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Dirac fermions in a Fe ultrathin film
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We show the existence of massive Dirac fermions in the electronic band structures of a few Fe atomic
layers with perpendicular magnetization. Based on a tight-binding model fitted to ab initio band structure,
we observe four distinct massive Dirac fermions near the Fermi level, which result from atomic spin-orbit
coupling of Fe and a band inversion between an Fe 4s-3dx2−y2 hybrid orbital band and a 3dxy orbital band.
These led to a valence band with a finite Chern integer (+2) and chiral edge modes near the Fermi level.
When the chemical potential is set inside the Dirac gap by carrier doping, the Hall conductivity exhibits a
plateaulike structure with a quantized value 2(e2/h), and orbital magnetization shows a prominent increase,
the latter of which is mostly due to the chiral orbital motion of electrons along the edge modes. We discuss
the stability of the Dirac fermions in the Fe(001) monolayer on an MgO(001) substrate and an Fe(001) bilayer
case.
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I. INTRODUCTION

Since the discovery of graphene [1,2], a number of novel
two-dimensional electronic phases have been theoretically
proposed [3,4]. Such efforts include a proposal of a so-called
“Chern insulator” in graphene with ferromagnetic substrates.
Thereby, it was theoretically proposed that the magnetic
proximity effect from the substrate in combination with atomic
spin-orbit interaction of a carbon atom could give rise to a
finite mass gap in the Dirac fermion of graphene, resulting in
quantized Hall conductance [5,6]. From experimental point
of view, a few atomic layers of 3d-electron ferromagnets
themselves, such as Fe, Co, and Ni and their alloys, can be
easily grown on various substrates [7]. When the thickness of
the magnetic layers reaches atomic scale, magnetic anisotropy
energy associated with surface magnetism dominates over
magnetostatic energy, often causing the magnetic easy axis
to be perpendicular to the layer [perpendicular magnetic
anisotropy (PMA)] [8–27]. To obtain a comprehensive un-
derstanding of the PMA phenomenon, it is also important to
extract common features in the electronic band structures of a
few atomic layers of d-electron ferromagnets, such as Fe, Co,
and Ni.

In this paper, we show the existence of massive Dirac
fermions near the Fermi level in the electronic band structures
of bcc Fe(001) of a few atomic layers with perpendicular
magnetization (Fig. 1). The Dirac fermions are well described
by a three-orbital tight-binding model composed of 3dxy ,
3dx2−y2 , and 4s orbitals of an Fe atom, where an atomic
spin-orbit interaction of Fe and a band inversion between a
3dxy orbital band and a 4s-3dx2−y2 hybrid-orbital band play an
essential role for the emergence of the Dirac fermions. From
ab initio band calculations, the mass of the Dirac fermions is
estimated to be around 80 meV (60 meV) for a Fe monolayer
without (with) an MgO(001) substrate. In a free-standing
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Fe(001) monolayer, the massive Dirac fermion results in a
plateaulike feature in Hall conductivity and dMorb/dμ near
the Fermi level, where Morb denotes the out-of-plane orbital
magnetization and μ denotes the the chemical potential. In
experiments, the chemical potential can be controlled by
an electric gate voltage (out-of-plane electric field). It is
shown that the Dirac fermions in Fe monolayers are robust
against broken out-of-plane inversion symmetry induced by
the electric voltage. A comparison with existing ab initio band
calculations [16,28] suggests that the Dirac fermions of the
same origin can also be found in the electronic band structures
of bcc Co(001) and hcp Co(111) monolayers.

II. ELECTRONIC BAND STRUCTURE

Ab initio calculations are performed using film full-
potential linearized augmented plane wave (FLAPW) method
[29–31] based on the local-spin-density approximation
(LSDA) [32], in which the core states are treated fully relativis-
tically and the valence states are treated semirelativistically.
LAPW functions with a cutoff of |k + G| � 3.9 a.u.−1 and
muffin-tin sphere radii of 2.2, 2.2, and 1.4 a.u. for Fe, Mg, and
O atoms are used, where the angular momentum expansion
inside the MT spheres is truncated at � = 8 (Fe and Mg)
and � = 6 (O) for the wave functions, charge density, and
potential. The Fe/MgO was modeled by an Fe monolayer
on a six-atomic-layer MgO(001) substrate, where Fe atoms
are located on top of the O atoms, assuming the in-plane
lattice constant matching to the calculated value of bulk
MgO while the out-of-plane coordinates of Fe atoms are fully
optimized using the atomic-force FLAPW calculations. Note
that the structural parameters obtained within the LSDA agree
qualitatively with those analyzed by surface x-ray diffraction
[33] as demonstrated previously [53].

The ab initio electronic band structure for minority-spin
bands of a free-standing Fe monolayer with perpendicular
magnetization is fitted near the Fermi level with a tight-binding
model composed of five 3d orbitals, 4s, 4px , and 4py orbitals
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FIG. 1. (Color online) Four massive Dirac fermions in the elec-
tronic band structure of a perpendicularly magnetized free-standing
Fe monolayer.

of an Fe atom,

Ĥ =
∑
i,m

εm↑ ĉ
†
i,m↑ĉi,m↑ +

∑
〈〈i,j〉〉;mn

tij ;mn↑ ĉ
†
i,m↑ĉj,n↑

+ λso

∑
i;mn

ĉ
†
i;m↑[L]mn · [S]↑↑ĉi;n↑. (1)

ĉ
†
i,m↑ (ĉi,m↑) is the electron creation (annihilation) operator on

site i, for orbital m, and spin up (where the spin-quantization
axis is taken along the perpendicular magnetization direction,
the z direction). The first term represents an effective atomic
energy of each orbital, which includes all the on-site-type
energies felt by the respective orbital, such as exchange
splitting energy from majority-spin electrons and crystal fields
caused by surrounding electrons. The second term represents
the neighboring hopping term with interatomic (intra-atomic)
transfer integrals tij ;mn↑. The angular brackets in 〈〈i,j 〉〉
stand for summation of nearest-neighboring and next-nearest-
neighboring sites. The third term is the atomic spin-orbit
coupling with coupling strength taken to be λso = 50 meV.
Since an exchange splitting between majority-spin bands and
minority-spin bands estimated from ab initio band calculations
is about 3 eV, being 60 times larger than the atomic spin-orbit
coupling strength of Fe, we consider only the diagonal part
of spin-orbit interactions with respect to the spin index; an
expected correction due to the off-diagonal parts, [L±][S∓], is
evaluated to be on the order of 1 meV, being fairly negligible
compared to that from the diagonal part. The interatomic
transfer integrals tij ;mn↑ are given by matrix elements in the
Slater-Koster table [34], such as Vsd , Vsp, Vddσ , Vddπ , Vddδ ,
and so on. These matrix elements in the Slater-Koster table
along with the effective atomic energies εm↑ are used as fitting
parameters, whose best-fit values in the absence of spin-orbit
interaction are shown in Table I . The table shows reasonable

TABLE I. Upper: Tight-binding hopping parameters for minority
spin bands, obtained from the fitting to the LSDA calculation. The
energy unit is eV. Lower: On-site effective atomic energies for
minority-spin 3d electrons and 4s, 4px , and 4py electrons.

σ π δ

Fe d-Fe d (NN) −0.363 0.261 −0.061
Fe d-Fe d (NNN) −0.080 0.064 −0.025
Fe p-Fe d (NN) −0.392 0.157
Fe p-Fe d (NNN) −0.118 0.047
Fe p-Fe p (NN) 2.905 −1.063

Fe s-Fe d (NN) −0.392
Fe s-Fe d (NNN) −0.118
Fe s-Fe s (NN) −1.419
Fe s-Fe p (NN) 2.208

s p dz2 dxz dyz dx2−y2 dxy

εi,↑ 2.315 8.915 0.350 0.233 0.234 0.160 0.463

fitting values compared to the solid state table [34] and the
lattice constant of the square-lattice Fe monolayer evaluated
from the same first-principles calculation (a = 2.95 Å).

Figure 2(a) plots the band structure along high-symmetry
k points obtained from both our eight-band tight-binding
model and LSDA calculations with λso = 0. Notably, there
exist four linearly dispersive band crossings along the zone
boundary connecting the M point and the X point near
the Fermi level. As shown below, these linear dispersions
are well described by massless Dirac fermions without the
spin-orbit interaction. With the atomic spin-orbit interaction,
each massless Dirac fermion acquires the same sign of
the mass, endowing a valence band with a finite Chern
number +2.

The four Dirac cones are enveloped by two other dispersive
bands composed of dxz and dyz, while the out-of-plane mirror
symmetry allows us to treat these two bands separately from
the other six bands composed of s, dx2−y2 , dxy , px , py , and
dz2 , because 〈z odd|Ĥ |z even〉 = 〈z odd|σ̂zσ̂zĤ σ̂zσ̂z|z even〉 =
−〈z odd|Ĥ |z even〉 = 0. The presence of a substrate, such
as MgO(001), breaks the out-of-plane mirror symmetry,
giving rise to a finite mixing between these two groups of
bands, while, more importantly, the oxide substrate endows
with relatively strong charging energies the out-of-plane d

orbitals, such as dxz, dyz, and dz2 .Thus, dxz-dyz bands are
brought into a higher-energy region, while the four Dirac
fermions composed by 4s, 3dx2−y2 , and 3dxy remain intact
[Fig. 2(c)]. For the sake of clarity, we consider in the
following a free-standing Fe monolayer and treat these two
groups of bands separately, unless dictated otherwise. The
case with the MgO(001) substrate will be discussed later more
carefully.

III. BAND INVERSION MECHANISM

The emergence of the Dirac fermions and the valence band
acquiring the Chern number +2 result from (i) a band inversion
between a 3dxy orbital band and a 4s-3dx2−y2 hybrid-orbital
band, and (ii) a complex-valued band mixing between these
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FIG. 2. (Color online) (a) Electronic band structures for minority
spin near the Fermi level (without atomic SOI) from LSDA calcu-
lation (black) and the eight-band tight-binding model (blue). The
Dirac fermion is depicted by a green circle. (b) From the six-band
tight-binding model (with atomic SOI). The lowest band, which
acquires the Chern number 2, is drawn with a red bold line. The
massive Dirac fermions are depicted by a green circle. (c) From LSDA
calculation with MgO(001) substrate and without atomic SOI. The
orbital characters of bands labeled as 1 and 2 are 3dxz and 3dyz, while
those of 3, 4, 5, and 6 are 3dx2−y2 , 3dxy , 4s, and 3dz2 , respectively.

two bands mediated by the atomic spin orbital interaction.
Due to the orbital symmetry, the nearest-neighbor intraorbital
transfer integrals make the hybrid orbital band to have positive
curvature at the � point and negative curvature at the M point,
while the 3dxy orbital band has negative curvature at the �

point and positive curvature at the M point. As a result, the
hybrid-orbital band is lower in energy than the 3dxy orbital
band at the � point, while it is higher than 3dxy at the M point
(“band inversion”).

In the presence of the atomic spin-orbit interaction with
the out-of-plane ferromagnetic moment, the dxy orbital is
mixed with the dx2−y2 orbital character with a pure imaginary
coefficient, i.e., dxy → dxy + iαdx2−y2 , with α proportional to
the spin-orbit interaction. Because of this mixing, the hybrid
orbital band and the 3dxy orbital band acquire a complex-
valued band mixing, which takes the form of t ′ sin kx sin ky +
iαt(cos kx − cos ky) in momentum space; sin kx sin ky and
cos kx − cos ky are from the 3dxy and 3dx2−y2 orbital sym-
metry, respectively. As shown below, the band inversion and
the complex-valued band mixing result in the valence band
with Chern number +2.

The valence band with Chern number +2 can be well
described by the lowest energy band of a three-band tight-
binding model composed of 4s, 3dxy , and 3dx2−y2 orbitals. In
the momentum space, the model takes the form

H 3×3(k) =

⎛
⎜⎝

Es(k) −2
√

3V ′
sdsxsy

√
3Vsd (cx − cy)

∗ Exy(k) −2iλso

∗ ∗ Ex2−y2 (k)

⎞
⎟⎠,

(2)

where Ei(k) = Ei + ti(cx + cy) + 2t ′i cxcy , cx,y ≡ cos kx,y ,
sx,y ≡ sin kx,y , with subindex i = s, xy, and x2 − y2 rep-
resenting 4s, 3dxy , and 3dx2−y2 orbitals. Ei denotes their
effective atomic energies, and ti and t ′i denote their nearest- and
next-nearest-neighbor intraorbital transfer integral. The lowest
band energy of Eq. (2) will be denoted as E−(k) henceforth.

To see the band topology for the lowest band, let us
first derive an effective 2 × 2 Hamiltonian out of H 3×3(k).
Toward that end, notice first that the lowest band energy is
always smaller than Es(k), Exy(k), and Ex2−y2 (k) for all k;
E− < min(Es,Exy,Ex2−y2 ). On such an occasion, we may
describe the lowest band by treating either one of these three
orbitals as a high-energy degree and deriving an effective 2 × 2
Hamiltonian for the other two; the lowest band of H 3×3(k) is
identified with that of the 2 × 2 Hamiltonian. As shown in
Figs. 2(b) and 3, the focused valence band has mainly 4s

and 3dxy characters. Thus, we regard the 3dx2−y2 orbital as
the high-energy degree of freedom and treat its couplings
with 4s and 3dxy as perturbations. This leads to the 2 × 2
effective Hamiltonian for the “4s band” and the 3dxy band.
Quantitatively speaking, the “4s band” thus introduced is a
4s-3dx2−y2 hybrid-orbital band rather than purely a 4s orbital
band, because of larger mixing between 4s and 3dx2−y2 coming
from Vsd (� λso). In fact, the hybrid band has a larger 3dx2−y2

orbital character than the 4s orbital in a certain momentum
region (see Fig. 3).
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FIG. 3. (Color online) “Fat-band” picture obtained from the six-band tight-binding model. The respective orbital character is depicted by
the linewidth (red) in (a) for 4s, in (b) for 3dx2−y2 , and in (c) for 3dxy .

The degenerate perturbation theory gives the 2 × 2
Hamiltonian as follows:

〈i|H 2×2
eff |j 〉 = 〈i|H0|j 〉 + 〈i|H1|x2 − y2〉〈x2 − y2|H1|j 〉

E − Ex2−y2 (k)

(3)

with i,j = s,xy and

H0 ≡

⎛
⎜⎝

Es(k) −2
√

3V ′
sdsxsy 0

−2
√

3V ′
sdsxsy Exy(k) 0

0 0 Ex2−y2 (k)

⎞
⎟⎠, (4)

H1 ≡

⎛
⎜⎝

0 0
√

3Vsd (cx − cy)

0 0 −2iλso√
3Vsd (cx − cy) 2iλso 0

⎞
⎟⎠. (5)

Equivalently,

H 2×2
eff =

(
Es(k) Es,xy(k)

E
∗
s,xy(k) Exy(k)

)
, (6)

with

Es = Es − 3V 2
sd (cx − cy)2


E
, Exy = Exy − 4λ2

so


E
,

Es,xy = −2
√

3V ′
sdsxsy − i2

√
3λsoVsd (cx − cy)


E
.

The perturbation treatment is valid as far as 
E ≡
Ex2−y2 (k) − E is positive. This condition is satisfied for any k
when E = E−(k).

The 2 × 2 Hamiltonian has two eigenvalues whose
smaller one corresponds to the lowest band energy of
H 3×3(k). Thereby, E−(k) can be obtained from the following

self-consistent equation of E−:

2E−(k) = Es(k) + Exy(k)

−
√

[Es(k) − Exy(k)]2 + 4|Es,xy(k)|2,
where the right-hand side is given by E−(k) itself by way of

E ≡ Ex2−y2 (k) − E−(k). The equation has a solution for E−
that always satisfies E− < min(Es,Exy,Ex2−y2 ) for any k, jus-
tifying a posteriori the validity of the perturbative treatment.

With this justification in mind, we can readily identify the
band topology of the lowest energy band of H 2×2

eff (k) as that of
H 3×3(k). As is clear from Fig. 2(b), the hybrid band becomes
lower in energy than the 3dxy band at the � point; Es < Exy

at k = �, while otherwise at the M point; Es > Exy at k =
M . Between the � and M points, these two bands have a
mixing due to a finite off-diagonal matrix element Es,xy(k).
Importantly, the matrix element has a complex phase, which
acquires the 4π phase, whenever k goes around the � point
(or the M point),∮

∂S

∇k{argEs,xy(k)} · dk = 4π, (7)

where ∂S denotes an arbitrary loop that encompasses the �

point (or the M point).
The 4π phase winding of the interband matrix element and

the band inversion between the hybrid band and the 3dxy band
endow the lowest band with the Chern number +2. To see this,
expand the 2 × 2 Hamiltonian in terms of the Pauli matrix,
H 2×2

eff (k) = a0(k)σ0 + a(k) · σ , from which the normalized
vector n(k) is introduced by n ≡ a/|a|. According to the
projective representation of the Chern invariants [35–37], the
Chern number for the lowest band (Ch−) is given by an integral
of a solid angle subtended by the unit vector over the first Bril-
louin zone; Ch− ≡ 1

4π

∫
BZ dkxdkyn(k) · [∂kx

n(k) × ∂ky
n(k)].

The integral is quantized to be an integer, which counts how
many times the unit vector wraps the unit sphere when the
momentum k wraps the first Brillouin zone once. Now that
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Es < Exy and Es,xy = 0 at the � point while Es > Exy and
Es,xy = 0 at the M point, the unit vector points to the south
pole (north pole) of the unit sphere when k at the � (M)
point, respectively. On the one hand, Eq. (7) means that the
unit vector always winds twice around the pole when k rotates
once around the � point. This dictates that the Chern integer
for the lowest band is +2.

The lowest band forms four distinct Dirac fermions
along the Brillouin zone boundary, {K 1,K 2,K 3,K 4} =
{(π,K),(π, − K),(K,π ),(−K,π )}. Around each Dirac point,
the effective 3 × 3 Hamiltonian conceiving the Dirac fermion
is linearly expanded in small qx , qy , and λso, e.g.,

H 3×3
eff (k) = M1(qxa)σ x + M2λsoσ y + M3(qya)σ z + · · · (8)

with k ≡ q + K 1, and M1 = −0.34 eV, M2 = −0.97, and
M3 = −0.66 eV for the tight-binding parameters in Table I.

The four Dirac points play the role of dual magnetic
monopoles in a three-dimensional parameter space subtended
by kx , ky , and λso [38–41]. The corresponding magnetic
field B−(k,λso) is associated with a Bloch wave function for
the lowest band, |u−(k,λso)〉 with H (k,λso)|u−〉 = E−|u−〉.
The magnetic field is a rotation of a three-component
gauge field A−(k,λso), B−(k,λso) = ∇ × A−(k,λso) with
∇ ≡ (∂kx

,∂ky
,∂λso ). A−(k,λso) are gauge connections of the

Bloch wave function: A− = i〈u−|∇|u−〉. Due to the fourfold
rotational symmetry, dual magnetic charges at four Dirac
points have the same quantized strength 2π , where their sign
is the same as −sgn[M1M2M3] (Fig. 4),

∇ · B−(k,λso) = 2π

4∑
j=1

δ(λso)δ(k − K j ). (9)

The Chern integer for the lowest band is the total magnetic
flux penetrating through the constant λso plane in 3D space,

Ch−(λso) =
∫

BZ

dk
2π

(
∂kx

A−,y(k,λso) − ∂ky
A−,x(k,λso)

)
.

When λso goes across the λso = 0 plane, the Chern integer
changes by −4 (Fig. 4),

Ch−(λso < 0) − Ch−(λso > 0) = −4. (10)

FIG. 4. (Color online) Schematic picture of dual magnetic mag-
netic charges and dual magnetic field in the three-dimensional space
subtended by kx , ky , and λso. The Chern integer for each λso is given
by the surface integral of the field over the first Brillouin zone for the
constant λso.

The time-reversal symmetry connects the spinless tight-
binding Hamiltonian for λso > 0 and that for λso < 0 with
the relation H ∗(k,λso) = H (−k, − λso), which leads to
Ch−(λso) = −Ch−(−λso). Combing this with Eq. (10), we
have Ch−(λso > 0) = +2.

IV. HALL CONDUCTIVITY AND ORBITAL
MAGNETIZATION

The hallmark of the existence of massive Dirac fermions
is transverse conductivity [38,39,42]. Hall conductivity as a
function of the chemical potential is calculated for the eight-
band tight-binding model for a free-standing Fe monolayer
(Fig. 5) with

σxy = e2

h

En<μ∑
n

∫
BZ

dk
2π

(∂kx
An,y − ∂ky

An,x),

FIG. 5. (Color online) Upper (lower): Hall conductivity (orbital
magnetization) as a function of the chemical potential for the eight-
band tight-binding model for a free-standing Fe monolayer. Due to the
out-of-plane mirror symmetry, the contribution can be decomposed
into that from the six-band electronic states (3dxy , 3dx2−y2 , 3dz2 , 4s,
4px , 4py ; red color) and that from the two-band electronic states
(3dxz, 3dyz: blue color). The direct-band-gap region associated with
the massive Dirac fermions is specified by a gray-hatched energy
window, [−0.05 eV,0.03 eV].
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where An,μ ≡ i〈un|∂kμ
|un〉 with H (k)|un(k)〉 ≡ En|un(k)〉; n

is the band index. Due to the out-of-plane mirror symmetry, the
conductivity can be decomposed into the two-band contribu-
tion (from 3dzx and 3dyz orbitals) and the six-band contribution
(from 4s, 3dx2−y2 , 3dxy , 3dz2 , 4px , and 4py orbitals). When
the chemical potential is inside the Dirac gap (μ � 0), the
Hall conductivity shows a prominent peak structure with a
maximum value around 2e2/h. The peak structure is mainly
due to a nearly quantized contribution from the six-band
electronic states. The quantized value is approximately 2e2/h,
which is a direct consequence of the four massive Dirac
fermions near μ = 0. A slight deviation from the quantization
is attributed to another small but nonvanishing dual magnetic
field associated with a dispersive band near the � point.

The two-band electronic state also gives a nearly quantized
contribution e2/h to the Hall conductivity near the Fermi level
(μ � −0.1 eV); 3dxz and 3dyz orbital bands comprise another
SOI-induced direct band gap at the M point. The tight-binding
Hamiltonian for 3dxz and 3dyz orbitals is expanded linearly in
small qxqy , q2

x − q2
y , and λso with k = q + (π,π );

H (k) = λsoσ y + (V ′
ddδ − V ′

ddπ )(qxa)(qya)σ x

+ (Vddπ − Vddδ)
(qxa)2 − (qya)2

2
σ z + · · · ,

where V
(′)
ddπ and V

(′)
ddδ denote the Slater-Koster hopping param-

eters between the (next)-nearest-neighboring Fe d orbitals.
The expansion dictates that the dual magnetic fields for the
two bands have 4π magnetic charge at the M point on
the λso = 0 plane. This, in combination with the symmetry
property H ∗(k,λso) = H (−k, − λso), requires that the integral
of the dual magnetic field (∂kx

An,y − ∂ky
An,x ; n is either lower

or higher band out of the two bands) near the M point is
quantized to be 2π in the smaller λso limit. When the chemical
potential is inside the SOI-induced gap at the M point, one of
the two bands is partially filled while the other is empty. Since
a Fermi surface associated with the filled band is large enough
compared to a distribution of the magnetic flux around the M

point, the Hall conductivity from the two-band electronic state
is nearly quantized to be e2/h as in Fig. 5.

The emergence of the massive Dirac fermions also results
in peculiar chiral modes localized near the boundary of a
two-dimensional Fe monolayer. Figure 6 shows the electronic
band structure of the six-band tight-binding model with a
periodic (open) boundary condition along the x (y) direction of
the square-lattice Fe monolayer. When projected onto a surface
crystal momentum axis, the four massive Dirac fermions at
k = K 1,K 2,K 3,K 4 reduce to three distinct valleys with a
direct band gap, located at kx = π, ± K , respectively. Now
that the gap endows the lower bulk band with the Chern
number +2 as described above, the bulk-edge correspondence
[43–46] dictates that two localized chiral edge modes appear
in the direct band gap of the three valleys [Fig. 6(b)]. In the
present case, the direct band gap is also masked by another
dispersive bulk band located at the � point, mainly composed
of a 3dx2−y2 orbital (Fig. 2). As a result, the chiral edge modes
are terminated by the dispersive bulk band around kx = 0
[Figs. 6(a) and 6(c)].

The chiral modes give rise to large out-of-plane orbital
magnetization when the chemical potential μ is set inside the

FIG. 6. (Color online) (a) Electronic band structure obtained
from the tight-binding model with a finite slab geometry and periodic
boundary condition along the x direction. The black colored points
are extended over the two-dimensional bulk, while the red (blue)
color points are for those eigenstates localized at one (the other)
boundary (y = 0 or y = L) with L = 200. Two chiral edge modes
are terminated by a bulk band near k = 0. (b) Schematic picture of an
expected band structure (b) without the bulk band near k = 0. (c) With
the bulk band near k = 0, where two chiral edge modes (partially) go
across the direct band gap associated with massive Dirac fermions.

Dirac gap. When increasing μ inside the gap, electrons are
added up into the edge modes, which enhances chiral electric
currents flowing around the boundary of the two-dimensional
system. Irrespective of the details of the energy dispersion of
the chiral modes, the increase of the current is proportional
to the increase of μ. Such chiral edge current contributes to
a macroscopic orbital moment 〈r × p〉 [47–50], which results
in a linear increase of the magnetic moment with respect to
the carrier doping near the Fermi level. To see this situation,
we have calculated the orbital magnetization based on the
Streda formula [51,52]. The magnetization is the derivative
of the free energy in the magnetic field H , while the total
number of electrons N is the derivative in μ. This leads to
∂N/∂H = ∂M/∂μ, provided that the free energy is analytic in
μ and H . According to Streda [51], ∂N/∂H can be expressed
only in terms of the current operators,

∂M

∂μ
= 1

ec

{
σxy(μ)

− i�

2
Tr[JxG

+(μ)Jyδ(μ − H) − H.c.]

}
, (11)

where Jν is the current operator (ν = x,y), and G±(μ) ≡
1/[(μ ± iδ)I − H] and H are the lesser and greater single-
particle Green functions and Hamiltonian, respectively. By
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FIG. 7. (Color online) (a) Electronic band structures for minority spin near the Fermi level for a free-standing Fe bilayer with atomic
SOI (black) and without atomic SOI (red), obtained from tight-binding calculations. The Dirac fermions are depicted by green dotted circles.
(b) and (c) Hall conductivity and orbital magnetization as a function the chemical potential μ. (b) μ ranges from −0.4 to −0.2 eV. (c) μ ranges
from 0.1 to 0.3 eV.

an integration over μ, the orbital magnetization is calculated
from the eight-band tight-binding model for a free-standing
Fe monolayer (Fig. 5). Like the Hall conductivity, the result is
decomposed into the two-band and the six-band contributions.
The calculated magnetization exhibits a significant increase as
a function of μ when μ is set inside the Dirac mass gap. The
breakdown into the two contributions shows that the increase
is mainly due to the six-band electronic states, indicating
that the orbital moment near μ = 0 mainly comes from an
orbital motion of electrons along the chiral edge modes. In
fact, ∂M/∂μ is nearly quantized in the unit of e/hc, which
counts the number of chiral edge modes inside the Dirac gap.

V. SUBSTRATE, ELECTRIC GATE VOLTAGE AND
MULTIPLE-LAYER EFFECTS, AND THE hcp Co(111)

MONOLAYER CASE

The Dirac fermions found in a free-standing Fe monolayer
are robust against various perturbations, such as an oxide
substrate, an out-of-plane applied electric field (e.g., electric
gate voltage applied perpendicular to the layer), and multiple-
layer effects. First, being a doubly degenerate point in an
electronic energy band structure, the dual magnetic monopole
(charge) discussed above is a stable point defect in the three-

dimensional parameter space subtended by kx , ky , and λso;
they cannot disappear by themselves. The symmetry property
H ∗(k,λso) = H (−k, − λso) further requires these defects to
be in the λso = 0 plane, which guarantees the existence of
massive Dirac fermions even for small λso. To annihilate
these Dirac fermions, one generally needs to either reinvert
the band inversion between the 3dxy band and the 4s-3dx2−y2

hybrid band, or reduce completely the interlayer couplings
among the 4s orbital, the 3dxy orbital, and the 3dx2−y2 orbital.
Unlike out-of-plane 3d orbitals, however, these in-plane 3d

orbitals are influenced only slightly by the substrate and the
out-of-plane electric field. As a result, we can readily find the
massive Dirac fermions of the same origin even in the presence
of various perturbations.

Figure 2 shows an electronic band structure for an Fe (001)
monolayer with an MgO(001) substrate, where every Fe atom
is located right above the oxygen of the MgO substrate. Due to
crystal fields from these oxygens, three out-of-plane 3d orbital
bands are brought up into a higher-energy region. Due to the
charge neutrality, the Dirac fermions formed by the dxy orbital
and the 4s-3dx2−y2 hybrid orbitals become lower in energy than
the Fermi level (E � −0.6 eV). The size of the SOC-induced
Dirac gap is estimated to be around 60 meV from the ab initio
band calculation. The applied out-of-plane electric field has
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little effect on these Dirac fermions either. Even under a very
large out-of-plane electric field (±1 V/Å), four Dirac fermions
are barely affected [53].

Figure 7 shows an electronic band structure obtained from
a tight-binding model for a free-standing Fe bilayer, where
the number of massive Dirac fermions is doubled. Due to
interlayer hoppings, a Dirac fermion from one layer and
that from the other repel each other in energy. When the
chemical potential is around these Dirac gaps, the transverse
conductivity shows a peak structure with its maximum
value around 2e2/h. The out-of-plane orbital magnetization
increases as a function of the chemical potential inside the
gaps. These features are essentially same as in the free-standing
Fe monolayer case.

A comparison between an existing ab initio band calcula-
tion [16] and tight-binding analysis indicates that the massive
Dirac fermions of the same kind are also induced by the atomic
spin-orbit interaction in a minority-spin band in a hcp Co(111)
monolayer with perpendicular magnetization. Thereby, dxz

and dyz orbital bands comprise two massive Dirac fermions
with positive mass at the K and K ′ point, respectively, which
correspond to 4π magnetic charge at the M point in the Fe(001)
monolayer case. Meanwhile, 4s, dx2−y2 , and dxy orbitals form
six massive Dirac fermions with positive mass along the high
symmetric k lines connecting � and K(K ′) and two massive
Dirac fermions with negative mass at K and K ′, respectively.
These result in a valence band with the Chern number +2,
where the band has 4s character at � and dxy,x2−y2 characters
at the Brillouin zone boundary. Due to the difference between
the nominal valence of an iron atom and a cobalt atom, the

Dirac fermions in the Co(111) monolayer appear in a lower
energy region than those in the Fe(001) monolayer case.

VI. CONCLUSION

Massive Dirac fermions are discovered near the Fermi level
of an electronic band structure of Fe ultrathin film. The Dirac
gap is induced by atomic spin-orbit coupling on the order of
50 meV. The topological gap opening results from a band
inversion between a 3dxy orbital band and a 4s-3dx2−y2 hybrid
orbital band, giving rise to a finite Chern number in a valence
band. Inside the gap, the Hall conductivity (versus chemical
potential) exhibits a plateaulike structure with nearly quantized
values, while orbital magnetization (versus chemical potential)
increases rapidly due to the macroscopic orbital moment
induced by topological chiral edge modes. The magnitude
of the calculated orbital magnetization due to the chiral edge
current is on the same order of the experimental literature
value in [54], being hardly negligible in general. Massive Dirac
fermions in Fe ultrathin film are shown to be robust against
perpendicular inversion symmetry breaking (such as substrates
or electric gate voltages) as well as the multilayer effect. More
importantly, we found in Fe(001)/MgO(001) that the massive
Dirac fermions are nicely separated from other dispersive bulk
bands in energy, which may give a useful hint to explore a
possible “Chern insulator” in transition-metal ferromagnetic
thin film. Considering the richness of the transition metals
with various substrates, we anticipate that Dirac fermion
physics and Chern insulators may be observed experimentally
in transition-metal thin films in the future.
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