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Dzyaloshinskii-Moriya interaction (DMI) plays a central role in breaking chiral symmetry of magnetic domain
wall structure. The recently observed chiral dependence of domain wall structures in ultrathin magnetic films with
perpendicular anisotropy indicates the presence of a strong DMI. We calculate the indirect exchange interaction
between magnetic ions mediated by spin-polarized conduction electrons with a Rashba spin-orbit coupling. We
find the resulting DMI increases with the spin-orbit coupling strength, but decreases with the spin-polarization
of the conduction electrons. The estimated DMI magnitude is comparable to the experimental results.
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I. INTRODUCTION

Chiral orders of magnetic structure have been observed
in bulk materials as well as in ultrathin magnetic films.
Various chriral magnetic patterns, such as skyrmion lattice
[1–4], helix spins [5,6], handedness of Bloch or Neel walls
[7], become interesting topics in topology and magnetism.
Interesting dynamics properties of these structures, e.g.,
dynamics of chiral domain wall [8] and of magnetic skyrmions
[9], as well as domain wall motion driven by spin waves
[10], have been recently investigated. Microscopic origins
of these chiral structures and their dynamic properties have
been attributed to Dzyaloshinki-Moriya interaction (DMI)
[11,12], whose spin Hamiltonian takes an anisotropic form
HDMI = ∑

ij Dij · (Si × Sj), where Si is the localized spin at
the site i. The DMI requires a broken space inversion symmetry
and spin-orbit coupling. Magnetic ultrathin films provide an
excellent system for studying magnetic chiral orders since the
inversion symmetry is naturally broken as long as substrates
and overlayers are made of different materials, and the Rashba
spin-orbit coupling [13] at interfaces always exists due to the
electrostatic potential differences of contacting materials.

DMI in thin films had been studied previously. Fert
and Levy considered the DMI from spin-orbit coupling of
impurities [14]. In this model, a conduction electron that is
polarized by a magnetic ion Si at a position Ri propagates
to an impurity site R0 whose spin-orbit interaction leads
to a spin rotation of the conduction electron such that the
conduction electron spin is not parallel (or antiparallel) to
Si . When the conduction electron continues to propagate to
another site Rj and interacts with the magnetic ion Sj , the
effective interaction between Si and Sj is no longer symmetric
with respect to the interchange of Si and Sj . The above
magnetic interaction mediated by conduction electrons relies
on the existence of heavy element impurities in the film and
third-order perturbation on the electron-local spin is needed.
Based on tight-binding model, Crépieux and Lacroix had
expressed the DMI in terms of spin-orbit parameters at the
surface [15]. By symmetry consideration, they were able to
construct various forms of DMI with different underlying
crystal structure. Another model for the DMI is based on
a Rashba band [16]. In this model, the interaction between
two magnetic ions are mediated by free electrons, known
as the RKKY interaction, except that the free electron band

contains the Rashba spin-orbit coupling (RSOC). However, the
model is only valid for the interaction between two magnetic
impurities in a nonmagnetic thin film where the electron
bands are not spin-polarized. For ferromagnetic films, such
as Ni, the bands are spin polarized and the Rashba interaction
is usually much weaker than the exchange interaction. It is
thus interesting to extend the conduction-electron mediated
DMI to ferromagnetic films where both spin-polarization and
RSOC must be included. We noted that the inclusion of both
exchange and RSOC has been studied in Ref. [17] in which the
effective DM-like coupling is obtained by a different approach
(canonical transformation) in some limiting cases.

The present study is also motivated by recent experiments
on DMI of ultrathin magnetic films. Gong Chen et al. [7]
observed the formation of Neel-type of domain wall patterns
with a definitive handed helix in perpendicularly magnetized
Ni/Co ultrathin films. Since the Bloch wall usually has a lower
energy than the Neel wall, the observed Neel wall has been
attributed to a large DMI in the film. Another recent experiment
[18] directly measured the strength of DMI in Pt/Co and Ni/Co,
and found that the DMI are as large as 0.44 mJ/m2. It would
be interesting to see whether the observed strong DMI could
be explained by the existence of the well-known interactions:
RSOC and the exchange. The paper is organized as follows.
In Sec. II, we provide a model Hamiltonian and solve for the
conduction electron band structure. In Sec. III, we explicitly
evaluate the DMI by using the obtained bands. Analytical
results are discussed in limiting cases. In Sec. IV, we calculate
DMI for ferromagnetic thin film. In Sec. V, we compare our
results with experimental results and discuss the possibility of
chiral domain wall, and Sec. VI is dedicated for conclusion.

II. THEORETICAL MODEL

We first consider a two-dimensional ferromagnetic film
with a uniformly aligned magnetization m. A model Hamilto-
nian of the conduction electron,

H0 = − �
2

2m
∇2 + Jσ · m + α(−i�∇ × ẑ) · σ , (1)

describes the exchange coupling between the conduction
electron and the magnetization (the second term on the
right-hand side of the equation), and RSOC (the last term),
where the parameter α characterizes the strength of RSOC,
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FIG. 1. (Color online) (a) The energy-momentum dispersion re-
lation of Eq. (2) for the magnetization m parallel to ẑ. The arrows
represent the directions n̂s of electron spin at the Fermi level for the
two subbands; see Eq. (3). (b) Two spins S1 and S2 make a small
deviation from the otherwise uniformly magnetized background.

ẑ is the unit vector along the z axis (perpendicular to the
growth direction), and σ is the Pauli vector. Equation (1) is
the simplest one-body free-electron Hamiltonian that includes
two essential properties of ferromagnetic ultrathin films: the
spin-polarized bands and spin-orbit coupling.

The solution of Eq. (1) is immediate. The energy-wave
vector dispersion relation is

εks = �
2k2

2m
+ s|Jm + α(�k × ẑ)|, (2)

where s = ±1 represents two spin-split bands. The
momentum-dependent direction of the spin polarization is

n̂s = s
Jm + α(�k × ẑ)

|Jm + α(�k × ẑ)| . (3)

The wave function is

ψks(r) = 1√
A

eik·rχs(k), (4)

where A is the area of the 2D surface and χs(k) is the spin part
of the wave function, which satisfies

(σ · n̂s)χs(k) = sχs(k). (5)

In Fig. 1(a), we show the dispersion of the two bands
and the spin direction at the Fermi surface (circle) for the
magnetization perpendicular to the plane of the layer. The spin
directions would be more complicated if m is deviated from ẑ.

Having determined the unperturbed bands with the uniform
magnetization vector, we now consider two ions whose spin
momenta S1 and S2 at the positions R1 and R2, as shown
in Fig. 1(b). The momenta are deviated from the average
magnetization m such that a perturbed Hamiltonian H ′ is

H ′ = V0

∑
i=1,2

δ(r − Ri)σ · �Si , (6)

where V0 = Ja2
0 is the exchange potential and the δ function

represents a zero-ranged exchange interaction between the
magnetic moment and the conduction electron, and �Si =
Si − m is the deviation of the spin Si from its average value.

III. DMI MEDIATED BY CONDUCTION ELECTRONS

The first-order correction of H ′ to the unperturbed Hamil-
tonian H0 would give rise to a single-site energy correction to
the dispersion relation of Eq. (2). Since we are only interested

in the interaction between the two spins of S1 and S2, our
calculation starts with the second-order perturbation,

δE =
∑

ks,k′s ′
|〈ψks |H ′|ψk′s ′ 〉|2 fks − fk′s ′

εks − εk′s ′
, (7)

where fks is the Fermi distribution function, which takes the
value of 1 (0) if the energy of the state ks below (above) the
Fermi energy, and

A2

V 2
0

|〈ψks |H ′|ψk′s ′ 〉|2

= ∣∣(pss ′
1 + ipss ′

2

) · (�S1e
i(k−k′)·R1 + �S2e

i(k−k′)·R2 )
∣∣2

=
∑

ij=1,2

{(
pss ′

i · �Sj

)2 + 2
(
pss ′

i · �S1
)(

pss ′
i · �S2

)

× cos[(k − k′) · R12]
}

+ 2
(
pss′

1 × pss′
2

) · (�S1 × �S2) sin[(k − k′) · R12],

(8)

where R12 = R1 − R2, and the real and imaginary parts of the
spin matrix element are defined as 〈χs(k)|σ |χs ′ (k′)〉 ≡ pss ′

1 +
ipss ′

2 . Among all terms in Eq. (8), the asymmetric term in which
the exchange between S1 and S2 leads to a sign change is the
last term containing �S1 × �S2; the rest terms are symmetric
with respect to the exchange of S1 and S2. Recall that �Si =
Si − m, we may simply write �S1 × �S2 = S1 × S2 and thus
we can readily identify the DMI from Eqs. (7) and (8),

EDM = D12 · (S1 × S2), (9)

where

D12 = V 2
0

8π4

∑
ss ′

∫
dk

∫
dk′(pss′

1 × pss′
2

)fks − fk′s ′

εks − εk′s ′

× sin[(k − k′) · R12]. (10)

In general, the above analytical integration over k and k′ is
very complex.

It is interesting to connect our simple second-order per-
turbation with more abstract Berry phases in momentum and
real space shown in Refs. [19–21]. If we expand our total
Hamiltonian in phase space (R, K) as follows:

H (r) = H (R,K) + (k − K) · ∇KH (R,K)

+ (r − R) · ∇RV (R,K), (11)

where we have used the fact that spatial dependence of our
Hamiltonian only enters in the potential V (R), see Eq. (6),
thus ∇RH (R) = ∇RV (R). Treating the last two terms as
perturbation to the Hamiltonian H (R,K), the second-order
perturbation leads to

�H (2) =
∑
m�=n

〈m| ∂V
∂Ri

|n〉〈n| ∂H
∂Kj

|m〉
Em − En

+
∑
m�=n

∣∣〈m|(r−R) · ∂V
∂R |n〉∣∣2

Em − En

+
∑
m�=n

∣∣〈m|(k − K) · ∂V
∂K |n〉∣∣2

Em − En

, (12)

where m, n represents energy levels corresponding to the
unperturbed Hamiltonian = H (R,K). The first term is the
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Berry phase term in the mixed representation of the momentum
and coordinate space introduced in Ref. [19]. The other two
terms describe self-energy corrections.

Before we proceed, we should first comment on several
general features of Eq. (10). The direction of D would consist
of the following vector summation:

D12 = AR̂12 + B ẑ × R̂12 + Cm̂. (13)

The relative strength of these coefficients, A, B, and C, depend
on the RSOC parameter relative to the ferromagnetic exchange
J in the energy dispersion, Eq. (2). The last term, Cm̂, is
unimportant because it does not contribute to the chirality of
domain wall structure. The first two terms determine the chiral
structure of domain walls; we should discuss later.

Similar to the conventional RKKY interaction, the DMI
coefficient D12 displays an oscillatory decay as the distance
between two spins R12 increases. Since the denominator
in Eq. (10) contains the energy difference between the
occupied and unoccupied states, the largest contribution to
the integration over k and k′ comes from the states near the
Fermi energy, and thus the sine function in Eq. (9) generates
an oscillation with a period of 2kF R12 = 2π . There are two
limiting cases where the expression for D12 may be greatly
simplified. The first case is that the RSOC is much stronger
than the ferromagnetic exchange J . Imamura et al. [16]
has already explicitly obtained the DMI by using a Green’s
approach. By setting J = 0 in the energy dispersion, Eq. (2),
we would arrive at exactly the same expression as derived in
Ref. [16]. However, this case is relevant only for a nonmagnetic
interface with magnetic impurities, such as Pt or Au thin films
doped with dilute magnetic atoms such as Fe and Mn. To
address the DMI in ferromagnetic films, e.g., NiCo/Ir or Co/Pt,
the ferromagnetic exchange J is usually much larger than the
RSOC. Our calculation below will be concentrated in this
limiting case.

IV. DMI OF FERROMAGNETIC FILMS

Within the limit of J 	 α, we may simplify Eq. (10) by
only keeping the lowest order in α. To the zeroth order of α,
D12 is identically zero, i.e., there is no asymmetric interaction,
and thus we determine the DMI in the first order in α. We
further note that Eq. (10) would be identically zero if one
takes pss′

1 × pss′
2 to the zeroth order in α and the denominator

εks − εk′s ′ to the first order in α. Thus, for the lowest order
in α (first order), we should discard the RSOC in the energy
dispersion of Eq. (2), i.e.,

εks − εk′s ′ = �
2k2 − �

2k′2

2m
+ (s − s ′)J, (14)

and calculate pss′
1 × pss′

2 up to the first order in α. After tedious
algebra, we find

pss ′
1 + ipss ′

2 = −ẑ − is
α�

2J
(k − k′) for s = s′

= s
(k − k′) × ẑ

|k − k′| − i

(
m̂ + α�

2J
(k + k′) × ẑ

)

× (k − k′) × ẑ
|k − k′| for s �= s ′, (15)

and thus we obtain

pss ′
1 × pss ′

2 = −s
α�

2J
(k − k′) × ẑ for s = s′

= −s

(
m̂ + α�

2J
(k + k′) × ẑ

)
for s �= s ′.

(16)

By placing Eqs. (14)–(16) into Eq. (10), the angular parts of
the vectors k and k′ can be readily integrated out. To make the
notations simpler, we make the following variable change, x =
kR12, x ′ = k′R12, kF± = √

2m(εF ∓ J )/�, � = 2mJR2
12/�

2,
ξ± = kF±R12, εF = �

2k2
F /2m. By using the above definitions

and by carrying out the tedious but straightforward algebra,
we obtain the main result of the paper,

D12 = (ẑ × R̂12)

(
2m

�

)2
V 2

0 α�

4π2R12
[I0(ξ+,ξ−) + I1(ξ+,ξ−)],

(17)

where I0 and I1 represent the intraband and the interband
contributions,

I0(ξ+,ξ−) = 1

�

∫ ξ+

ξ−
dx

∫ ∞

0
dx ′ G+(x,x ′)

x2 − x ′2 , (18)

and

I1(ξ+,ξ−) = 1

�

∫ ξ+

ξ−
dx

∫ ∞

0
dx ′ G−(x,x ′)

x2 − x ′2 − 2�

− 4
∫ ξ+

0
dx

∫ ∞

ξ+
dx ′ G−(x,x ′)

(x2 − x ′2)2 − 4�2
, (19)

where

G±(x,x ′) = xx ′[xJ1(x)J0(x ′) ± x ′J0(x)J1(x ′)], (20)

with J0(x) and J1(x) being the Bessel functions of the first
kind.

2 4 6 8 10 12 14
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

Distance k
F
R

12

M
ag

ni
tu

de
 o

f D
12

This Paper
Ref. [9]

FIG. 2. (Color online) Comparison of the magnitude of D12 [in
the unit of (mV 2

0 k2
F )/(2π 2

�
2)] obtained by the limiting expression

of Eqs. (21) and (22) with those obtained from Ref. [16]. They are
nearly identical.
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FIG. 3. (Color online) The dependence of the the magnitude of
D12 [in the unit of (mV 2

0 k2
F )/(2π 2

�
2)] on the spin polarization P in

the weak spin-orbit coupling limit.

One interesting limiting case is the exchange coupling J

much smaller than the Fermi energy (but remains much larger
than the spin-orbit coupling α). By taking the limit that � → 0
such that ξ− = ξ+ ≡ ξ = kF R12, we find that the

I0(ξ ) =
∫ ∞

0
dx

G+(x,ξ )

x2 − ξ 2
, (21)

I1(ξ ) =
∫ ∞

0
dx

G−(x,ξ )

x2 − x ′2 − 4
∫ ξ

0
dx

∫ ∞

ξ

dx ′ G−(x,x ′)
(x2 − x ′2)2

.

(22)

We recall that Imamura et al. [16] had also explicitly
calculated the DMI in the limit of J = 0. In their calculation,
the limit is taken at J = 0 before a perturbation on the

spin-orbit is carried out, i.e., εF 	 α 	 J . In the present
case, we take the limit εF 	 J 	 α. While the analytical
expressions are different, the numerical results for J = 0 are
nearly identical to those of Ref. [16], as shown in Fig. 2.

When J increases, the spin-polarization P ≡ J/εF in-
creases. We numerically integrate Eqs. (18) and (19) as a
function of the range (ξ+ + ξ−)/2 for several different J , as
shown in Fig. 3. The oscillation period slightly increases as the
polarization increases. The amplitude of the DMI is noticeably
smaller for larger P . One may explain such J dependence as
follows. For small J , the band has a small spin polarization and
thus the interband transition, Eq. (19), contributes most to the
DMI. When J becomes large and thus the band is highly spin
polarized, the interband transition decreases due to suppression
of the density of states of the minority band.

Next, we consider the general case where α and J are
arbitrary (but both are smaller than the Fermi energy). In this
case, the angular integration in Eq. (10) cannot be performed
analytically because the energy dispersion of Eq. (2) contains
the relative direction between k and m. Thus, one must do
numerical integration over four variables (magnitudes and
angles of k and k′). To reduce the numerical complexity,
we considered the direction of the magnetization being
perpendicular to the layer, i.e., m̂ = ẑ. In this case the energy
denominator is no longer dependent on the direction of the
wave vector since m · (k × ẑ) = 0. Thus, we can similarly
integrate out the angular parts first. The resulting DMI can be
expressed below,

D12 = −(ẑ × R̂12)
V 2

0 2m

4π2�2R2
12

I (ξ+,ξ−,α), (23)

where

I (ξ+,ξ−,α) =
∑
s,s ′

∫ ξs

0
dx

∫ ∞

ξs′
dx ′ Fss ′ (x,x ′)

Ess ′ (x,x ′)
, (24)
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FIG. 4. (Color online) (a) The magnitude of D12 [in the unit of (mV 2
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2)] for several different values of J for a fixed spin-orbit
coupling α�kF = 0.03 eV. (b) The magnitude of D12 at the second peak position as a function of α for several different J .

094434-4



DZYALOSHINSKII-MORIYA INTERACTION MEDIATED BY . . . PHYSICAL REVIEW B 92, 094434 (2015)

FIG. 5. (Color online) (a) Left (L) and right (R) Neel walls in which the magnetization in the wall mN
L = cos θ (x)ez − sin θ (x)ex and

mN
R = cos θ (x)ez + sin θ (x)ex , where the angle θ (x) smoothly varies from 0 to π in the wall. (b) Left and right Bloch walls where the

magnetization in the wall mB
L = cos θ (x)ez − sin θ (x)ey and mB

R = cos θ (x)ez + sin θ (x)ey .

where the two functions in the numerator and denominator are
as follows:

Ess ′ (x,x ′) = (x2 − x ′2) + 2mα�R12

�2

× (
s

√
λ2R2

12 + x2 − s ′
√

λ2R2
12 + x ′2),

Fss ′ (x,x ′) = s
G+ + G−

2
√

λ2R2
12 + x2

+ s ′ G+ − G−

2
√

λ2R2
12 + x ′2

,

where we have defined λ = J/(α�). In Fig. 4 we plot the
DMI for various α and J using Eq. (23). In general, the DMI
increases significantly with α but decreases with J .

V. DOMAIN WALL STRUCTURE WITH
PERPENDICULAR ANISOTROPY

The DMI has a profound effect in domain wall structure
of ferromagnetic films, particularly, for ultrathin films with
perpendicular magnetic anisotropy (PMA). Since the origin
of PMA is the interface spin-orbit coupling, it is natural to
assume that these materials, such as Co/Pt and NiCo/x, which
possess a large PMA, have a large Rashba spin-orbit coupling,
and thus the DMI derived in our previous sections is likely
to be applicable to these materials. Indeed, the experimental
findings of particular chiral domain wall structure can be at
least semiquantitatively explained as we show below.

Domain walls in ultrathin films with PMA have two basic
forms known as the Neel and Bloch walls, as depicted in
Fig. 5. The arrows between spin-up and spin-down domains
represent the average directions of spins of particular types of
walls. The energy of the walls consists of exchange, anisotropy,
and magnetostatic terms. While the exchange and anisotropy
energies (for a fixed-wall width) are the same for these two
walls, the magnetostatic energy is higher for the Neel wall
due to the presence of the bulk magnetic charge ρm = −∇ ·
M �= 0. We can estimate this energy by using the standard
ellipsoid model [22] for the Neel wall in which the charge
distribution has a geometric shape of an ellipsoid and thus
the magnetostatic energy is (μ0M

2tω)/(ω + t), where, M is
the magnetization per unit volume, t is thickness, and ω is the
width of domain wall. For the ultrathin film with PMA, t  ω,
the energy difference between the Neel and Bloch walls is thus
simply EN − EB ≈ μ0M

2t .

Now we include the DMI to the wall energy. Along the
direction of the wall shown in Fig. 5, R12 is parallel to x
and hence the DMI vector D12 = ẑ × R̂12 is parallel to ŷ. To
estimate the domain wall energy, we only consider the DMI
between two nearest spins, denoted as D12. For a Neel wall,
the magnetization vector varies continuously along the x axis
in the XZ plane [m(x) = cos θ (x)êz + sin θ (x)êx], and thus
the vector product D12 · [m(x) × m(x + a0)] yields |D12|ŷ ·
[m(x) × ∂m(x)/∂x]. Summing over the entire domain wall
width, we obtain the Neel wall energy πa0|D12| (where a0 is
the lattice constant). For a Bloch wall where the magnetization
is m(x) = cos θ (x)êz + sin θ (x)êy , and we immediately see
that the dot product ŷ · [m(x) × ∂m(x)/∂x] = 0; i.e, the DMI
does not contribute to the Bloch wall energy. For the Neel wall,
the DMI lowers the energy for a one-handed helix but raises
the energy for other handed helixes, depending on the sign of
D12 in Eq. (10). If the magnitude of the DMI is large enough,
it is possible that the energy reduction in one of helix Neel
walls exceeds the energy difference between the Neel wall
and Blochl wall estimated above, resulting in a lower total
energy of the Neel wall. Indeed, the experiments have shown
that the Neel wall with a particular handed helix are formed
in NiCo/Pt perpendicular films [7]. Our estimated strength of
DMI below would support the formation of the Neel wall.

The order of magnitude of D12 can be readily estimated
from Eq. (17). By using plausible values for the Fermi energy
εF = 3.0 eV, the contact potential V0 = 0.5 eV, the lattice
constant R12 = 2.5 Å for Co, and the numerical values of I0

and I1 in Fig. 3, we find that the energy reduction is larger than
the extra magnetostatic energy of the Neel wall if the spin-orbit
parameter α is larger than several percentage of the εF . From
several ab initio calculations, the interface RSOC can be of
the order of 10–100 meV [23,24]. Two recent experiments on
Pt/Co/Ni films [18] and Ni/Pt [7] have estimated the DMI to
be 0.4 mJ/m2 or 0.1 eV per nearest-neighbor pair, which are
comparable to the estimation given above.

VI. CONCLUSIONS

We have calculated the DMI interactions of ultrathin
magnetic films in the presence of ferromagnetic exchange and
the interfacial RSOC. As these two interactions are universal
to ferromagnetic films, the present calculation provides an
intrinsic mechanism of the DMI. The DMI is directly corre-
lated with the strength of the RSOC and the PMA materials
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such as Co/Pt are known to have a large interface spin-orbit
coupling. Therefore, our theory provides a natural explanation
for the large DMI values of these PMA materials observed
experimentally.
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