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We study the nearest-neighbor XXZ Heisenberg quantum antiferromagnet on the kagome lattice. Here we
consider the effects of several perturbations: (a) a chirality term, (b) a Dzyaloshinski-Moriya term, and (c) a
ring-exchange type term on the bowties of the kagome lattice, and inquire if they can support chiral spin liquids
as ground states. The method used to study these Hamiltonians is a flux attachment transformation that maps the
spins on the lattice to fermions coupled to a Chern-Simons gauge field on the kagome lattice. This transformation
requires us to consistently define a Chern-Simons term on the kagome lattice. We find that the chirality term leads
to a chiral spin liquid even in the absence of an uniform magnetic field, with an effective spin Hall conductance
of σ s

xy = 1
2 in the regime of XY anisotropy. The Dzyaloshinski-Moriya term also leads a similar chiral spin liquid

but only when this term is not too strong. An external magnetic field also has the possibility of giving rise to
additional plateaus which also behave like chiral spin liquids in the XY regime. Finally, we consider the effects
of a ring-exchange term and find that, provided its coupling constant is large enough, it may trigger a phase
transition into a chiral spin liquid by the spontaneous breaking of time-reversal invariance.
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I. INTRODUCTION

Quantum Heisenberg antiferromagnets on two-dimensional
kagome lattices are strongly frustrated quantum spin systems
making them an ideal candidate to look for exotic spin
liquid type states. This model has been the focus of many
theoretical and numerical efforts for quite some time and,
in spite of these efforts, many of its main properties remain
only poorly understood. On a parallel track, there has also
been significant progress on the experimental side with the
discovery of materials such as Volborthite and Herbertsmithite
whose structures are closely represented by the Heisenberg
antiferromagnet on the kagome lattice. An extensive analysis
of the present experimental and theoretical status of this
problem can be found in a recent review by Balents [1].

It is well known that frustrated antiferromagnets can give
rise to magnetization plateaus in the presence of an external
magnetic field. Although the nature of these plateaus depend
on the type of model as well as the regime under study, in
two dimensions these states are expected to be topological
phases of the chiral spin liquid type in the XY regime [2].
Previous works have also shown that in the Ising regime
these magnetization plateaus behave like valence bond crystals
(VBC) [3,4]. In a recent work, the same authors studied
the nearest-neighbor XXZ Heisenberg model on the kagome
lattice using a newly developed flux attachment transformation
that maps the spins which are hard-core bosons to fermions
coupled to a Chern-Simons gauge field [5]. Here we showed
that in the presence of an external magnetic field, this model
gives rise to magnetization plateaus at magnetizations m =
1
3 , 2

3 , and 5
9 in the XY regime. The plateaus at m = 1

3 and
m = 2

3 behave like a Laughlin fractional quantum Hall state
of bosons with an effective spin Hall conductance of σ s

xy = 1
2 ,

whereas the plateau at 5
9 was equivalent to a Jain state with

σ s
xy = 2

3 .

In spite of the considerable work done on this problem
since the early 1990s, the kagome Heisenberg antiferromagnet
without an external magnetic field is less well understood.
Density matrix renormalization group (DMRG) studies (which
crucially also included second and third neighbor antiferro-
mangnetic exchange interactions) have found a topological
phase in the universality class of the Z2 spin liquid [6–8]. A
Z2 spin liquid has been proposed by Wang and Vishwanath
[9] (using slave boson methods), and by Fisher, Balents, and
Girvin [10,11], in a generalized ferromagnetic XY model with
ring-exchange interactions. Similarly, a Z2 spin liquid was
shown to be the ground state for the kagome antiferromagnet
in the quantum dimer approximation [12]. We should note,
however, that an entanglement renormalization group calcula-
tion [13] appears to favor a complex 36 site VBC as the ground
state of the isotropic antiferromagnet on the kagome lattice.

A more complex phase diagram (which also includes a
chiral spin liquid phase as well as VBC, as well as Néel
and noncolinear antiferromagnetic phases) was subsequently
found in the same extension of the kagome antiferromagnet
by Gong and co-workers [14]. It has also been suggested
[15] that a model of the kagome antiferromagnet with second
and third neighbor Ising interactions may harbor a chiral spin
liquid phase. Still, variational wave function studies have also
suggested a possible U (1) Dirac spin liquid state [16,17],
but this is not consistent with the DMRG results. Bieri and
co-workers [18] used variational wave function methods to
study a kagome system with ferro- and antiferromagnetic
interactions, and find evidence for a gapless chiral spin liquid
state. Other studies that used nonlinear spin-wave theory
[19,20] had predicted a quantum disordered phase for spin-1/2
kagome antiferromagnets with XY anisotropy.

The most recent DMRG studies on the plain (without
further neighbors) kagome Heisenberg antiferromagnet give
a strong indication of a gapped time-reversal invariant ground
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state in theZ2 topological class [8]. As it turns out there are two
possible candidates Z2 spin liquids: the double Chern-Simons
theory [21] with a diagonal K matrix, K = diag(2,−2), and the
Kitaev toric code [22] (which is equivalent to the deconfined
phase of the Ising gauge theory [23]). An important recent
result by Zaletel and Vishwanath [24] proves that the double
Chern-Simons gauge theory is not allowed for a system with
translation and time-reversal invariance such as the kagome
antiferromagnet, which leaves the Z2 gauge theory as the only
viable candidate.

In a recent recent and insightful work, Bauer and co-
workers [25] considered a kagome antiferromagnet with a term
proportional to the chiral operator on each of the triangles of
the kagome lattice. In this model time-reversal invariance is
broken explicitly. These authors used a combination of DMRG
numerical methods and analytic arguments to show that, at
least if the time-reversal symmetry breaking term is strong
enough, the ground state is a chiral spin liquid state in the
same topological class as the Laughlin state for bosons at filling
fraction 1/2. This state was also found by us [5] in the 1/3 and
2/3 magnetization plateaus. A more complex phase diagram
was recently found in a model that also included second
and third neighbor exchange interactions [26]. On a separate
track, Nielsen, Cirac, and Sierra [27] constructed lattice
models with long range interactions with ground states closely
related to the ν = 1/2 Laughlin wave function for bosons
and, subsequently, deformed these models to systems with
short range interactions on the square lattice that, in addition
to first and second neighbor exchange interactions, have
chiral three-spin interactions on the elementary plaquettes, and
showed (using finite-size diagonalizations on small systems)
that the ground state is indeed a chiral spin liquid [28].

In this paper we investigate the occurrence of chiral spin
liquid states in three extensions of the quantum Heisenberg
antiferromagnet on the kagome lattice: (a) by adding the
chiral operator acting on the triangles of this lattice, (b) by
considering the effects of a Dzyaloshinski-Moriya interaction
(both of which break time-reversal invariance explicitly), and
(c) by adding a ring-exchange term on the bowties of the
kagome lattice. This term, equivalent to the product of two
chiral operators of the two triangles of the bowtie, does not
break time-reversal invariance explicitly, and allows us to
investigate the possible spontaneous breaking of time reversal.
Throughout we will use a flux-attachment procedure suited
for the kagome lattice that we developed recently [5,29]. This
method is well suited to investigate chiral spin liquid phases but
not as suitable for Z2 phases (at least not straightforwardly).

Throughout this paper we use a flux attachment trans-
formation that maps the spins on the kagome lattice to
fermions coupled to a Chern-Simons gauge field [30]. The flux
attachment transformation requires us to rigorously define a
Chern-Simons term on the lattice. Previously, such a lattice
Chern-Simons term had only been written down for the case
of the square lattice [31,32]. More recently we have shown
how to write down a lattice version of the Chern-Simons term
for a large class of planar lattices [29]. Equipped with these
new tools, we can now study the nearest-neighbor Heisenberg
Hamiltonian, chirality terms, and the Dzyaloshinski-Moriya
terms on the kagome lattice, as well as ring-exchange terms.
Furthermore, this procedure will allow us to go beyond the

mean-field level and consider the effects of fluctuations which
are generally strong in frustrated systems.

In spite of the successes of these methods, we should point
out some of its present limitations. In a separate publication
[29] we showed that the discretized construction of the Chern-
Simons gauge theory (on which we rely heavily) can only be
done consistently on a class of planar lattices for which there
is a one-to-one correspondence between the sites (vertices) of
the lattice and its plaquettes. At present time this restriction
does not allow us to use these methods to more general lattices
of interest (e.g., triangular).

We should also stress that in this approach there is no
small parameter to control the accuracy of the approximations
that are made. As it is well known from the history of the
application of similar methods, e.g., to the fractional quantum
Hall effects [33–37], that they can successfully predict the
existence stable of chiral phases provided the resulting state
has a gap already at the mean-field level. These methods
predict correctly the universal topological properties of these
topological phases, in the form of effective low-energy actions,
which encode the correct form of the topologically protected
responses as well as the large-scale entanglement properties
of the topological phases [38–43]. However, these methods
cannot predict with significant accuracy the magnitude of
dimensionful quantities such as the size of gaps since there
is no small parameter to control the expansion away from the
mean-field theory. Thus, to prove that the predicted phases do
exist for a specific model is a motivation for further (numerical)
studies. In particular, the recent numerical results of Bauer and
co-workers [25] are consistent with the results that we present
in this paper.

Using these methods, we find that chiral spin liquid phases
in the same topological class as the Laughlin state for bosons
at filling fraction 1/2 occur for both the model with the chiral
operator on the triangles and for the Dzyaloshinski-Moriya
interaction. We find that the chirality term opens up a gap in
the spectrum and leads to a chiral spin liquid state with an
effective spin Hall conductivity of σ s

xy = 1
2 in the XY regime.

This is equivalent to a Laughlin fractional quantum Hall state
for bosons similar to the m = 1

3 magnetization plateau found
in our earlier work [5]. We also show that this chiral state
survives for small values of the Dzyaloshinski-Moriya term.
The main motivation for this study was motivated by a recent
numerical work [25] where the authors studied the nearest-
neighbor Heisenberg model in the presence of the chirality and
Dzyaloshinski-Moriya terms and found evidence of a similar
fractional quantum Hall state with filling fraction 1

2 . The results
we obtain agree qualitatively with the results obtained in the
numerical work. Since this is the same state that we obtained
at the 1/3 and 2/3 magnetization plateaus, we searched for
more complex topological phases by also adding a magnetic
field. We also consider the effects of adding the chirality term
and Dzyaloshinski-Moriya terms in the presence of an external
magnetic field at the mean-field level. (For numerical studies
of magnetization plateaus in the kagome antiferromagnets see
the recent work by Capponi et al. [44]). Once again this is
expected to give rise to magnetization plateaus. In the XY

regime we again find some of the same plateaus that were
already obtained for just the case of the Heisenberg model [5].
In addition, we also find an additional plateau at m = 1

9 which
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has an effective spin Hall conductivity of σ s
xy = 2

3 . Finally,
in order to address the possible spontaneous breaking of time
reversal, we consider the effects of a ring-exchange term on
the bowties of the kagome lattice. Provided that the coupling
constant of this ring-exchange term is large enough, this term
triggers the spontaneous breaking of time-reversal symmetry
and leads to a similar chiral spin liquid state with σ s

xy = 1
2 .

The paper is organized as follows. In Sec. II we will
explicitly write down the XXZ Heisenberg Hamiltonian and
the chirality terms that we will consider. We will then briefly
review the flux attachment transformation that maps the hard-
core bosons (spins) to fermions and write down the resultant
Chern-Simons term on the kagome lattice. A more detailed
and formal discussion on the flux attachment transformation
and the issues related to defining a Chern-Simons term on the
lattice is presented elsewhere [29]. An explicit derivation of
the Chern-Simons term for the case of the kagome lattice was
also presented in our earlier work [5]. In Sec. IV we setup the
mean-field expressions for the nearest-neighbor Heisenberg
model in the presence of a chirality term. We will then begin
by analyzing the mean-field state in the absence of the chirality
terms and analyze the states obtained in the XY and Ising
regimes in Sec. IV A. Then we will consider the effects of
adding the chirality term in Sec. IV B. At the mean-field
level we will also study the effects of adding an external
magnetic field to such a system by analyzing the Hofstadter
spectrum in Sec. IV C. Next, we will repeat the same analysis
but with the Dzyaloshinski-Moriya term added to the XXZ

Heisenberg model in Sec. IV D. In Sec. V we will return to the
state discussed in Sec. IV B and expand the mean-field state
around the Dirac points and write down a continuum version
of the action. From here we will systematically consider
the effects of fluctuations and derive an effective continuum
action. Finally, we will consider a model for spontaneous
time-reversal symmetry breaking by adding, to the XXZ

Heisenberg antiferromagnetic Hamiltonian, a ring exchange
term on the bowties of the kagome lattice in Sec. VI. In
Sec. VII we summarize the key results obtained in the paper,
and discusses several open questions.

II. FLUX ATTACHMENT ON THE KAGOME LATTICE

In this section we will briefly review the theory of flux
attachment on the kagome lattice in the context of the XXZ

Heisenberg Hamiltonian [5]. This will set the stage for the use
of the flux attachment transformation that we will use to study
these models.

We will begin with the nearest-neighbor XXZ Heisenberg
Hamiltonian in the presence of an external magnetic field

H =J
∑
〈i,j〉

{
Sx

i Sx
j + S

y

i S
y

j + λSz
i S

z
j

}− hext

∑
i

Sz
i , (2.1)

where 〈i,j 〉 refer to the nearest-neighbor sites on the kagome
lattice and λ is the anisotropy parameter along the z direction.
hext refers to the external magnetic field. Using the flux
attachment transformation, the spins (which are hard-core
bosons) can be mapped to a problem of fermions coupled
to a Chern-Simons gauge field. The resultant action takes the

FIG. 1. Unit cell of the kagome lattice. The unit cell has three
sublattice sites (labeled a, b, and c) and three plaquettes (two triangles
and one hexagon). The flux attachment transformation proceeds by
attaching the fluxes in each of the plaquettes to its corresponding
sites.

form

S = SF (ψ,ψ∗,Aμ) + Sint(Aμ) + θSCS(Aμ). (2.2)

The SxSx and SySy terms map to the fermionic hopping
part in the presence of the Chern-Simons gauge field Aj (x),
and SzSz terms map to a fermionic interaction term as shown
in the equations below:

SF (ψ,ψ∗,Aμ) =
∫

t

∑
x

{
ψ∗(x)(iD0 + μ)ψ(x)

− J

2

∑
〈�x,�x ′〉

[ψ∗(x)eiAj (x)ψ(x ′) + H.c.]

⎫⎬
⎭,

Sint(ψ,ψ∗) = λJ

∫
t

∑
〈�x,�x ′〉

(
1

2
− n(x)

)(
1

2
− n(x ′)

)
, (2.3)

where D0 = ∂0 + iA0 is the covariant time derivative, 〈�x,�x ′〉
stands for nearest-neighbor sites �x and �x ′ on the kagome lattice,
and the space-time coordinate x ≡ (�x,t). The temporal gauge
fields A0 live on the sites of the kagome lattices and the spatial
gauge fields Aj (x) live on the links of the lattice as can be seen
in the unit cell of the kagome lattice in Fig. 1.

The density operator n(x) = ψ∗(x)ψ(x) is related to the Sz

spin component as follows:

Sz(x) = 1
2 − n(x). (2.4)

The above expression also allows us to absorb the external
magnetic field term (hext) in to the definition of the chemical
potential μ, i.e., in the fermionic language the effect of the
external magnetic field can be mimicked by changing the
fermion density on the lattice. For a majority of this paper, we
will focus on the case where hext = 0. This would correspond
to the case of half-filling in the fermionic theory after the flux
attachment transformation.

Now all that remains is the Chern-Simons term on the
kagome lattice. An explicit derivation of this term for the
case of the kagome lattice was already presented in an earlier
paper [5]. A more detailed and rigorous representation of a
Chern-Simons term on generic planar lattices is also presented
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elsewhere [29]. Here we will simply reproduce some of the
relevant results required for our analysis.

The θ parameter in front of the the Chern-Simons term in
Eq. (2.2) is taken to be θ = 1

2π
to ensure that the statistics of the

spins [hard-core bosons in Eq. (2.1)] are correctly transmuted
to those of the fermions in Eq. (2.2). The Chern-Simons term
on the kagome lattice can be written as

SCS = S
(1)
CS + S

(2)
CS,

S
(1)
CS =

∫
dt
∑
x,y

A0(x,t)Ji(x − y)Ai(y,t),

S
(2)
CS = −1

2

∫
dt
∑
x,y

Ai(x,t)Kij (x − y)Ȧj (y,t).

(2.5)

The first term S
(1)
CS in Eq. (2.5) is the flux attachment term

that relates the density at a site on the lattice to the flux in
its corresponding plaquette. For the case shown in Fig. 1, the

explicit expression for this term is given as

Ja(k) = (1,−1,1,−e−ik2 ,e−ik1 ,1),

Jb(k) = (0,e−ik1 ,−1,1,0,0),

J c(k) = (−e−ik2 ,0,0,0,−1,1),

(2.6)

where k1 and k2 are the Fourier components along the e1 and e2

directions of the unit cell shown in Fig. 1. These choices ensure
that the fermion density n(x) (at a site x of the kagome lattice)
is related to the gauge flux B(x) on the adjoining plaquette by
the constraint equation n(x) = θB(x) as an operator identity
on the Hilbert space.

The second term in Eq. (2.5) establishes the commutation
relations between the different gauge fields on the lattice
and it is the structure of the Kij matrix that ensures that
the fluxes commute on neighboring sites. This condition is
crucial to being able to enforce the flux attachment constraint
consistently on each and every site of the lattice. The explicit
expression for the Kij matrix is given as

Kij = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −1 1 −s2 s1 + s−1
2 −1 + s−1

2
1 0 1 − s−1

1 −s2 − s−1
1 s1 −1

−1 s1 − 1 0 1 − s2 s1 −1
s−1

2 s1 + s−1
2 s−1

2 − 1 0 s1s
−1
2 s−1

2

−s2 − s−1
1 −s−1

1 −s−1
1 −s2s

−1
1 0 1 − s−1

1
1 − s2 1 1 −s2 s1 − 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (2.7)

where sj are shift operators along the two different directions
(e1 and e2) on the lattice, i.e., sjf (x) = f (x + ej ), as shown
in Fig. 1.

III. THE X X Z MODEL WITH A CHIRALITY
BREAKING FIELD

Next, we will consider the effects of adding a chirality
breaking term to the Heisenberg Hamiltonian in Eq. (2.1). A
system of spin-1/2 degrees of freedom on the kagome lattice
with a chirality breaking term as its Hamiltonian was consid-
ered recently by Bauer and co-workers [25]. Using finite-size
diagonalizations and DMRG calculations, combined with
analytic arguments, these authors showed that the ground
state of this system with an explicitly broken time-reversal
invariance is a topological fluid in the universality class of
the Laughlin state for bosons at level 2 (or, equivalently,
filling fraction 1/2). Here we will examine this problem
(including the XXZ Hamiltonian) and find that the ground
state has indeed the same universal features found by Bauer
and co-workers, and by us in the 1/3 plateau [5].

The resultant Hamiltonian is given as

Htot = HXXZ + Hch − hext

∑
i

Sz
i , (3.1)

where HXXZ is the XXZ Heisenberg Hamiltonian in (2.1).
The chirality breaking term is given by

Hch = h
∑
�

χijk(�) = h
∑
�

Si · (Sj × Sk), (3.2)

where χijk(�) is the chirality of the three spins on each of
the triangular plaquettes of the kagome lattice and the sum
runs over all the triangles of the kagome lattice. Recall the
important fact that each unit cell of the of the kagome lattice
contains two triangles.

In order to use the flux attachment transformation, it is
convenient to express the spin operators Sx and Sy in terms of
the raising and lowering S+ and S−. As an example, one can
rewrite the chirality term on a triangular plaquette associated
with site b (shown in Fig. 1) as follows:

χb = Sa · (Sc × Sb) = i

2

{−S−
a S+

c Sz
b + S+

a S−
c Sz

b

+ S−
a Sz

cS
+
b − S+

a Sz
cS

−
b − Sz

aS
−
c S+

b + Sz
aS

+
c S−

b

}
, (3.3)

where the subscripts a, b, and c label the three corners of a
triangular plaquette in Fig. 1.

As shown in Ref. [5] (and summarized in Sec. II), the
raising and lowering spin operators S± are interpreted as the
creation and destruction operators for bosons with hard cores,
and Sz operators are simply related to the occupation number
n of the bosons by Sz = 1

2 − n. Under the flux attachment
transformation, the hard-core bosons are mapped onto a system
of fermions coupled to Chern-Simons gauge fields (residing
on the links of the kagome lattice). The boson occupation
number at a given site is mapped (as an operator identity) onto
the gauge flux in the adjoining plaquette (in units of 2π ).

It is the straightforward to see that the chirality term gets
mapped onto an additional hopping term on the links of the
kagome lattice which carries a gauge as an extra phase factor
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on each link determined by the fermion density on the opposite
site of the triangle. As a result, only the fermionic hopping part
of the action in Eq. (2.3) gets modified, and the interaction part
and the Chern-Simons part are unaffected.

Putting things together we get an effective fermionic
hopping part that has the form

SF (ψ,ψ∗,Aμ)

=
∫

t

∑
x

⎧⎨
⎩ψ∗(x)(iD0 + μ)ψ(x) −

∑
〈�x,�x ′〉

J (x(a))

× [e−iφ(x(a))ψ∗(x)eiAj (x)ψ(x ′) + H.c.]

⎫⎬
⎭, (3.4)

where once again x and x ′ are nearest-neighbor sites and x(a)

refers to third site on the triangle formed by sites x and x ′. The
subscript (a) refers to the sublattice label. The expressions of
J and φ on each sublattice can be written as

J (a)(x) = 1

2

√
J 2 + h2

(
1

2
− n(a)(x)

)2

,

φ(a)(x) = tan−1

[
h

J

(
1

2
− n(a)(x)

)]
.

(3.5)

Hence we have expressed the effects of the chirality term in
terms of a modified hopping strength J (a) and an additional
gauge field [φ(a)(x)] on each of the links of the lattice. In the
limit that h = 0, we just have the original gauge fields and
in the other limit, with J = 0, each link has an additional
contribution of φ(a)(x) = ±π

2 .

IV. MEAN-FIELD THEORY

In this section we will set up the mean-field expressions for
the fermionic action in Eqs. (2.3) and (3.4). The basic setup
here is very similar to the situation described in our earlier
work [5], but it has been modified to account for the addition
of the chirality term in this paper.

Using the flux attachment constraint imposed by the Chern-
Simons term [n(x) = θB(x)], the interaction term in Eq. (2.3)
can now be rewritten as follows:

Lint(Aμ) = λJ
∑
〈�x,�x ′〉

(
1

2
− θB(x)

)(
1

2
− θB(x ′)

)
. (4.1)

The interaction term has been expressed purely in terms
of gauge fields. Hence, the resultant action after the flux
attachment transformation is quadratic in the fermionic fields.
Integrating out the fermionic degrees of freedom gives rise to
the below effective action just in terms of the gauge fields:

Seff(Aμ) = −itr ln[iD0 + μ − Hhop(A)]

+ Sint(Aμ) + θSCS(Aμ), (4.2)

where the hopping Hamiltonian Hhop(A) is (in matrix notation)

Hhop =
∑
〈�x,�x ′〉

{J (a)e
iAj (x)−iφ(a) |x〉 〈x ′| + H.c.}, (4.3)

where the above sum runs over all nearest-neighbors �x and �x ′.
The gauge field Aj (x) refers to the hopping term required to

go from point �x to �x ′ on the lattice. The term J (a) and φ(a)

are as defined in Eq. (3.5) with (a) once again referring to the
sublattice index. In the above expression (a) would correspond
to the third site in the triangle formed by nearest-neighbor sites
�x and �x ′.

Now the mean-field equations can be obtained by extrem-
izing the action in Eq. (4.2) with respect to the gauge fields

δSeff(A)

δAμ

∣∣∣∣
Aμ=Āμ

= 0. (4.4)

Differentiation with respect to the time components A0 yields
the usual equation relating the density to the flux,

〈n(x)〉 = 1

2π
〈B(x)〉, (4.5)

which implies that the flux attachment is now enforced at the
mean-field level. The average density can be expressed in terms
of the mean-field propagator by

〈n(x,t)〉 =
〈
− δSF

δA0(x,t)

〉
= −iS(x,t ; x,t), (4.6)

where SF refers to just the fermionic part of the action (i.e.,
the hopping part) and S(x,t ; x ′,t ′) is the fermion propagator in
an average background field Āμ(x,t).

Differentiation with respect to the spatial Ak components
yields an expression for the local currents,

〈jk(x,t)〉 = θ

〈
δSCS

δAk(x,t)

〉
+
〈

δSint

δAk(x,t)

〉
. (4.7)

Here too we can express the average current in terms of the
fermionic action in the usual manner

〈jk(x,t)〉 =
〈
− δSF

δAk(x,t)

〉
. (4.8)

We will look for uniform and time-independent solutions
of these equations. Under these conditions the mean-field
equations for the currents [Eq. (4.7)] becomes

〈jk(x)〉 = θd̄kαĀ0α(x) − 2Jλθ2(−1)k

× [B̄a − fkB̄
c − (1 − fk)B̄b], (4.9)

with fk = 1 when k = 1,5,6 and fk = 0 when k = 2,3,4. In
the above expression we have also fixed the average fluxes on
each sublattice (i.e., the fluxes on all sublattices of a particular
type are the same), α is the sublattice index, and

d̄kα =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 −s−1
2

−1 s−1
1 0

1 −1 0
−s−1

2 1 0
s−1

1 0 −1
−1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (4.10)

where s1 and s2 are the same shift operators discussed after
Eq. (2.7).

A. Mean-field ansatz for X X Z model

We will begin by studying the case with of the XXZ

Heisenberg model, i.e., we set to zero both the chirality

094433-5



KRISHNA KUMAR, KAI SUN, AND EDUARDO FRADKIN PHYSICAL REVIEW B 92, 094433 (2015)

FIG. 2. Magnetic unit cell at half-filling. a, b, and c label the
different sublattices in each of the unit cells. The gauge fields now
have an additional label to indicate the unit cell they belong to.

coupling h and the external magnetic field hext. This translates
to the case of half-filling in the fermionic language. At 1

2 filling,
the average density within each unit cell is given by

1
3 (〈na〉 + 〈nb〉 + 〈nc〉) = 1

2 , (4.11)

where a, b, and c refer to the three sublattices. This gives
an average flux of π in each unit cell which implies that the
magnetic unit cell consists of two unit cells as shown in Fig. 2.

In the absence of the chirality term we will primarily look
for mean-field phases that are uniform and time independent,
and have zero currents, i.e., 〈jk(x,t)〉 = 0 in Eqs. (4.5) and
(4.7). The flux attachment condition can be imposed as follows
on each of the sublattices:

〈na(x)〉 = θ〈Ba(x)〉 = 1
2 − 1 − 2,

〈nb(x)〉 = θ〈Bb(x)〉 = 1
2 + 1,

〈nc(x)〉 = θ〈Bc(x)〉 = 1
2 + 2,

(4.12)

where 1 and 2 are two parameters that will be chosen to
satisfy the mean-field self-consistency equations. The fluxes
in Eq. (4.12) can be achieved by the below choice of gauge
fields in Fig. 2,

A1
1 = 0, A2

1 = 0,

A1
2 = p1, A2

2 = p1,

A1
3 = 0, A2

3 = 0,

A1
4 = 0, A2

4 = 0,

A1
5 = −p2, A2

5 = −p2 + 3π,

A1
6 = 0, A2

6 = 3π,

(4.13)

where p1 = π + 2π1 and p2 = π + 2π2.
With these expressions for the densities, the mean-field

equation [Eq. (4.9)] can be satisfied by the below choices for
the temporal gauge fields

A0,a = 2λ(1 + 2), A0,b = −2λ1, A0,c = −2λ2.

(4.14)

Using this mean-field field setup, we find two regimes at the
mean-field level.

1. XY regime

In the XY regime, λ
J

� 1, we find that 1 = 2 = 0 is
the only solution that satisfies the self-consistency condition.
This leads to a state with a flux of π in each of the plaquettes.
We will represent this as the (〈Ba〉,〈Bb〉,〈Bc〉) = (π,π,π ) flux

− 3 − 2 − 1 1 2 3
k

− 1.5

− 1.0

− 0.5

0.5

1.0

En

FIG. 3. (Color online) Mean-field spectrum in the XY regime at
half-filling, showing the two Dirac points. The dashed line indicates
the Fermi level. The top band is doubly degenerate. These plots are
made along the ky = − kx√

3
line in the Brillouin zone (along which the

two Dirac points lie).

state. This state has a total of six bands, shown in Fig. 3 (the top
two bands are double degenerate). At half-filling the bottom
three bands are filled giving rise to two Dirac points in the
spectrum, crossed by the dotted line in Fig. 3 which indicates
the Fermi level. See Sec. V for details.

At the mean-field level this spectrum is equivalent to the
gapless U (1) Dirac spin liquid state that has been discussed
in previous works [16,17]. We notice, however, that there are
other works that favor symmetry breaking states but with a
doubled unit cell and a flux of π in each of the plaquettes
[45]. The state we find could survive when fluctuations are
considered giving rise to one of the above states. Alternatively,
fluctuations could also open up a gap in the spectrum leading to
an entirely different phase. In this paper we will only analyze
the gapless states at a mean-field level.

2. Ising regime

For λ
J

� 1, nonvanishing values of 1 and 2 are required
to satisfy the mean-field consistency equations. The solution
with the lowest energy has the form 1 = −2 
= 0. This
solution shifts the mean-field state away from the pattern
(π,π,π ) for the flux state, and opens up a gap.

The Chern number of each of the resulting bands can be
computed by using the standard expression [46] in terms of
the flux (through the Brillouin zone) of the Berry connections

C = 1

2π

∫
BZ

d2kFxy(k), (4.15)

where Fij = ∂iAj − ∂jAj is the flux of the Berry connec-
tion Ai = −i 〈ψ | ∂ki

|ψ〉. Here |ψ〉 refers to the normalized
eigenvector of the corresponding band.

In the Ising regime the Chern numbers of the bands are

C1 = 0, C2 = 0, C3 = 0,

C4 = 0, C5 = 0, C6 = 0.
(4.16)

This implies that in the Ising regime the total Chern number
for the filled bands is 0. This means that we are left with
the original Chern-Simons term from the flux attachment
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transformation. In this regime, the fermions are essentially
transmuted back to the original hard-core bosons (spins) that
we began with and our analysis does not pick out any specific
state.

B. Mean-field theory with a nonvanishing chirality field h �= 0

In this section we will turn on the chirality term. Looking
at the doubled unit cell in Fig. 2, there are four corresponding
chirality terms (within each magnetic unit cell) which can be
written as

χijk(x) = χb1(x) + χb2(x) + χc1(x) + χc2(x). (4.17)

Now we have to account for the additional contributions from
h in Eq. (3.5). Importantly, the added contribution to the gauge
fields due to a nonzero value φ(a)(x) in Eq. (3.5) will give rise
to additional fluxes and shift the state away from the (π,π,π )
flux state observed in the XY regime section in Sec. IV A 1.
Notice that if we were stay in the (π,π,π ) flux state, this
would imply that the average density 〈n(a)(x)〉 = 1

2 at every
site. In this situation the expectation value of the chirality
operator automatically vanishes due to the relation 〈Sz

(a)〉 =
1
2 − 1

2π
〈B(a)〉. In this situation the chirality term would never

pick up an expectation value at the mean-field level and time-
reversal symmetry would remain unbroken. Hence, in a state
with broken time-reversal invariance the site densities cannot
all be exactly equal to 1

2 .
The fluxes in each of the plaquettes also gets modified due

to the contribution from φ(x). The effective flux at each of the
sublattice sites is now given as

〈Ba〉 = π − 2π1 − 2π2 + 2(φa + φb + φc),

〈Bb〉 = π + 2π1 − (φa + φb + φc),

〈Bc〉 = π + 2π2 − (φa + φb + φc).

(4.18)

The above fluxes still ensure that we in the half-filled case.
In order to accommodate such a flux state, we also have to

allow for nonzero currents in the mean-field state in Eq. (4.9).
As a result we will consider an ansatz with 〈jk(x,t)〉 
= 0.
The chirality terms in the Hamiltonian go across each of the
triangular plaquettes in a counterclockwise manner. Hence,
we will choose an ansatz on each of the different links as seen
in Fig. 4. The mean-field equations for the current terms in
Eq. (4.9) can now be satisfied by the choice below of gauge

FIG. 4. Currents induced by the chirality term in each of the
triangular plaquettes. The currents are indicated by j .
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FIG. 5. (Color online) The chirality term opens up a gap in the
spectrum (see Fig. 3). The above plot is for h = 0.05J . The plot is
made along the ky = − kx√

3
line in the Brillouin zone.

fields:

A0,a = 2λJ (1 + 2) + j,

A0,b = − 2λJ1 − j,

A0,c = − 2λJ2 − j .

(4.19)

In the above equations the effect of the chirality term directly
enters in the form of a current. Now we will proceed to look for
mean-field phases that self-consistently satisfy the mean-field
equations in Eqs. (4.5) and (4.9) as well as constraints set by
Eqs. (3.5) and (4.18). Once again we will analyze the cases of
the XY and Ising regimes separately.

1. The XY regime

In the XY regime, λ
J

� 1, we had the (π,π,π ) flux state
which was gapless and had two Dirac points (see Fig. 3). Here
we find that even for small values of h, there exist solutions
with 1 = 2 
= 0. This shifts the state away from the (π,π,π )
flux state and opens up a gap in the spectrum as shown in Fig. 5.

The values of the mean-field parameters for a few different
values of the field h (the strength of the chirality breaking term)
are shown in Table I. A plot of the mean-field spectrum for the
specific case of h = 0.05J is shown in Fig. 5. As the value of
h is increased from 0, the average flux on each of the triangular

TABLE I. Approximate values for the mean-field parameters for
different values of chirality (h) for λ

J
= 1. Here EG denotes the energy

gap in units of J , and 〈χ〉 is the expectation value of the chirality
operator. As the chirality term gets stronger, the average density on
each of the triangular plaquettes approaches 0.25, and the density on
the hexagonal plaquettes approaches 1.

h

J
〈nb〉 = 〈nc〉 1 = 2 EG 〈χ〉

0 0.500 0 0 0
0.05 0.460 −0.040 0.2286J 0.000782
0.1 0.385 −0.115 0.5518J 0.001064
0.5 0.300 −0.200 0.7351J 0.002149
1 0.275 −0.225 0.7638J 0.002642
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plaquettes decreases from π → π
2 . The corresponding flux in

the hexagonal plaquettes goes from π → 2π . In the limit of a
strong chirality term, one would expect to get a state with a flux
of 2π in each hexagonal plaquette, and a flux of π

2 in each of
the triangular plaquettes. We will refer to this as the (2π,π

2 , π
2 )

flux phase. The values of the energy gap and the expectation
values of the chirality operator are also shown for the different
values of h in Table I. (The energy gaps essentially measure
the gaps between the Dirac points).

The Chern numbers of the six bands with the chirality
breaking field h turned on are

C1 = +1, C2 = −1, C3 = +1,

C4 = +1, C5 = −1, C6 = −1.
(4.20)

As we are still at half-filling, the bottom three bands must
be filled, leading to a total Chern number of the occupied
bands of C1 + C2 + C3 = +1. This along with the original
Chern-Simons term from the flux attachment transformation
is expected to give rise to an effective Chern-Simons term with
an effective parameter

θeff = θF + θCS = 1

2π
+ 1

2π
. (4.21)

A more detailed and rigorous computation of the above
statement will be presented in a later section (Sec. V), where
we will include the effects of fluctuations and show that the
resultant continuum action is indeed a Chern-Simons theory
with the above effective parameter. This result shows that in the
presence of the chirality term, we do obtain a chiral spin liquid.
Such a state is equivalent to a Laughlin fractional quantum
Hall state for bosons with a spin Hall conductivity σ s

xy = 1
2 .

The state obtained here has the same topological properties
as the state that we found [5] in the magnetization plateau at
m = 1

3 .
In the limit that we only have the chirality term, we have

that J = 0. Now φ(a) = ±π
2 in Eq. (3.5). We can now look for

solutions such that

φa = −π

2
, φb = φc = π

2
. (4.22)

Here we again recover the (2π,π
2 , π

2 ) flux state as expected.
The resulting chiral state is the same found by Bauer and
co-workers in Ref. [25].

2. Ising regime

In the Ising regime, λ
J

> 1, the Heisenberg model gave rise
to a state that was gapped and a vanishing Chern number, as
shown in Sec. IV A 2. Here a small chirality term would not
affect the mean-field state as long as it is weak enough. In order
to see the chiral spin liquid state obtained in the XY regime in
Sec. IV B 1, one would need a strong enough chirality term to
close the Ising anisotropy gaps and to open a chiral gap so as
to give rises to states with nontrivial Chern numbers. Hence,
the state here would be determined based on the competition
between the anisotropy parameter λ and the strength of the
chirality parameter h.

C. Combined effects of a chirality symmetry breaking term and
an external magnetic field

So far we have primarily focused on the case of half-filling
and hence in the absence of an external magnetic field hext = 0.
Now we will briefly consider the scenario when the external
magnetic field is present, hext 
= 0, in Eq. (3.1) or, equivalently,
that we are at fermionic fillings other than 1

2 in the XY limit.
This will allow us to connect our recent results on a chiral spin
liquid phase in a magnetization plateau with the chiral state
arising in the presence of a chirality symmetry breaking field.
The mean-field theory we discuss here has points of contact,
including the role of Chern numbers, with a classic paper by
Haldane and Arovas [47].

In the previous section we noted that the main effect of
adding the chirality symmetry breaking term to the mean-field
state was to shift the fluxes on each of the sublattices. We
began with a (π,π,π ) flux phase for the Heisenberg model and
it was modified to a (2π,π

2 , π
2 ) flux phase in the presence of a

strong chirality term. Essentially the chirality term shifted the
fluxes from the triangles to the hexagons. Using this analogy,
we will now look for similar flux phases at other fillings. In the
presence of a strong chirality term, we will consider flux phases
where the flux in maximized in the hexagons and minimized
in the triangles at different fillings.

In the absence of the chirality term, we have a uniform flux
phase with 〈Ba〉 = 〈Bb〉 = 〈Bc〉 = φ = 2π

p

q
, with p,q ∈ Z.

When we turn on the chirality term, we expect the fluxes from
the triangles to shift to the hexagons. Hence we have

〈Ba〉 = φ + 2δ,

〈Bb〉 = φ − δ,

〈Bc〉 = φ − δ,

(4.23)

so that the total flux in each unit cell is still the same. Such a
flux state can be realized by the below choice of gauge fields:

Ā1(�x) = 0, Ā2(�x) = φ − δ,

Ā3(�x) = 0, Ā4(�x) = 0,

Ā5(�x) = −φ + δ + 3φx1, Ā6(�x) = 3φx1,

(4.24)

with �x = (x1,x2). x1 and x2 are the coordinates along the e1 and
e2 directions in Fig. 2 respectively. The fluxes on each plaquette
range between 0 and 2π , which translates to having a site filling
between 0 and 1. Hence we set δ = min(φ,π − φ

2 ). Using this
choice, one can plot the Hofstadter spectrum in the limit of a
strong chirality term. In Fig. 6 we plot the Hofstadter spectrum
for the case with h

J
= 5. The bottom solid line indicates the

Fermi level (all the occupied states) and the top solid line
indicates the next excited state available.

At most fillings the total Chern numbers of all the occupied
bands is −1. This would lead to a Chern-Simons term with
prefactor − 1

2π
and such a term would be expected to cancel

when combined with the original Chern-Simons term from the
flux attachment transformation, which also has a prefactor 1

2π
.

The exceptions are at the fillings 〈n〉 = 1
6 , 1

3 , 4
9 , 1

2 , represented
by vertical jumps in the solid lines in Fig. 6. At these
fillings, the total Chern number of all the filled bands is
different from −1 and lead to an effective Chern-Simons term.
The resulting magnetization plateaus and their corresponding
Chern numbers are summarized in Table II.
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FIG. 6. (Color online) Hofstadter spectrum for h = 5J . The x

axis plots the mean-field fermion density 〈n〉 and the y axis plots
the XY energies. The bottom solid line indicates the Fermi level
and the top solid line corresponds to the next excited state available.
The vertical jumps in the figure correspond to possible magnetization
plateaus.

The magnetization plateaus at filling fractions 1
3 and 1

6 have
also been previously obtained in the absence of the chirality
symmetry breaking term h = 0 and hext 
= 0 in Ref. [5]. It
is apparent that these plateaus survive in the presence of the
chirality symmetry breaking term. Additionally, we observe
two other plateaus at fillings 4

9 and 1
2 . The plateau at 1

2 filling
is the same one that was observed in the previous sections for
the case with no magnetic field (see Sec. IV B 1).

The plateau at 4
9 filling has a magnetic unit cell with three

basic unit cells. This gives rise to a total of nine bands of which
four are filled. The Chern numbers of each of the nine bands
in the mean-field state are

C1 = −1, C2 = +2, C3 = +2,

C4 = −1, C5 = −1, C6 = +2,

C7 = −1, C8 = −1, C9 = −1.

(4.25)

The Chern numbers of the four filled bands (C1, C2, C3, and
C4) add up to +2. Again this result will combine with the
Chern-Simons term from the flux attachment transformation
leading to an effective Chern-Simons with an effective spin
Hall conductance of σ s

xy = 2
3 . This result is also summarized

TABLE II. Magnetization plateaus obtained in Fig. 6 and their
Chern numbers. At these fillings the Chern-Simons terms do not
cancel out and the system is in a chiral spin liquid.

〈n〉 Chern No. m

1
6 +1 2

3
1
3 +1 1

3
4
9 +2 1

9
1
2 +1 0

in Table II. In Ref. [5] we identified this state as having the same
topological properties as the first state in the Jain sequence of
fractional quantum Hall states of bosons.

D. Chiral spin liquids with Dzyaloshinski-Moriya interactions

In this section we consider the effects of a Dzyaloshinski-
Moriya term (instead of the chirality term) on the nearest-
neighbor XXZ Heisenberg Hamiltonian in Eq. (2.1). The
Dzyaloshinski-Moriya term is written as

HDM = JDM

∑
i,j

ẑ · (Si × Sj ), (4.26)

where the sum runs over nearest neighbors in each triangle in a
clockwise manner. As an example the Dzyaloshinski-Moriya
term in a triangle associated with site b1 in Fig. 2 can be written
as

HDM,b1 = i

2
JDM

∑
�x

[
S+

a2
(�x)S−

b1
(�x) − S+

b1
(�x)S−

a2
(�x)

+ S+
c2

(�x)S−
a2

(�x) − S+
a2

(�x)S−
c2

(�x)

+ S+
b1

(�x)S−
c2

(�x) − S+
b1

(�x)S−
c2

(�x)
]
. (4.27)

Clearly this term breaks time reversal so we expect that we
may be able to find chiral phases.

From the form of Eq. (4.27) we can now readily apply the
flux attachment transformation just like we had for the case of
the chirality term. As a result the parameters in Eq. (3.5) now
get modified as

J (a)(x) = 1

2

√
J 2 +

[
h

(
1

2
− n(a)(x)

)
+ JDM

]2

,

(4.28)

φ(a)(x) = tan−1

{
h

J

[
1

2
− n(a)(x)

]
+ JDM

J

}
.

In this section we will set the chirality symmetry breaking term
to zero, h = 0.

Two separate regimes have to be considered.

1. JDM � 1.7 J

Recall that in the XY regime the Heisenberg model gave
rise to the (π,π,π ) flux state which is gapless and has Dirac
points (Fig. 3). Treating the Dzyaloshinski-Moriya term as a
perturbation, we find that this term also opens up a gap in the
(π,π,π ) flux state as can be seen in Fig. 7. But the resultant
state obtained still has a flux of π in each of the plaquettes.
For the situation shown in Fig. 7, the energy gap is 0.1366J .
This is an important difference between the effects of adding
the chiral term and the Dzayloshinkii-Moriya terms, since the
chirality term shifted the fluxes on each plaquette away from
π , whereas the Dzyaloshinski-Moriya term does not.

The Chern numbers of the six bands in the presence of a
small JDM term are

C1 = +1, C2 = −1, C3 = +1,

C4 = +1, C5 = −1, C6 = −1.
(4.29)

Once again we find that the total Chern number of all the
filled bands is C1 + C2 + C3 = +1. This would again lead to
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FIG. 7. (Color online) Spectrum with JDM = 0.05J . The
Dzyaloshinski-Moriya term opens up a gap in the spectrum of the
Heisenberg Hamiltonian (see Fig. 3).

a fractional quantum Hall type phase with σ s
xy = 1

2 , just as we
had observed in the case with the chirality term.

E. JDM � 1.7 J

For larger values of the Dzyaloshinski-Moriya parameter,
namely for JDM

J
� 1.7, the Chern numbers of the bands again

get rearranged and the chiral phase no longer survives, as
shown below:

C1 = −1, C2 = +1, C3 = −1,

C4 = −1, C5 = +1, C6 = +1.
(4.30)

In the limit that we only have the Dzyaloshinski-Moriya
term, i.e., J = 0, the values of all φ(a) = π

2 in Eq. (4.28). In
this case the values of the mean-field parameters that satisfy
the consistency equations, Eqs. (4.5) and (4.9), are 1 = 2 =
− 1

4 . Hence, in the presence of only the Dzayloshinski-Moriya
term, we again end up in the (π,π,π ) flux state that was
observed in the XY regime of the Heisenberg model in
Sec. IV A 1.

F. Dzyaloshinski-Moriya term with an uniform magnetic field
hext �= 0

Finally, we will also consider the effects of the
Dzyaloshinski-Moriya term in the presence of an uniform
external magnetic field hext 
= 0, just as we had done for the
chirality terms in Sec. IV C. We will once again focus on the
XY limit where the mean-field equations are simpler due to
the absence of the interaction term, i.e., λ = 0. We will look
for states that are uniform, time independent, and do not have
any currents.

This scenario is very similar to the case of the integer
quantum Hall effect with noninteracting fermions in the
presence of a (statistical) gauge field. This approach was
also used by Misguich et al. in their studies on the triangular
lattice [2]. More recently we carried out a similar analysis on
the kagome lattice with an XY nearest-neighbor Heisenberg
model [5]. Here we will perform the same analysis, but with the
Dzyaloshinski-Moriya term added to the XY nearest-neighbor
Heisenberg model.

FIG. 8. (Color online) Hosftadter spectrum in the XY limit for
the case JDM = 0.3J . (The x axis plots the mean-field fermion density
〈n〉 and the y axis plots the energies of the XY model). The bottom
solid line represents the Fermi level (all the filled bands) and the
top solid line represents the next excited energy state available. The
plateaus correspond to jumps in the solid line. We see two additional
plateaus at densities 〈n〉 = 4

9 , 1
2 for certain values of JDM.

Once again we find a few different plateaus as can be seen in
the Hofstadter spectrum in Fig. 8 for JDM = 0.3J . The vertical
lines in the figure correspond to the magnetization plateaus.
The range of JDM values for which we observe the above
plateaus is shown in Table III. The table also lists the total
Chern numbers of all the filled bands at each of the plateaus
as well as the corresponding magnetization.

This concludes our mean-field analysis into the various
possible magnetization plateaus. We will now proceed to
consider the effects of fluctuations on the mean-field state when
a small chirality term was added to the Heisenberg model in
the XY limit. This was the situation discussed in Sec. IV B. For
the rest of the paper we will not consider the Dzyaloshinski-
Moriya term or the external magnetic field term again.

V. EFFECTIVE FIELD THEORY

In this section we return to the case of the nearest-neighbor
Heisenberg model in the presence of a small chirality term.
In Sec. IV B it was shown that the addition of the chirality
term opened up a gap in the mean-field spectrum and lead
to a state with nontrivial Chern number. We will now expand

TABLE III. Approximate values of JDM for which we observe the
plateaus at the mean-field level. This table also lists the corresponding
Chern numbers and their magnetizations m.

〈n〉 Range of values (in J ) Chern No. m

1
6 0 � JDM � 0.35 +1 2

3
2
9 0 � JDM � 0.3 +2 5

9
1
3 0 � JDM � 0.8 +1 1

3
4
9 0.05 � JDM � 0.6 +2 1

9
1
2 0 < JDM � 1.7 +1 0
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the fermionic action around this mean-field state and consider
its continuum limit. This process will allow us to go beyond
the mean-field level and consider the fluctuation effects of
the statistical gauge fields. The analysis presented here is
analogous to the one presented in our earlier work [5]. As
a result we will only write down the relevant expressions for
the current scenario.

In Sec. IV B 1 we found that in the absence of the chirality
term the spectrum was gapless with two Dirac points and
that the addition of the chirality term opened up a gap at the
Dirac points. These two Dirac points in the mean-field phase
were located at the momenta K = ±(π

2 ,− π

2
√

3
). The fermionic

degrees of freedom on each site can be expanded around each
of the two Dirac points using the following expansions on each
sublattice:⎛

⎜⎜⎜⎜⎜⎝

ψa1

ψb1

ψc1

ψa2

ψb2

ψc2

⎞
⎟⎟⎟⎟⎟⎠ ∼ a0√

6

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−ei 5π
12 i√

2 0
−ei 5π

12 −e−i π
6

−ei 5π
12 i

0 −√
2e−i π

12

−e−i π
12 e−i π

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(

�1
1

�2
1

)
,

⎛
⎜⎜⎜⎜⎜⎝

ψa1

ψb1

ψc1

ψa2

ψb2

ψc2

⎞
⎟⎟⎟⎟⎟⎠ ∼ a0√

6

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−ei 5π
12 −i

0 −√
2e−i π

12

ei π
12 −ei π

3

ei 5π
12 −i

−√
2 0

−e−i 5π
12 −e−i π

6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(

�1
2

�2
2

)
,

(5.1)

where in �α
r , r refers to the Dirac species index and the

label α refers to the spinor index within each species.
ψa1,ψb1,ψc1,ψa2,ψb2,ψc2 refer to the original fermionic fields
on the different sublattices sites in the mean-field state at
half-filling as shown in Fig. 2.

Now we will include the fluctuating components, i.e., we
will expand the statistical gauge fields as follows: Aμ =
〈Aμ〉 + δAμ. The mean-field values of 〈Aμ〉 are the same as
those given in Sec. IV B. From now on we will primarily
focus on the fluctuating components. In order to simplify the
notation, we will drop the δ label in the fluctuating components,
i.e., all the gauge fields presented beyond this point are purely
the fluctuating components.

A. Spatial fluctuating components

First, we will begin by looking at just the spatial fluctuating
components. Furthermore, we will also expand all the spatial
fluctuating components in the magnetic unit cell in Fig. 2 in
terms of slow and fast components. This will allow us to treat
the slow components as the more relevant fields.

The fields along the e1 direction (in Fig. 2) can be expanded
as

A1
1 = a0

2

(
Ax + A

f 1
1 + A

f 2
1 − A

f 3
1

)
,

A1
4 = a0

2

(
Ax + A

f 1
1 − A

f 2
1 + A

f 3
1

)
,

(5.2)
A2

1 = a0

2

(
Ax − A

f 1
1 + A

f 2
1 − A

f 3
1

)
,

A2
4 = a0

2

(
Ax − A

f 1
1 − A

f 2
1 + A

f 3
1

)
.

Similarly, the fields along the e2 direction can be written as

A1
2 =a0

2

(
−1

2
Ax +

√
3

2
Ay − A

f 1
2 − A

f 2
2 + A

f 3
2

)
,

A1
5 =a0

2

(
−1

2
Ax +

√
3

2
Ay + A

f 1
2 + A

f 2
2 − A

f 3
2

)
,

A2
2 =a0

2

(
−1

2
Ax +

√
3

2
Ay + A

f 1
2 − A

f 2
2 + A

f 3
2

)
,

A2
5 =a0

2

(
−1

2
Ax +

√
3

2
Ay − A

f 1
2 + A

f 2
2 − A

f 3
2

)
.

(5.3)

Finally, the fields along e1 + e2 directions can be expressed
as

A1
3 =a0

2

(
1

2
Ax +

√
3

2
Ay + 3

2
Af − A

f 1
3 − A

f 2
3 + A

f 3
3

)
,

A1
6 =a0

2

(
1

2
Ax +

√
3

2
Ay + 3

2
Af + A

f 1
3 + A

f 2
3 − A

f 3
3

)
,

A2
3 =a0

2

(
1

2
Ax +

√
3

2
Ay + 3

2
Af − A

f 1
3 − A

f 2
3 + A

f 3
3

)
,

A2
6 =a0

2

(
1

2
Ax +

√
3

2
Ay + 3

2
Af − A

f 1
3 + A

f 2
3 − A

f 3
3

)
.

(5.4)
In the above expressions A

(A)
i refer to the fluctuating

components along the different links of the unit cell in the
mean-field state (1 and 2 refer to the two unit cells in the mag-
netic unit cell shown in Fig. 2). The slow components are
represented by Ax and Ay and Af , A

f 1
i , A

f 2
i , and A

f 3
i are the

fast fields along the different spatial directions.

B. Temporal fluctuating components

Similarly, the fluctuating time components can also be
expanded in terms of slow and fast fields as follows:

A0,a1 = a0
[
A0 + A

f 01
0 + A

f 01
0 + 3

√
2
(
A

f 1
0 − A

f 2
0

)]
,

A0,b1 = a0
(
A0 − A

f 10
0 − 3A

f 3
0

)
,

A0,c1 = a0
(
A0 − A

f 01
0 + 3

√
2 −

√
3A

f 1
0 − 3

√
2 +

√
3A

f 2
0

)
,

A0,a2 = a0
[
A0 + A

f 01
0 + A

f 01
0 − 3

√
2
(
A

f 1
0 − A

f 2
0

)]
,

A0,b2 = a0
(
A0 − A

f 10
0 + 3A

f 3
0

)
,

A0,c1 = a0
(
A0 − A

f 01
0 − 3

√
2 −

√
3A

f 1
0 + 3

√
2 +

√
3A

f 2
0

)
,

(5.5)

where a1, b1, c1, a2, b2, and c2 again refer to the different
sublattice indices in the mean-field state in Fig. 2. The only
temporal slow component is A0. All the other fields with
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superscript f refer to the fast fields. The prefactors and
constants in Eq. (5.5) are chosen to make the notation and
computation below easier.

Using Eq. (5.1), the mean-field action with the choice of
the mean-field gauge fields in Sec. IV B in the continuum limit
becomes

SF,MF =
∫

d3x�r (i /∂ − m)�r, (5.6)

where � = �∗γ0 with � = (�1
1 , �2

1 , �2
1 , �2

2 )
T

. We are
using the slash notation /∂ = γ μ∂μ = γ0∂0 − γi∂i with the
Minkowski metric gμν . The γ matrices act on the upper or
spinor index (α) in �α

r and are given by

γ0 = σ3, γ1 = iσ2, γ2 = iσ1. (5.7)

Importantly the mass terms m are the same for both the Dirac
points and are given as

m = lim
a0→0

[
−π

9a0
(3 +

√
3)

]
= −0.5258

a0
 > 0. (5.8)

Hence, the masses m are positive for both Dirac points as
the value of  < 0 from the mean-field analysis (as shown in
Table I).

The resulting action for the spatial fluctuating components
becomes

δSslow
i =

∫
d3x{Ax�γ1� + Ay�γ2�},

(5.9)

δSfast
i =

∫
d3x

{
1

2
Af �γ1� +

√
3

2
Af �γ2� − (

A
f 2
1 − A

f 3
1 + A

f 2
2 − A

f 3
2 − A

f 2
3 + A

f 3
3

)
��

}
,

where we have absorbed some of the constant factors into the definitions of the fast fields to make the notation more convenient
and the definitions of the γ matrices are the same as in Eq. (5.7).

The resulting continuum action for the slow and fast fields become

δSslow
0 = −

∫
d3xA0(�γ0�),

δSfast
0 =

∫
d3x

{
A

f 1
0 (�γ1T

3�) + A
f 2
0 (�γ2T

3�) + A
f 3
0 (�γ0T

3�)
}
, (5.10)

where T 3 is the regular σ3 Pauli matrix but acting on the species index r in �r . Combining Eqs. (5.6), (5.9), and (5.10), the total
continuum fermionic action for the slow components becomes

SF,slow =
∫

d3x�[iγ μDμ − m]�, (5.11)

where Dμ = ∂μ + iAμ is the covariant derivative. The fast components can be expressed as

SF,fast =
∫

d3x

{
1

2
Af �γ1� + Af

√
3

2
�γ2� + A

f 1
0 �γ1T

3� + A
f 2
0 �γ2T

3� + A
f 3
0 �γ0T

3� − φi��

}
, (5.12)

where

φi =
√

2 + √
3

3

(
A

f 2
1 − A

f 3
1 + A

f 2
2 − A

f 3
2 − A

f 2
3 + A

f 3
3

)
. (5.13)

Equations (5.11) and (5.12) can also be expressed in momentum space as

SF =
∫

d3p

(2π )3
�M�, (5.14)

with M = M + δM .
The mean-field part M is given as

M =
(

/p − m 0
0 /p − m

)
, (5.15)

and the fluctuation part δM is given as

δM=
(
− /A − φi +

(
1
2Af + A

f 1
0

)
γ1 + (√

3
2 Af + A

f 2
0

)
γ2 +A

f 3
0 γ0 0

0 − /A − φi +
(

1
2Af − A

f 1
0

)
γ1 + (√

3
2 Af − A

f 2
0

)
γ2 − A

f 3
0 γ0

)
,

(5.16)

where φi is given in Eq. (5.13).
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The action in Eq. (5.14) is quadratic in fermionic fields and fermions can be integrated out to give an effective action in terms
of just the fluctuating gauge fields. The resulting effective action becomes

Seff = −iTr ln M, (5.17)

where M is defined in Eq. (5.16). Now we can expand M in terms of the mean-field part and the fluctuating parts as shown in
Eqs. (5.15) and (5.16):

Seff = −iTr{ln(M + δM)} = −iTr{ln M} − iTr{ln(1 + M
−1

δM)}. (5.18)

Expanding this action up to second order in the fluctuating components gives

Seff = i

2
Tr(M

−1
δMM

−1
δM) = i

2

∫
p,q

tr[S(p)δM(q)S(p + q)δM(−q)], (5.19)

where the lower-cased “tr” is a matrix trace, and S(p) =
M(p)−1 is the continuum mean-field propagator presented in
Eq. (5.15), and it is given by

S(p) = 1

p2 − m2

(
/p + m 0

0 /p + m

)
. (5.20)

In the expansion of Eq. (5.18) we will only keep the
most relevant (mass) terms (without derivatives) for the fast
components.

Similarly, one can also express the lattice version of the
Chen-Simons term and the interaction terms using the slow and
fast fluctuating components. Combining all of the above terms,
one can obtain the final continuum action. All the massive
fields can safely be integrated out. This leaves us with just the
Chern-Simons and Maxwell terms. The computation of this
Feynam diagram is standard and it is done in many places in
the literature [48,49].

To lowest order, after integrating out all the massive fields,
the most relevant term is the effective Chern-Simons term SCS

eff ,
since it has the smallest number of derivatives, and is given by

SCS
eff =

(
θ

2
+ θF

2

)∫
d3xεμνλAμ∂νAλ, (5.21)

where θ = 1
2π

from the original flux attachment transformation
and θF is the obtained from integrating out the fermions and
is given as

θF = 1

4π
[sgn(m) + sgn(m)] = 1

2π
(5.22)

as sgn(m) = +1 [m > 0 as shown in Eq. (5.8)].
Hence, the Chern-Simons terms add up, and we get a state

with spin Hall conductivity σ s
xy = 1

2 . This state is equivalent to
a bosonic Laughlin fractional quantum Hall state. This agrees
and verifies our expected result obtained in Sec. IV B.

The Maxwell terms can be conveniently expressed in terms
of the electric E and magnetic B fields as follows:

SEM =
∫

d3x

(
1

2
εE2 − 1

2
χB2

)
, (5.23)

where ε = 1
16π

√
m2

and χ = (24
√

3a0 − 1
16π

√
m2

).
The computation in this section confirms our expectation

and analysis used to determine the nature of the chiral spin
liquid states using the mean-field theory approaches in Sec. IV.

VI. SPONTANEOUS BREAKING OF
TIME-REVERSAL INVARIANCE

In the cases discussed so far in this paper, we began with a
(π,π,π ) flux state which, at the level of the mean-field theory,
has massless Dirac fermions, and showed that breaking the
time-reversal symmetry explicitly, by adding either a chirality
term (Sec. IV B) or a Dzyaloshinski-Moriya term (Sec. IV D),
led to a gapped state. We then showed that quantum corrections
led directly to a chiral spin liquid with broken time-reversal
symmetry for arbitrarily small values of the chiral field h or
the Dzyaloshinski-Moriya interaction JDM. The existence of an
explicit gap in the spectrum of the fermions was essential to this
analysis. Furthermore, after the leading quantum corrections
are taken into account, we found that the naive Dirac fermions
of the mean-field theory became anyons (semions in the cases
that were discussed in detail). This line of reasoning parallels
the theory of the fractional quantum Hall effect where, at the
mean-field level, one begins with composite fermions fulling
up effective Landau levels [35], which turn into anyons by
virtue of the quantum corrections [36,49].

We now turn to the question of whether it is possible
to obtain a chiral spin liquid by spontaneous time-reversal
symmetry breaking. This concept was formulated originally
by Wen, Wilczek, and Zee [50] in the context of the J1 − J2

Heisenberg model on the square lattice, where a chirally invari-
ant Z2 spin liquid appears to be favored instead [7,51]. In this
section we will show that ring-exchange processes on the bow
ties (i.e., two triangles sharing the same spin) of the kagome
lattice may favor the spontaneous formation of the chiral spin
liquid if the associated coupling constant is large enough.
Unfortunately, the critical value of this coupling constant that
we obtain is much too large for the mean-field theory to be
reliable and, hence, we cannot exclude the possibility that
other states may arise at weaker coupling. Nevertheless, it is an
instructive exercise that shows that ring-exchange processes,
if large enough, may trigger a chiral spin liquid on their own.

In this section we explore of the possibility of breaking
this symmetry spontaneously. Numerical works have studied
examples where such scenarios arise in the Heisenberg
model on the kagome lattice in the presence of second and
third next nearest-neighbor Heisenberg terms or Ising terms
[15,52], where they find suggestive evidence of a chiral spin
liquid in certain regimes. Unfortunately, the flux attachment
transformation summarized in Sec. II cannot be applied to
next nearest-neighbor Heisenberg terms. However, we have
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examined the case in the presence of just the next-nearest-
neighbor Ising terms, using flux attachment methods and we
do not find the chiral spin liquid observed in the numerical
work [15].

As a result we consider the effect of adding a chiral term
on a bowtie in the kagome lattice which is written explicitly
as follows:

H

�
� = g

∑
{ �

�}

[
Si · (Sj × Sk)

]
[Si · (Sl × Sm)],

(6.1)

where the sum runs over all the bowties of the kagome lattice,
i, j , and k refer to the indices of the up triangle, and i, l, and
m refer to the indices of the down triangle, with i being the
common site in the bowtie.

The total Hamiltonian used in this section can then be
written as

Htot =HXXZ + H

�
� = HXXZ +

∑
〈�,�〉

gχ�χ�, (6.2)

where the HXXZ is the Hamiltonian of the Heisenberg anti-
ferromagnet on the kagome lattice, with anisotropy coupling
λ, defined in Eq. (2.1), and where χ� and χ� are the
chiralities over the up and down triangles (i.e., the sites of
the two sublattices of the honeycomb lattice) and the sum runs
over nearest-neighbor triangles of the kagome lattice (which
correspond to the bowties). In what follows we will assume
that we are either at the isotropic point or in the regime of XY

anisotropy (easy plane), i.e., λ � 1.
We now note that the bowtie terms of the Hamiltonian in

Eq. (6.1), when expanded, can be expressed in terms of a
ring-exchange term on the bowtie as follows:

H

�
� = g

2

∑
{ �

�}

{Si · Si[(Sj · Sl)(Sk · Sm) − (Sj · Sm)(Sk · Sl)]

+Si · Sl[(Sj · Sm)(Si · Sk) − (Si · Sj )(Sk · Sm)]

+Si · Sm[(Si · Sj )(Sk · Sl) − (Sj · Sl)(Si · Sk)]}.
(6.3)

Ring-exchange terms have been known to give rise to exotic
dimer states in Heisenberg antiferromagnets [53]. Here we will
explore the possibility of such a term giving rise to a chiral
spin liquid state.

Since the triangles of the kagome can be labeled by the
sites of a honeycomb lattice on the centers of the triangles,
we can regard the Hamiltonian of Eq. (6.1) as a coupling
between the chiralities on a honeycomb lattice. Although
Eq. (6.3) has a very complicated form, it can be simplified by
using a Hubbard-Stratonovich (HS) transformation in terms
of a scalar field h(r,t) on the sites {r} to the honeycomb
sublattice of the triangles of the kagome lattice. Upon this
transformation, the action of the full system, XXZ and
chirality couplings, becomes

S = SXXZ +
∫

dt
1

2g

∑
r,r ′

h(r,t)K−1(r,r ′)h(r ′,t)

−
∫

dt
∑

r

h(r,t)χ (r,t), (6.4)

where K(r,r ′) is the coordination (or connectivity) matrix
of the honeycomb lattice and K−1(r,r ′) is its inverse. The
HS field h(r,t) plays the role of the chirality field introduced
in Sec. IV B, except that here it is a function of time and
space.

We can now apply the flux-attachment transformation to a
system whose action is given by Eq. (6.4), and, as we did in the
preceding sections, map this problem to a system of fermions
on the kagome lattice coupled to a lattice Chern-Simons gauge
field. However, now they are also coupled to the HS fields
h(r,t) in the same fashion as we coupled the fermions to the
chiral operator in Sec. IV B.

We can now integrate out the fermions, we obtain the
following effective action:

S = SXXZ +
∫

dt
1

2g

∑
r,r ′

h(r,t)K−1(r,r ′)h(r ′,t)

+ Seff[h(r,t),Aμ(r,t)], (6.5)

where Seff[h(r,t),Aμ(r,t)] is the effective action of the
fermions in a background chirality field h(r,t) (and which
includes the lattice Chern-Simons term, as before).

We can now carry out a mean-field approximation by
extremizing the action of Eq. (6.5) with respect to the chirality
field h(r,t), and to the gauge field Aμ. Since we are working
at zero external magnetic field, the mean-field state for the
gauge field is just the (π,π,π ) flux state and, hence, in the
absence of any other interactions, we will naively have two
species of massless Dirac fermions (as discussed in Sec.V).
We will take the extremal HS field to have a time-independent
value on each sublattice, h̄� and h̄�, which obey the
equations

h̄� = 3g〈χ�〉, h̄� = 3g〈χ�〉, (6.6)

where 〈χ (r,t)〉 is the expectation value of the chirality operator
on each sublattice. If we further seek solutions that do not
break the sublattice symmetry, we obtain the simple mean-field
equation for the chirality

h̄ = 3g 〈χ〉 (6.7)

and the critical value of the chirality coupling gc is given by
the usual mean-field-theory relation

1 = 3gc

d〈χ〉
dh

∣∣∣∣
h=0

, (6.8)

where d〈χ〉
dh

|
h=0

is the chirality susceptibility of the XXZ

model.
For λ/J = 0 we find that for values of g � 13.3J , there

exist nonvanishing solutions of the chirality parameter, i.e.,
h > 0 as can be seen in Fig. 9. In these cases we end up
with a nonzero chiral term similar to that of Eq. (3.1) and the
resultant phase would again be gapped and correspond to the
chiral spin liquid discussed in the previous section. The critical
value of g reduces as one approaches the isotropic point.
For λ/J = 1, the critical value is much smaller, gc ≈ 3.4J .
Below this critical value of gc, the value of h that satisfy the
mean-field consistency equations are h = 0. In this situation,
we are back to the situation with just the XXZ Heisenberg
model and the resultant phase at half-filling would be gapless.
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FIG. 9. (Color online) Expectation value of the chirality operator
〈χ〉 plotted as a function of g for λ = 0, the XY limit (full circles) and
λ/J = 1, the isotropic Heisenberg point (triangles). The mean-field
theory critical values are gc ≈ 13.3J in the XY limit, λ = 0, and
gc ≈ 3.4J at the isotropic Heisenberg point λ/J = 1.

The expectation values displaced in Fig. 9 are quite small.
The main reason for this is that each chirality operator has
a term proportional to Sz. When all the sites are exactly at
half-filling this terms is equal to zero [see Eq. (2.4)] and the
chiral expectation vanishes. In order to open up a gap, the
densities have to be slightly shifted away from zero giving rise
to a small nonzero chiral expectation value.

This leaves us with the question of what is the ground state
of the XXZ Heisenberg antiferromagnet on the kagome lattice
for small λ < 1 and g < gc. Naively we would seem to predict
that it is equivalent to a theory of two massless Dirac fermions
which, on many grounds, cannot be the correct answer. In fact,
López, Rojo, and one of us [54] found the same result in the
XY regime of the quantum Heisenberg antiferromagnet on the
square lattice (which is not frustrated). These authors showed
that the naive expectation is actually wrong and the fermions
became massive by a process that can be represented as the
exchange of Chern-Simons gauge bosons. Due to the stronger
infrared behavior of the Chern-Simons gauge fields (compared
with, e.g., Maxwell), this exchange term leads to an induced
mass term for the Dirac fermions which is infrared finite (but
linearly divergent in the ultraviolet). Most significantly the sign
of the induced mass term leads to an extra Chern-Simons term
which exactly canceled the term introduced by flux attachment,
leaving a parity-invariant Maxwell-type term as the leading
contribution to the effective action. Furthermore, in 2+1
dimensions, a Maxwell term is known to be dual to a Goldstone
boson. López et al. concluded that the ground state of the
antiferromagnet on the square lattice in the XY regime has long
range order and that the Goldstone mode is just the Goldstone
mode of the broken U (1) symmetry of this anisotropic regime.
It should be apparent that in our case we can repeat the same
line of argument almost verbatim which would suggest that
in the XY regime the ground state of the antiferromagnet

on the kagome lattice should also have long range order
with a broken U (1) symmetry. However, this conclusion is
at variance with the best available numerical evidence which
suggests, instead, that the ground state is Z2 spin liquid (of
the toric code variety). The resolution of this issue is an open
question.

In summary, this mean-field theory predicts that beyond
some critical value of the ring-exchange coupling constant g,
which in this mean-field theory is typically large, the system
is in a chiral spin liquid state with a spontaneously broken
time-reversal invariance. However, below this critical value
the mean-field theory seemingly predicts that the Heisenberg
antiferromagnet on the kagome lattice is in a phase with
two species of gapless Dirac fermions. However, this is not
(and cannot be) the end of the story. Indeed, the fermions
are strongly coupled to the Chern-Simons gauge field which
can (and should) change the story. In fact, in Ref. [54] a
similar result was found even in the case of a square lattice.
A more careful analysis revealed that, in that case which
is an unfrustrated system, the fermions acquired a mass
in such a way that the total effective Chern-Simons gauge
action vanished, resulting in a more conventional phase with
a Goldstone mode. At present it is unclear what is the fate of
the Dirac fermions in the case of the kagome lattice. In fact,
most numerical data on the kagome antiferromagnet suggests
that it is a Z2 spin liquid. Whether a Z2 spin liquid can be
reproduced using our methods is an open problem.

VII. CONCLUSIONS

In this paper we investigated the occurrence of chiral
spin liquid phases in the nearest-neighbor XXZ Heisenberg
Hamiltonian (with and without an external magnetic field) on
the kagome lattice in the presence of various perturbations: (a)
a chirality symmetry breaking term, (b) Dzyaloshinski-Moriya
interaction (only in the XY limit), and (c) ring-exchange
interactions. At the mean-field level we found that in the first
two cases these interactions open up a gap in the spectrum
and lead to phases with nontrivial Chern numbers (analogous
to an integer quantum Hall state) in the XY limit, λ

J
� 1.

When the effects of fluctuations are included, we find that
these states actually correspond to fractional quantum Hall
states for bosons with a spin Hall conductivity of σ s

xy = 1
2 . This

chiral spin liquid state survives for larger values of the chirality
term but for larger values of the Dzyaloshinski-Moriya term,
the chiral spin liquid state vanishes. Our results qualitatively
agree with those obtained in a recent numerical study using
the same model [25].

We also considered the effects of adding ring-exchange
term on the bowties of the kagome lattice and found that,
provided the coupling constant is larger than a critical value
(which depends on parameters, e.g., the value of the Ising
interaction), time-reversal symmetry is spontaneously broken
and results in a topological state similar chiral spin liquid state.
However, since the critical couplings that we find are rather
large, ranging from g

J
� 13.3 in the XY limit to g

J
� 3.4 at the

isotropic point, we cannot exclude that other phases may also
play a role. In particular, we have not explored the possible
existence of topological phases with nematic order [45].
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In an earlier paper we showed that in the presence of a
magnetic field, the nearest-neighbor Heisenberg Hamiltonian
gives rise to magnetization plateaus at m = 1

3 , 2
3 , and 5

9 in the
XY limit [5]. Here we found that some of these plateaus survive
with the inclusion of the chirality and Dzyaloshinski-Moriya
terms. In addition we also find another plateau at magnetization
m = 1

9 with a spin Hall conductivity σ s
xy = 2

3 .
In the absence of an external magnetic field, the flux

attachment transformation that we use here, at the level of
mean-field theory, naively maps the kagome antiferromagnet
onto a system of two species of massless Dirac fermions.
Since this state is not gapped, the spectrum (and even the
quantum numbers of the states) is not protected by the effects
of fluctuations. Of all the fluctuations that are present, only
the long range fluctuations of the Chern-Simons gauge field
are (perturbatively) relevant. Indeed, this problem arises even
in the simpler problem of the Heisenberg antiferromagnet
on the square lattice, and López et al. [54] showed, using
a nontrivial mapping, that already at the one-loop level the
spectrum changes from “free” massless Dirac fermions to the
conventional Néel antiferromagnet with XY anisotropy (easy
plane). In Sec. V we derived an effective field theory for the
kagome antiferromagnet at zero field and, not surprisingly,
found a state which naively has two species of massless Dirac
fermions. A simple minded application of the same line of
argument would also predict an easy-plane antiferromagnet
which has a Goldstone mode (in the XY regime). This however
is not consistent with the best numerical data which shows
no long range order but a topological Z2 state. How to
reconcile these two scenarios is an open question which we
are investigating.

On the other hand, we should note that, contrary to
the case of nonrelativistic fermions, a theory of massless
Dirac fermions coupled to a Chern-Simons gauge theory is
nontrivial. While in a massive phase this coupling should also
amount to change in statistics, the massless case is much less
understood. In fact, the only case which a related problem
is understood [55–57] is the case in which the gauge fields

have a gauge group U (N ) and the Chern-Simons action has
level k. In the limit in which N → ∞ and k → ∞ (with N

k

fixed), this problem maps onto a Wilson-Fisher fixed point of
a scalar coupled to a Chern-Simons gauge theory with gauge
group U (k) at level N (with the same ratio N

k
). Away from this

regime not much is known. In this large N and large k limit,
the system remains conformally invariant (and hence critical).
Our present understanding of the kagome antiferromagnets
suggests that for small enough N the system should become
gapped and conformal symmetry should be spoiled. If the latter
scenario is correct, then there should be a direct transition
from (quite likely) a time-reversal invariant Z2 topological
phase to a chiral spin liquid phase. If this were to hold the
quantum phase transition would most likely be first order,
although an exotic Landau-forbidden transition transition is
also a possibility, perhaps of the deconfined quantum criticality
type [58]. In the latter case the above cited recent theories of
conformal quantum field theories with Chern-Simons terms
may be natural candidates for the field theory of such a
quantum critical point [55–57].
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