the boson density per site which can be expressed
in terms of the spectral function,

n = 1

N

∑
k

nk, (5.9)

with

nk = 〈b†kbk〉 =
∫ ∞

−∞
dx A(k,x)nB (x). (5.10)

We define the magnetic susceptibility χ via

χ = dm

dB
. (5.11)

In the limit T → 0, the boson density vanishes and the
asymptotic low-temperature behavior of the susceptibility is
therefore the one of free bosons because all interaction are
frozen out,

χ ∝ T
d−2

2 e−�/T , (5.12)

where d is the dimensionality (d = 2 in our case) and � the
energy gap.

The numerical results for magnetic moment and magnetic
susceptibility for different magnetic fields above the saturation
field are shown in Figs. 10 and 11, respectively. In Fig. 12,
we compare our numerical results from the self-consistent
ladder approximation with the low-temperature Hartree-Fock
approximation without hard-core interaction and with a simple
spin mean-field theory, which we describe in Appendix C. We
see that for low temperatures T � J the Hartree-Fock and

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
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0.000
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−
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9.5 T

10 T

11.5 T

FIG. 11. (Color online) Numerical results for the magnetic sus-
ceptibility χ at different magnetic fields between 9 and 11.5 T. The
thin solid lines are low-temperature results from the Hartree-Fock
approximation without hard-core interaction, which allows us to get
results in the low-temperature regime where the self-consistent ladder
approximation cannot be used due to the limited frequency resolution.

the ladder approximation give essentially the same results.
This allows us to use the Hartree-Fock approximation in
the low-temperature regime where the self-consistent ladder
approximation is difficult to implement due to the limited
frequency resolution. At higher temperatures, the hard-core
interaction becomes important and the high-temperature be-
havior is approximately captured by the spin mean-field
theory.

3. Internal energy and specific heat

The internal energy is given by

E = 〈H〉 =
∑

k

ξ̃knk + EMF, (5.13)

where the infinite on-site interaction does not contribute
because its expectation value is zero if the hard-core constraint
is fulfilled. The specific heat at constant volume is obtained by
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Hartree-Fock only

spin mean-field

FIG. 12. (Color online) Comparison of the results for the mag-
netic susceptibility χ from the self-consistent ladder approximation,
Hartree-Fock approximation without hard-core interaction, and spin
mean-field theory for a magnetic field B = 9 T corresponding to an
energy gap � ≈ 0.19J .
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FIG. 13. (Color online) Numerical results for the specific heat C

at different magnetic fields between 9 and 11.5 T. The thin solid lines
are low-temperature results from the Hartree-Fock approximation
without hard-core interaction, which allows us to get results in the
low-temperature regime where the self-consistent ladder approxima-
tion cannot be used due to the limited frequency resolution.

taking the temperature derivative of the internal energy,

C = dE

dT
. (5.14)

We note that EMF depends on temperature and has to be taken
into account for calculating the specific heat. The asymptotic
low-temperature behavior of the specific heat is given by

C ∝ T
d−4

2 e−�/T . (5.15)

The numerical results for the specific heat at different magnetic
fields above the saturation field are shown in Fig. 13. In
Fig. 14, we again compare our numerical results from the
self-consistent ladder approximation with the low-temperature
Hartree-Fock approximation without hard-core interaction and
with a simple spin mean-field theory described in Appendix C.
The magnetic contribution to the specific heat of Cs2CuCl4
has been measured experimentally [15,16]. The more recent
data published in Ref. [16] differ slightly from Ref. [15] for
B = 11.5 T and are in better agreement with the expected size
of the energy gap at that field strength. Therefore, in Fig. 15, we
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FIG. 14. (Color online) Comparison of the results for the specific
heat C from the self-consistent ladder approximation, Hartree-Fock
approximation without hard-core interaction, and spin mean-field
theory for a magnetic field B = 9 T corresponding to an energy gap
� ≈ 0.19J .
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FIG. 15. (Color online) Comparison of our numerical results for
the specific heat (solid lines) with experimental data from Ref. [16]
(symbols) for different magnetic fields between 9 and 11.5 T. The
dashed lines are low-temperature results from the Hartree-Fock
approximation without hard-core interaction, which allows us to get
results in the low-temperature regime where the self-consistent ladder
approximation cannot be used due to the limited frequency resolution.

compare our results with the experimental data from Ref. [16],
where we find that our theory captures the experimentally
observed behavior both qualitatively and quantitatively. At low
temperatures, the slope in the logarithmic plot of CT versus
1/T in Fig. 15 is given by −�, which follows directly from
Eq. (5.15).

VI. SUMMARY AND CONCLUSIONS

We have mapped the spin-1/2 Heisenberg model describing
Cs2CuCl4 to a model of hard-core bosons where the hard-core
constraint has been taken into account by an infinite on-site
repulsion. Since we have only considered magnetic fields
B > Bc (along the a axis perpendicular to the lattice plane),
we had to deal with gapped hard-core bosons. Due to the
energy gap, the hard-core interaction can be taken into account
using the self-consistent ladder approximation [32] and the
remaining interactions can be treated within the self-consistent
Hartree-Fock approximation. Before applying this method
to Cs2CuCl4, we have investigated for the exactly solvable
one-dimensional XY model how the ladder approximation
breaks down in the vicinity of the critical field Bc, finding that
the ladder approximation for finite energy gaps � works well
both at low and high temperatures and the deviations, maximal
at T ≈ �, decrease with rising energy gap �. We have
then calculated the spectral function of the hard-core bosons
for Cs2CuCl4 from which we have obtained the magnetic
susceptibility and the specific heat. The calculated specific
heat is in good agreement with the available experimental data.
We conclude that the self-consistent ladder approximation in
combination with a self-consistent Hartree-Fock decoupling
of the non-hard-core interactions gives an accurate description
of the physical properties of gapped hard-core bosons in
two dimensions at finite temperatures. An extension to three
dimensions is straightforward and would only increase the
numerical effort due to an increasing number of lattice sites.
Our methods can also be directly applied to the material class
Cs2Cu(Cl4−xBrx), where chlorine is partially substituted by
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bromine which changes the strength of the exchange couplings
and the ratio J ′/J [37–39]. While in our work we started from
a spin-1/2 model which we mapped to hard-core bosons, our
theoretical approach is applicable whenever the elementary
excitations can be described by gapped hard-core bosons; some
examples are discussed in Ref. [32]. In the case of S > 1/2, a
mapping to hard-core bosons is not known, but mapping the
spins to canonical bosons is possible by using, for example, the
Holstein-Primakoff transformation [40], where the constraint
on the boson occupation number per site, n̂i � 2S, is difficult
to take into account analytically. Therefore spin-wave theories
based on such a mapping to canonical bosons are only valid for
low boson densities at low temperatures, where the constraint
is not important and the usual expansion in n̂i/S is justified.
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APPENDIX A: NUMERICAL DETAILS

In this Appendix, we give more details on the numerical
solution of the self-consistency equations for the spectral
function A(k,ω). To find a self-consistent solution for A(k,ω),
we have to start from an initial spectral function Ainit(k,ω).
If we would just have the standard non-self-consistent ladder
approximation, we would replace A(k,ω) by the noninteract-
ing spectral function A0(k,ω) and then directly calculate the
spectral function A(k,ω). It is therefore sensible to use the
noninteracting spectral function as the initial spectral function,
which is given by

A0(k,ω) = − 1

π
ImG0(k,ω + i0+) = δ(ω − ξk). (A1)

We note here that at T = 0 the spectral function is not affected
by interactions, A(k,ω) = A0(k,ω), because the ground state
is the vacuum without any bosons due to the energy gap. For
the numerical calculation, we replace the delta function by
a box function of finite width η (e.g., η = 0.1J ) centered at
ω = ξk. This is fine as long as ξk > 0 which is the case for
magnetic fields B > Bc. For ξk � 0, we have to take the sign
of the spectral function into account [35],

sgn(A(k,ω)) = sgn ω. (A2)

Therefore a positive delta peak is not permitted for negative
frequencies and the noninteracting spectral function cannot
be used for values of k with ξk � 0. In our calculations, we
instead place a step function at a small positive frequency when
ξk � 0. This allows us to find a self-consistent solution even
for B � Bc.

Having chosen an initial spectral function, the next step is to
calculate ρ( p,ω) via Eq. (3.36), which is a multidimensional
convolution that can be calculated with the fast Fourier
transform method, e.g., using the FFTW library [41]. Then
f ( p,ω) can be obtained from Eq. (3.40), where the principal
value integral can also be evaluated as a convolution [42]. Next,
the calculation of ρ
(k,ω) via Eq. (3.48c) and Re
R(k,ω) via
Eq. (3.48a) also involves convolutions. While the values of

k are naturally discretized for a finite lattice, as discussed in
Appendix B, the real frequencies ω have to be artificially
discretized, leading to a limited frequency resolution, and
a frequency cutoff has to be introduced (e.g., |ω| < 20J ).
When using the fast Fourier transform method to evaluate
the convolutions, this treats the functions as periodic both
in momentum and frequency space, leading to a wrap-around
effect in the frequency dependence of the calculated functions.
This wrap-around error can be dealt with by setting the spectral
function A(k,ω) to zero for frequencies larger than a certain
cutoff (e.g., for |ω| > 10J ). In our calculations, we typically
used lattice sizes up to 4096 sites and up to 131 072 frequency
points.

To achieve convergence, a simple mixing update procedure
has to be used, where the updated spectral function and
Hartree-Fock parameters are set to be a mixture of the
previous iteration and the new values from the self-consistency
equations. In our case, a mixing of 50% worked well. We
note that in the case without the self-consistent Hartree-Fock
decoupling (e.g., for an XY model), mixing is not necessary to
achieve convergence. The converged numerical result should
(up to a small numerical error) fulfill the sum rule [32]∫ ∞

−∞
dω A(k,ω) = 1 − 2n. (A3)

APPENDIX B: BRILLOUIN ZONE DISCRETIZATION

The use of fast Fourier transform methods is based on
the periodicity of the transformed functions. Therefore the
Brillouin zone should not be arbitrarily discretized because
that would in most cases destroy the periodicity. Still, there is
an infinite number of possible parametrizations of the Brillouin
zone. In our work, we have used two parametrizations, which
we will present here. The first parametrization starts from the
lattice basis

a1 = bx̂, a2 = −b

2
x̂ + c

2
ŷ, (B1)

with the corresponding reciprocal basis

b1 = 2π

b
x̂ + 2π

c
ŷ, b2 = 4π

c
ŷ. (B2)

The lattice momentum vectors can then be expanded in terms
of the reciprocal basis,

k = k1b1 + k2b2, (B3)

where the periodic boundary conditions dictate that

k1 = l1

N1
, l1 ∈ {0, . . . ,N1 − 1}, (B4a)

k2 = l2

N2
, l2 ∈ {0, . . . ,N2 − 1}. (B4b)

The total number of lattice sites is N = N1N2. To obtain a
uniform mesh [43], we have to choose

N2 = 2N1. (B5)
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The second (primed) parametrization starts from the lattice
basis

a′
1 = b

2
x̂ − c

2
ŷ, a′

2 = b

2
x̂ + c

2
ŷ, (B6)

with the corresponding reciprocal basis

b′
1 = 2π

b
x̂ − 2π

c
ŷ, b′

2 = 2π

b
x̂ + 2π

c
ŷ. (B7)

The lattice momentum vectors can again be expanded in terms
of the reciprocal basis,

k = k′
1b′

1 + k′
2b′

2, (B8)

where the periodic boundary conditions dictate that

k′
1 = l′1

N ′
1

, l′1 ∈ {0, . . . ,N ′
1 − 1}, (B9a)

k′
2 = l′2

N ′
2

, l′2 ∈ {0, . . . ,N ′
2 − 1}. (B9b)

The total number of lattice sites is N = N ′
1N

′
2. To obtain a

uniform mesh [43], we have to choose

N ′
2 = N ′

1. (B10)

APPENDIX C: SPIN MEAN-FIELD APPROXIMATION

We expect that at high temperatures T � J , the spins de-
couple and it is sufficient to describe the spin-spin interactions
on a mean-field level where the effects of the interactions are

approximated by an effective magnetic field. To derive this
mean-field description, we start from the Hamiltonian (2.1),

H = 1

2

∑
ij

[Jij Si · Sj + Dij · (Si × Sj )] − h
∑

i

Sz
i . (C1)

First, we note that only the z component of the expectation
values of the spin operators does not vanish,

〈Si〉 = m ẑ, m = 〈
Sz

i

〉
. (C2)

Expanding up to linear order in fluctuations from this expec-
tation value, we find

H ≈ −NJ0
m2

2
− heff

∑
i

Sz
i , (C3)

where the effective magnetic field is given by

heff = h − J0m, (C4)

with

J0 = 2J + 4J ′. (C5)

The magnetic moment m is obtained by solving the self-
consistency equation

m = 1

2
tanh

(
β

2
heff

)
, (C6)

and the energy in this mean-field approximation is a simple
function of magnetic field and magnetic moment,

E = N
(

1
2J0m

2 − mh
)
. (C7)
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