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Strong quantum effects in an almost classical antiferromagnet on a kagome lattice
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Two ubiquitous features of frustrated spin systems stand out: massive degeneracy of their ground states and flat,
or dispersionless, excitation branches. In real materials, the former is frequently lifted by secondary interactions or
quantum fluctuations, in favor of an ordered or spin-liquid state, but the latter often survive. We demonstrate that
flat modes may precipitate remarkably strong quantum effects even in the systems that are otherwise written off
as almost entirely classical. The resultant spectral features should be reminiscent of the quasiparticle breakdown
in quantum systems, only here the effect is strongly amplified by the flatness of spin-excitation branches, leading
to the damping that is not vanishingly small even at S �1. We provide a theoretical analysis of the excitation
spectrum of the S = 5/2 iron jarosite to illustrate our findings and to suggest further studies of this and other
frustrated spin systems.
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I. INTRODUCTION

Ever since their inception in the 1950s [1,2], frustrated
spin systems have been a source of new ideas for a wide
variety of problems; unconventional superconductivity [3],
order-by-disorder phenomena [4], and correlated spin-liquid
states [5] are among them. In the core of this fertility is the
near degeneracy between a vast number of spin configurations,
originating from competing interactions that are favoring mu-
tually exclusive ground states. In frustrated magnetic materials
and their models this massive degeneracy is responsible for an
extreme sensitivity to subtle symmetry-breaking effects [6,7],
a strongly amplified role of subleading coupling terms [8], a
hierarchy of emergent energy scales [9], and order-by-disorder
effects by thermal [10] and quantum fluctuations [11–13].

Concomitant of the ground-state degeneracy is another
hallmark feature of the frustrated spin systems: flat excitation
branches at low energies [6,8,11,14–17]. They owe their
origin to both the topological structure of the underlying
lattices that facilitate frustration and the insufficient con-
straint on the manifold of spin configurations. A subclass
of frustrated magnets that exhibits flat modes prominently is
the kagome-lattice antiferromagnets [5,14,18–24]. Under the
influence of subleading interactions, the majority of the known
kagome-lattice antiferromagnets order magnetically with spins
forming noncollinear structures [15,16,25–27] that are often
reminiscent of the classical 120◦ motif on each triangle,
Fig. 1(a). Such a pattern is also emblematic of the geometric
frustration, manifesting a compromise reached by spins locally
to partially satisfy their antiferromagnetic trends.

The following aspect of this picture is crucial. The
noncollinearity of the ordered spin pattern implies strong
nonlinear, anharmonic effects [28]. The role of such effects
in the ground-state selection of frustrated systems has been
recognized since the early days of the field [6,11,29] and,
recently, an accurate, systematic treatment of the quantum
order-by-disorder effect due to them has received significant
attention [12,30].

On the other hand, their role in the excitation spectra of
the kagome-lattice antiferromagnets has been hardly touched
upon. In this work, we demonstrate that the nonlinear terms
can be particularly important in the spectral properties of the

flat-band frustrated magnets, leading to spectacularly strong
quantum effects even in the systems that are assumed almost
classical. The resultant spectral features bear a remarkable
similarity to the quasiparticle breakdown signatures in quan-
tum spin and Bose liquids, such as superfluid 4He [31,32],
which exhibit characteristic termination points and ranges of
energies where single-particle excitations are not well defined
and are dominated instead by broad continua.

It is usually assumed that such drastic effects can only
occur in the systems that are inherently quantum in nature
[28,31,32]. In our case, their origin is in the near resonance
decay of the “normal,” i.e., dispersive, modes into pairs of the
flat-mode excitations facilitated by the nonlinear couplings. As
such, the effect is strongly amplified by the density of states
of the flat modes and is very significant even for large-spin
systems that can otherwise appear as purely classical, resulting
in the damping effect �k/εk ∼1. While in the following
we give a detailed account of the spectral properties of a
specific kagome-lattice antiferromagnet, S = 5/2 Fe jarosite,
encouraging its further investigation by inelastic neutron
scattering, the outlined scenario should be applicable to a wide
variety of other flat-band frustrated spin systems [14,17,33].

The paper is organized as follows. In Sec. II we provide
a general argument for the resonant-like decay to exist in
the frustrated flat-band systems and lay out a qualitative
expectation, which highlights an unusual phenomenon: decays
remain significant even in the S → ∞ limit. In Sec. III we
provide our results for the decay-dominated spectral features
in Fe jarosite. Section IV gives a brief summary. Technical
details are relegated to the Appendix.

II. NONLINEAR COUPLING AND RESONANT-LIKE
DECAYS

Because of the noncollinear structure of the ground-state
spin configuration, the interacting spin excitations in the
kagome-lattice antiferromagnets are described by

Ĥ =
∑
kμ

εμkb
†
μkbμk + 1

2

∑
p+q=k

�
νημ

qp;kb
†
νqb

†
ηpbμk + H.c., (1)
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FIG. 1. (Color online) (a) q = 0 type of spin ordering on the
kagome lattice. (b) Directions of the DM vectors. Arrows on the
bonds show the ordering of Si and Sj in (4).

where the first term accounts for the spin-wave energies while
the second is an outcome of the anharmonic coupling of
spins that results in the mutual transitions between excitation
branches; see Appendix for details. Specifically, it couples
dispersive excitations with the flat modes, allowing for the
resonance-like decay of the former into the pairs of the latter.
We note that this general form of bosonic Hamiltonian (1)
occurs in a variety of contexts, including other frustrated
antiferromagnets with noncollinear order [28,34], as well as
spin liquids [35], valence-bond solids [36], and Bose liquids
[31].

The full extent of the the 1/S-expansion also involves
quartic and source cubic terms; see Refs. [12,28]. Then, the
magnon Green’s function for the branch μ is

G−1
μk(ω) = ω − εμk − �μk(ω), (2)

in which the self-energy �μk(ω) includes all such terms.
However, it is only decay terms in (1) that are responsible
for the resonance-like decay phenomenon discussed in this
work. Given the off-resonance character of the source term, the
Hartree-Fock nature of the quartic terms, and the large-S limit
of the problem, one can safely approximate the self-energy
by its on-shell imaginary part, i.e., by �μk(ω)|ω=εμk ≈−i�μk.
The decay rate �μk in the lowest-order approximation is given
by

�μk = π

2

∑
q,νη

∣∣�νημ

q,k−q;k

∣∣2
δ(εμk − ενq − εηk−q), (3)

where the sum is over the branches of the decay products
and an explicit form of the vertex �

νημ

q,k−q;k is given in
the Appendix. With that, evaluation of the spectral function
Aμk(ω)=−(1/π )ImGμk(ω) is also straightforward.

The anharmonic cubic terms appear in the Hamiltonians
of the noncollinear magnets via bosonization of the terms
that have a form ∼Sz

i S
x(y)
j in the local reference frame of

the ordered moments [28]. Because of that, cubic vertices in
(3) necessarily scale with the spin value as �

νημ

q,p;k ∝√
S. Since

the energies of the decay products scale as ενq ∝ S, it follows
that �μk in (3) must be spin-independent. Contributions to
the decay rate from the higher-order terms should then follow
a natural 1/S expansion with the exception of some special
contours in k space where a log(S) enhancement in (3) is
produced due to Van Hove singularities of the two-magnon
continuum [28,34]. Therefore, one can conclude that for
magnets with S � 1, damping of higher-energy magnetic

excitations due to decays into lower-energy ones must be small
compared to the excitation energy. In other words, generally,
�μk/εμk ∝ 1/S and thus one expects that effects of decays can
be significant only for low-S, quantum magnets [28].

Here we offer a general scenario in which this seemingly
invincible logic fails dramatically. If both decay products
belong to the flat modes with constant energy ε1, a remarkably
stronger effect must be taking place. Namely, in this case
the self-energy of the dispersive modes exhibits an essential
singularity at the energy 2ε1, and, formally, the linewidth �μk
in (3) is infinite at this energy, the effect we refer to as the
resonance-like decay.

In reality, quantum fluctuations of the same origin, i.e.,
coming from the anharmonic cubic terms, also generate
effective further-neighbor J2 spin couplings [11,12], which
necessarily warp the flat mode and thus provide natural
means of regularizing this essential singularity. However,
the resultant fluctuation-induced bandwidth of the flat mode
is now S-independent, δενq ∝O(S0), so that the regularized
resonance-like broadening in the vicinity of 2ε1 must scale
together with the excitation energy: �μk ∝ εμk ∝ S. This
qualitative consideration implies a spectacular quantum effect:
a very strong damping, eliminating spectral weight from
the respective energy range even in large-S magnets. Thus,
frustration provides necessary and sufficient ingredients for
the proliferation of the intrinsically quantum phenomenon of
decays into inherently classical spin systems.

Altogether, we predict that anomalous broadening and a
wipe-out of the spectral weight, associated with the resonant-
like decays, should be common in the spectra of the flat-band
frustrated systems. In practice, we argue that the quasiparticle
breakdown with characteristic termination points and ranges
of energies dominated by broad continua must be present in
the S =5/2 kagome lattice Fe jarosite.

III. Fe JAROSITE

In realistic kagome-lattice antiferromagnets, the degen-
eracy within the manifold of classical 120◦ states is, most
commonly, lifted by the symmetry-breaking Dzyaloshinskii-
Moriya (DM) terms [25,26,37], yielding the Hamiltonian
that closely describes Fe jarosite [15,16] and other systems
[27,38,39]:

Ĥ =
∑
〈ij〉

(JSi · Sj + D · Si × Sj ), (4)

where summation is over the nearest-neighbor bonds and D=
(0,0, ∓ Dz) on the up/down triangles with the order of the
site indices in (4) shown in Fig. 1(b). The out-of-plane DM
interaction lifts the degeneracy and selects the q=0 ground
state, i.e., a “ferro” 120◦ pattern, Fig. 1(a). A small in-plane
DM term [16] is neglected for simplicity.

Given the large spin value, S =5/2, we estimate that the
ordered moment should be nearly 90% of its classical value
[40]. Similarly, the results of the earlier neutron scattering in
Fe jarosite [15] have been interpreted as fully describable by
the linear spin-wave theory [16], a construction whose validity
we question next.

Our Fig. 2(a) shows the linear spin-wave theory fits of
the neutron-scattering data [15] using model (4) where three
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FIG. 2. (Color online) (a) Neutron-scattering data from [15] along the �XY� path (inset). Lines are linear spin-wave theory fits of the
dispersive modes (dashed) using (4), and the flat mode (solid) with J2 added to (4), parameters are as shown. Lower shaded area highlights the
flat band, upper is the set of energies of two flat modes. Arrows imply a decay process into two flat modes. (b) Lower curve with the shading
is the on-shell �k from (3). Dashed line is the linear spin-wave theory energy of the gapless dispersive mode from (a), shaded area shows the
half-width boundaries of a Lorentzian peak, εk ± �k.

distinct excitations branches are easy to identify. The DM
anisotropy shifts the flat mode from zero energy to ε1k ≈
JS

√
6dM , where dM =√

3Dz/J ; see Appendix A. The flat
mode is also not entirely flat. This was interpreted [16] as a sign
of a phenomenological next-nearest-neighbor superexchange
J2, ignoring its possible quantum origin [11,12]. Since in the
following we do not attempt a fully self-consistent calculation,
the same interpretation suffices, with an explicit expression for
the dispersive flat mode given in the Appendix. Aside from this
slight dichotomy with the origin of the flat-mode dispersion,
the linear spin-wave theory seems to provide a spectacular
account of the data without the need of any quantum effects.

However, we point out that the spectral weight is conspicu-
ously missing from experimental data in the range of energies
15–19 meV in Fig. 2(a); i.e., no signal has been detected there.
While this feature has not been emphasized in Ref. [15] and
one may argue that the collected experimental data points were
simply too sparse, the missing band is strongly implied by our
discussion, as it is exactly in the range of twice the energy of
the flat mode, 2ε1k; see Fig. 2(a).

In Fig. 2(b) we present the results of the on-shell calculation
of �k for the gapless dispersive mode using (3) with the flat-
mode dispersion induced by J2 for the same parameters as in
Fig. 2(a); see the Appendix for details. As we discuss later, the
dynamical structure factor allows us to view modes selectively
in different parts of the k space and in different polarizations
[40]. The results for the damping are combined with the energy
εk of the mode with the shaded area representing half-width
boundaries of a Lorentzian peak, εk ± �k. We have also ver-
ified [40] that the effect of renormalization on the real part of
the spectrum is minor, in agreement with approximation in (3).

Our Fig. 2(b) demonstrates that the spin-wave excitation
is well defined until a sharp threshold at about 2εmin

1k . Above
that energy, the broadening reaches about one-third of the
bandwidth signifying an overdamped spectrum, consistent
with the missing spectral weight in the experimental data.
The sharp transition implies a threshold singularity and other
spectral features that are characteristic to the quasiparticle
breakdown phenomenon in quantum Bose liquids and S =1/2

spin liquids [31,32]. There is a partial reconstruction of the
spectrum at the energies above 2εmax

1k where decays are no
more resonant-like as indicated in the figure, i.e., occurring
due to other, nonresonant channels, but still providing a sizable
broadening to the spectrum.

The nonresonant decays result in a typical broadening
�∼0.25J , in accord with similar results for the triangular
lattice [34,41] and other frustrated spin systems [28]. By
contrast, the broadening in the resonant-decay region in
Fig. 2(b) reaches �≈1.7J , an effect larger by a factor exceed-
ing 2S for the considered S =5/2 model of Fe jarosite. This is
in a remarkable agreement with our qualitative discussion on
the scaling of the resonance-like decay rate with S, provided
after Eq. (3) above.

We note that the broadening on the top of the band in
the nonresonant region translates to less than 1 meV, below
the experimental resolution of Ref. [15] in which all the data
were described as resolution limited. The current resolution of
the neutron-scattering experiments is easily an order of magni-
tude higher. We also point out that our consideration is aimed at
the strong qualitative features of the spectrum of a repre-
sentative flat-band frustrated spin system, not on the minor
quantitative details. As such, small discrepancies with some
of the data may occur due to, e.g., neglect of the in-plane DM
terms, but should be considered as secondary.

Dynamical structure factor

To demonstrate the effect of decays, we performed a cal-
culation of the magnon spectral functions, Aνq(ω), quantities
directly related to the spin-spin dynamical correlation function
via

Sαα(q,ω) ∝
∫

dt eiωt
〈
Sα

q (t)Sα
−q

〉 ∝
∑

ν

F α
νqAνq(ω). (5)

Here, the kinematic form factors Fα
νq allow us to “filter out”

spectral contributions of some of the modes to the in-plane
and the out-of plane components of S(q,ω) in the portions of
the q space while highlighting the other ones: a phenomenon
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FIG. 3. (Color online) (a) A 3D
plot of the magnon dispersion for Fe
jarosite within the linear spin-wave the-
ory with planes of the cuts in (b) and (e).
(b)–(f) Intensity maps of Aq(ω) in units
of (2SJ )−1 vs q throughout the Brillouin
zone for a set of energies. Intensity scale
is as described in text. Dashed black
lines are peak positions from the linear
spin-wave theory.

akin to the extinction of the Bragg peaks in the non-Bravias
lattices [40]. Using this feature, we concentrate only on one of
the dispersive modes.

A dramatic view on the drastic transformations of the
spectrum can be observed in constant-energy cuts of the
dynamical structure factor in the range of energies affected by
the resonance-like decays. In Fig. 3, we present intensity maps
of such constant-energy cuts for Aνq(ω), a close proxy of the
dynamical structure factor S(q,ω), for the dispersive magnon
mode for the energies ranging from 11.7 meV to 20 meV. The
upper cutoff of the spectral function is chosen to correspond
to the maximal height of the peaks in the nonresonant decay
region in Fig. 2(b) and translates into the broadening �k ≈
0.73 meV for the Fe-jarosite values of S and J , which should
be resolvable by the modern neutron-scattering measurements.

The first of the cuts is below the threshold energy 2εmin
1k

and shows a very close accord of the sharp intensity peaks in
Aνq(ω) with the expectations from the linear, noninteracting
spin-wave theory, shown by the dashed lines. The three
subsequent cuts, Figs. 3(c)–3(e), are from within the resonant-
decay band, 2εmin

1k <ω<2εmax
1k , where one can observe strong

deviation from such expectations, massive redistribution of
the spectral weight into different regions of the q space, and
a multitude of intriguing “shadow” features, reflecting Van
Hove singularities in the two-particle density of states of the
decay products [41]. The last cut, Fig. 3(f), is nominally above
the top of the magnon band and should be expected to show
zero intensity everywhere. Instead, it is also affected by the
spectral weight redistribution and retains some of the features
of the other cuts. Altogether, Fig. 2(b) and Fig. 3 offer a
comprehensive theoretical insight into the nontrivial features
of the dynamical structure factor of a flat-band kagome-lattice
antiferromagnet, which originate from the decays of magnetic
excitations facilitated by the nonlinear couplings.

IV. SUMMARY

To summarize, we have outlined a general scenario for
drastic transformations in the spectra of frustrated magnets that

feature flat modes and have substantiated it by a consideration
of the spin-spin structure factor of the large-S kagome-lattice
system Fe jarosite. Our study calls for further studies in these
systems.

We would also like to comment that recently, the broad fea-
tures in the spectra of magnetic systems have become a direct
sign of fractionalized excitations of prospective spin-liquid
phases [42–45]. In this work, we have provided a case study
of an excitation spectrum of a strongly frustrated but almost
classical and well-ordered kagome-lattice antiferromagnet, for
which we have demonstrated extremely strong broadening
and even a complete and spectacular wipe-out of a part of
its spectrum. Here, the broad features are due to flat or weakly
dispersive modes, a hallmark feature of a variety of frustrated
spin systems, and due to a noncollinearity of spins in the
ground state, again an outcome of competing interactions.
Thus, this is also a cautionary tale, because the same reasons
that may lead to the spin-liquid behavior may also favor strong
coupling and decays among quasiparticles.
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APPENDIX: TECHNICAL DETAILS

1. Spin-wave theory

Following the approach outlined in Refs. [8,12], one can
diagonalize the harmonic part of the Hamiltonian in (4) to
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obtain the spin-wave energies

ε1k = 2JS
√

3dM (1 + dM )/2, (A1)

for the “flat mode,” and

ε2(3)k = 2JS
√

1+dM

√
1+dM−γk−dM (1 ±

√
1 + 8γk)/4,

(A2)

for the dispersive modes, dM =√
3Dz/J here.

Corrections due to effective J2 interactions can be taken
into account perturbatively to yield [40] the dispersion of the
“flat mode,”

ε1k = 2JS

√
3(1 + dM )/2 + j2

(
1 − λ

(1)
1,k/2

)
×

√
dM + j2

(
1 + λ

(1)
1,k

) + O
(
j 2

2

)
, (A3)

where j2 = J2/J and

λ
(1)
1,k = [f2(k) − f1(k)]/(1 − γk),

with f1(k) = c′
1c1 + c′

2c2 + c′
3c3,

f2(k) = c′
1c2c3 + c′

2c1c3 + c′
3c1c2, (A4)

with the shorthand notations cn = cos(qn), c′
1 =cos(q3+q2),

c′
2 =cos(q3−q1), c′

3 =cos(q1+q2), where qn =k · δn/2, and
δn are the primitive vectors of the kagome lattice.

The diagonalization of the harmonic part of (4) implies a
two-step procedure [8,12] with the unitary transformation of
the original Holstein-Primakoff bosons

aαk =
∑

ν

wν,α(k) dνk, (A5)

followed by the usual Bogolyubov transformation for each
of the individual species of d boson; see Ref. [12] for
details and for the explicit form of the eigenvectors wν =
(wν,1(k),wν,2(k),wν,3(k)).

2. Cubic terms

Due to noncollinear 120◦ spin structure, cubic anharmonic
coupling of the spin waves occurs [12,28]. It originates from
the Sx

i Sz
j terms in (4), written in the local reference frame [12].

In the bosonic representation they yield

Ĥ3 = J (1 + dM/3)

√
S

2

∑
i,j

sin θij (a†
i a

†
j aj + H.c.), (A6)

where θij = ±120◦ is the angle between two neighboring
spins.

Assuming the spins in the q=0 state, Fig. 1(a), and using
the unitary and Bogolyubov transformations mentioned above
gives the “source,” b†b†b†, and the “decay,” b†b†b, terms; see
Ref. [12] where the effects of the former were discussed. The
decay part of the Hamiltonian is

Ĥ3 = 1

2!

1√
N

∑
k+q=p

�
νμη

qk;p b†νqb
†
μkbηp + H.c., (A7)

with the vertex

�
νμη

qk;p = −J

√
3S

2
�̃

νμη

qk;p, (A8)

which is explicitly ∝√
S. The symmetrized dimensionless

vertex �̃
νμη

qk;p is given by

�̃
νμη

qk;p = F
νμη

qk;p(uνq + vνq)(uμkuηp + vμkvηp)

+F
μην

kpq (uμk + vμk)(uνpuηq + vνpvηq)

+F
ηνμ

pqk (uηp + vηp)(uνqvμk + vνquμk), (A9)

where uνk and vνk are the Bogolyubov parameters and the
amplitudes F

νμη

qkp are given by

F
νμη

qkp =
∑
αβ

εαβγ cos(qβα) wν,α(q)wμ,β(k)wη,β(p), (A10)

where εαβγ is the Levi-Civita antisymmetric tensor, and
shorthand notations are qβα = qρβα and ρβα = ρβ − ρα; here
ρα are the atom’s positions within the unit cell.

3. Self-energy, spectral function, and structure factor

Using the standard diagrammatic rules for (1), we obtain
the second-order decay self-energy

�μk(ω) = 1

2

∑
q,νη

∣∣�νημ

q,k−q;k

∣∣2

ω − ενq − εηk−q + iδ
, (A11)

which contributes to the 1/S correction to the magnon energy.
The magnon Green’s function for the branch μ is given by (2).
Since only the decay terms are responsible for the resonance-
like decay phenomena, one can approximate the self-energy
by its on-shell imaginary part; i.e.,

�μk(ω) ≈ iIm�μk(εμk) = −i�μk, (A12)

which is given by (3). Clearly, the dispersion of the flat mode
in (A3) is crucial for the decays into two of them, as otherwise
this channel would produce essential singularity in (A11) and
in �μk. With that, evaluation of the spectral function Aμk(ω) =
−(1/π )ImGμk(ω) can be performed numerically.

The diagonal components of the dynamical structure
factor, or the spin-spin dynamical correlation function, which
contribute directly to the inelastic neutron-scattering cross
section, are given by

Sα0α0 (q,ω) =
∫ ∞

−∞

dt

2π
eiωt

〈
Sα0

q (t)Sα0−q

〉
, (A13)

where α0 refers to the laboratory frame {x0,y0,z0}. Given the
coplanar spin configuration, it is convenient to separate the
in-plane and out-of-plane components of S tot(q,ω). Assuming
equal contribution of all three α0 components to the cross
section, using the spin-wave mapping of spins on bosons
with the two-step transformation described above, after some
algebra, one can obtain the leading contributions to the
structure factor as directly related to the spectral function

S in(out)(q,ω) =
∑

ν

F in(out)
νq Aνq(ω), (A14)

where F
in(out)
νq are the kinematic form factors. It is important

to note that the kinematic form factors are modulated in
the q space and are suppressed in one of the Brillouin
zones while they are maximal in the others [40]. This effect
is characteristic to the non-Bravias lattices and is similar
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to the effect of extinction of some of the Bragg peaks
in them. Because of that, one may be able to highlight
spectral contribution of one of the magnon branches while
“filtering out” the others by selecting a particular component
of the structure factor in a particular Brillouin zone. Our

analysis demonstrates that the out-of plane component of
S(q,ω) should be totally dominated by only one of the
dispersive modes (gapless) in one of the three distinct Brillouin
zones. This feature can be useful for future neutron-scattering
experiments.
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