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In-plane sixfold symmetry for α-Fe(110) on GaN{0001}: Measurement of the cubic anisotropy
constant K3 of Fe
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We investigate the magnetic anisotropy of epitaxial Fe films on GaN(0001) and GaN(0001̄). Due to the
particular orientation relationship between Fe and GaN{0001}, the leading term proportional to K1 does not
contribute to the magnetic anisotropy, allowing us to determine K3 with unprecedented accuracy. Using two
experimental techniques, we obtain values for K3 of 4.7–9.2 × 105 erg/cm3, i.e., comparable to and even larger
than K1.
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The magnetocrystalline anisotropy of a ferromagnet is
determined by its crystal structure and is thus an inherent
source of magnetic anisotropy [1,2]. It is the key to an under-
standing of ferromagnetism itself and has been the subject of
innumerable studies but is still a problem far from being solved
completely [3]. Consequently, magnetocrystalline anisotropy
is still actively investigated [4,5] even for apparently well-
understood materials such as Fe [6–8].

For cubic crystals such as Fe, the magnetocrystalline
anisotropy energy can be expressed in terms of the direction
cosines α1, α2, and α3 of the magnetization vector with
respect to the three cube edges. Considering the total magnetic
anisotropy energy ε to be composed of the magnetocrystalline
energy εA, the Zeeman energy εH , and the demagnetizing
energy εD , we can write up to third order
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where K1, K2, and K3 are the cubic anisotropy constants [9],
θ is the polar angle between the saturation magnetization MS

and the out-of-plane direction, and φ is the azimuthal angle
between the projection of MS and the in-plane easy axis.
φ0 is the in-plane azimuthal angle between the direction of
the external magnetic field H and the easy axis. The various
angles are shown in the schematic coordinate system depicted
in Fig. 1(a). Equation (1) neglects terms related to uniaxial
terms mainly originating from interface and/or surface effects.
For thin films such as investigated in the present work, the
magnetization is considered to lie in-plane, i.e., θ = π/2.

Values for any of the anisotropy constants have been derived
exclusively from experiments. In fact, the magnetocrystalline
anisotropy has turned out to be virtually inaccessible to
first-principles calculations. The main reason for this fact is
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the magnitude of the magnetocrystalline anisotropy energy
of only a few micro–electron volts per atom, the resolution
of which requires an accuracy unattainable even with today’s
computational resources [3]. Experimentally, however, it is
rather straightforward to determine the leading term of the
expansion shown in Eq. (1), and reliable values of about
4.7 × 105 erg/cm3 for K1 of Fe have been measured already
in early studies [10,11].

The determination of the higher-order anisotropy constants
K2 and K3 is far more difficult, since their prefactors are
of sixth and eighth order, respectively, and decrease corre-
spondingly in magnitude. The fourth-order term proportional
to K1 is thus expected to dominate the magnetic anisotropy
regardless of the magnitude of K2 and K3, and the accu-
racy of the measurement is insufficient to detect the small
deviations introduced by the higher-order terms [12]. Due to
this difficulty, and the belief that the higher-order anisotropy
constants will be smaller than K1 in any case, it is frequently
assumed that a single anisotropy constant suffices to describe
the anisotropy energy with a good accuracy [13].

The difficulty of experimentally determining the higher-
order anisotropy constants is illustrated in Table I for the major
low-index orientations of Fe. For single-crystal Fe(001), for
example, the magnetocrystalline anisotropy arises from the
terms proportional to K1 and K3 (denoted “×”), while the term
proportional to K2 does not depend on the azimuthal angle φ.
In other words, it is isotropic (represented by “◦”) and will
thus not contribute to the magnetic anisotropy. Obviously, Fe
films with this orientation will not be suitable for measuring
K3 because the anisotropy will be governed by the leading
term proportional to K1. The sensitivity for these higher-order
constants is even worse for single-crystal Fe(101) films, for
which all terms contribute to the magnetic anisotropy.

For single-crystal Fe(111), however, we encounter a rad-
ically different situation. In this case, the only anisotropic
term is the one proportional to K2, and careful experiments
(allowing for the presence of a uniaxial anisotropy due to
interface effects) should be able to directly measure the value
of K2. In fact, several groups have recognized this opportunity
and performed experiments aimed for a determination of
K2 on Fe(111) films [14,15]. Early experiments on bulk Fe
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FIG. 1. (Color online) (a) Schematic coordinate system showing
the various angles appearing in Eq. (1). θ is the polar angle of MS

with respect to the out-of-plane axis (i.e., GaN[0001]). The external
field (H ) is applied parallel to the sample surface. φ0 is the azimuthal
angle between the direction of H and the in-plane easy axis (i.e.,
GaN[11̄00]). φ is the azimuthal angle between the projection of MS

on the sample surface and the in-plane easy axis. (b–d) Schematic
of the (b) Pitsch-Schrader, (c) Burgers, and (d) cube-on-hexagon
orientation relationships of Fe (rectangle or square) on GaN{0001}
(hexagon). The difference in lattice constants has been exaggerated
for clarity. The solid lines in (b) and (c) show the angular relation
of the unit cells. The dashed lines in (c) enhance the visibility of the
domains rotated by ±5.26◦.

were hampered by the dominance of K1, and one could only
state with certainty that K2 is in the range of (0 ± 5) × 104

erg/cm3. Recently, researchers using the unique configuration
encountered for Fe(111) films have been able to improve
the accuracy by orders of magnitude, resulting in a value of
K2 = (2.2 ± 0.1) × 104 erg/cm3 [6,7].

There is no analogous situation for the determination of
K3; i.e., no crystal orientation exists for which this term would
be the only one being anisotropic. In the present work, we
use epitaxial Fe films on GaN{0001}, which exhibit crys-
tallographic orientation relationships for which the K1 term
does not contribute to the magnetocrystalline anisotropy (cf.
Table I). In fact, the K1 term cancels due to the superposition of
the multiple domains of the respective orientation relationship.
In other words, only the K2 and K3 terms exhibit an azimuthal
angular dependence, and the magnetic anisotropy measured
is thus solely due to these higher-order terms. This materials
system thus offers the unique opportunity to determine the
value of K3 of Fe with a high accuracy.

The structures investigated were grown in a custom-built
molecular beam epitaxy system equipped with solid-source
effusion cells for Ga and Fe. Active nitrogen was provided by a
radiofrequency N2 plasma source. Nucleation and growth were
monitored in situ by reflection high-energy electron diffraction
(RHEED). A 300-nm GaN layer was grown by molecular
beam epitaxy on GaN(0001) templates and on Al2O3(0001)

TABLE I. Azimuthal dependence of the first three terms of εA as
given by Eq. (1) for the major low-index orientations of Fe and the
multiple-domain orientation relationships obtained in the epitaxial
growth of Fe on GaN{0001}. If the term depends on φ, it is denoted
“×”; otherwise, “◦.”

Orientation K1 K2 K3

(001) × ◦ ×
(101) × × ×
(111) ◦ × ◦
Cube-on-hexagon ◦ ◦ ◦
Pitsch-Schrader ◦ × ×
Burgers ◦ × ×

substrates to obtain Ga- and N-polar GaN surfaces, respec-
tively. Directly after growth of the GaN layer, excess Ga was
desorbed prior to cooling down to 500◦C (350◦C) for the
Ga-polar (N-polar) GaN surface on which Fe deposition was
initiated. Fe growth then occurred at the selected temperature
at a rate of 0.12 nm/min, keeping the chamber pressure in the
low 10−9 mb range until a final thickness of 30 nm was reached.
Electron backscatter diffraction was employed ex situ to obtain
the crystal structure and orientational distribution of the Fe
film in a direct and unambiguous way. Electron backscatter
diffraction maps visualize the domain structure of the Fe film
on a nanometer spatial scale with an angular resolution of
better than 1◦ [16]. The orientation relationship between Fe
and GaN was assessed by high-resolution x-ray diffractometry
(HRXRD) [16]. HRXRD longitudinal �-2� scans were
recorded with a Ge analyzer crystal with a dynamic range
of at least five orders of magnitude, showing no reflections
pertinent to a secondary phase, while azimuthal � scans
were taken with an open detector. The in-plane orientation
distribution was measured with an angular resolution of
0.01◦. The out-of-plane magnetization was measured at 300 K
for magnetic fields between ±50 kOe in a superconducting
quantum interference device magnetometer (SQUID). In-
plane hysteresis loops were recorded at room temperature for
magnetic fields between ±20 kOe by vibrating sample mag-
netometry (VSM). All data presented in hysteresis loops were
corrected for the diamagnetic background of the substrate.
The in-plane magnetic anisotropy of the films was assessed by
both rotational magnetization curves (RMCs) obtained from
the angular dependence of magnetization measured by VSM
and ferromagnetic resonance (FMR).

The lattice mismatch between Fe and GaN(0001) is −10%
and −27% along the GaN[112̄0] and GaN[11̄00] directions,
respectively. As a consequence, strain relaxation occurs
instantaneously and is completed within the first monolayers
of Fe deposition. This fact is evidenced experimentally by
RHEED and theoretically supported by density-functional
theory calculations (see Ref. [16]). Consequently, thick (tens
of nanometers) films do not exhibit any net strain as evidenced
by HRXRD (see Ref. [16]) and exhibit bulk-like properties.
The orientation relationships of α-Fe films on GaN{0001}
were systematically studied in our previous work [16–19] and
are schematically summarized in Fig. 1. Fe on GaN(0001)
[Fig. 1(a)] exhibits a pure Pitsch-Schrader orientation
relationship formed by three symmetry-equivalent domains
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with Fe(101)〈010〉‖GaN(0001)〈112̄0〉 rotated by 120◦ relative
to each other. In contrast, for Fe on GaN(0001̄), a coexistence
of the Burgers [Fig. 1(b)] and “cube-on-hexagon” [Fig. 1(c)]
orientation relationships is observed. The former consists
of six symmetry-equivalent domains each produced from a
single Pitsch-Schrader domain by a ±5.26◦ rotation around
the Fe[101] axis (which is the angle between the 〈010〉 and the
〈111̄〉 and 〈11̄1̄〉 axes), the latter of three symmetry-equivalent
domains with Fe(001)〈010〉‖GaN(0001)〈112̄0〉 rotated by
120◦ relative to each other. Each of the symmetry-equivalent
domains for all of these orientation relationships manifests
itself by a distinct reflection in HRXRD azimuthal � scans.
The equal intensity of these reflections directly shows that
these symmetry-equivalent domains have identical area
fractions on a macroscopic scale.

Figure 2 shows normalized in-plane hysteresis loops for
Fe films grown on GaN(0001) [Fig. 2(a)] and GaN(0001̄)
[Fig. 2(b)] surfaces measured by VSM with the magnetic
field parallel and perpendicular to the GaN[11̄00] direction at
room temperature. The saturation magnetization MS is found
to be 1340 and 1390 emu/cm3 for Fe films on GaN(0001)
and GaN(0001̄), respectively. These values are consistent with
the average value of 1350 emu/cm3 obtained in Ref. [17]
and are lower than the saturation magnetization of bulk Fe
only because the contribution of the FeOx layer to the total
thickness of the film was not taken into account [19]. For
either of these samples, the hysteresis loops taken along
orthogonal directions are virtually identical, indicating a very
small in-plane magnetic anisotropy. This finding is confirmed
by the azimuthal dependence of the coercivities as shown in
Fig. 2(c). The nearly isotropic behavior originates from the
superposition of the multiple domains of the respective orienta-
tion relationships. Out-of-plane measurements by SQUID (not
shown here) reveal a pure hard axis for both samples, with no
sign of an admixture of the in-plane easy axes. It is thus justified
to assume an infinitely strong demagnetization field of 4πMS

which forces the magnetization to lie strictly in the film plane.
To investigate the magnetic anisotropy of these films with

a higher sensitivity, the Fe films were investigated by in-plane
RMC obtained by VSM. For these RMC experiments, Fe films
on GaN(0001) [GaN(0001̄)] were first magnetized in-plane at
a field of 20 kOe for 5 s, followed by a decrease in the field
to 200 Oe (100 Oe) to discard the irreversible part of the
magnetization loop. We then measured the projection of MS

in the field direction with the sample slowly rotated around its
out-of-plane axis (i. e., GaN[0001]) [20,21]. Figure 3 shows
the resulting RMCs as a function of φ0. Both samples are
seen to exhibit a clear sixfold in-plane anisotropy, with the in-
plane easy and hard axes along the GaN〈11̄00〉 and GaN〈112̄0〉
directions, respectively.

For a quantitative understanding of this result, we determine
the magnetocrystalline anisotropy expected for our samples
with the help of Eq. (1). We start from a single Pitsch-Schrader
domain with Fe(101)〈010〉‖GaN(0001)〈112̄0〉 and obtain, in
agreement with Ref. [9],

εA = 1
32K1(7 + 4 cos 2φ − 3 cos 4φ) + 1

128K2(2 + 2 cos 2φ

− 2 cos 4φ − cos 6φ) + 1
2048K3(123 + 88 cos 2φ

− 68 cos 4φ − 24 cos 6φ + 9 cos 8φ). (2)

FIG. 2. (Color online) In-plane magnetic hysteresis loops of Fe
films on (a) GaN(0001) and (b) GaN(0001̄) obtained at room
temperature with the magnetic field (H ) parallel (open black squares)
and perpendicular [filled (red) circles] to the GaN[11̄00] direction.
(c) Semipolar plot of in-plane azimuthal dependence of coercivities
Hc for Fe films on GaN(0001) [filled (blue) squares] and GaN(0001̄)
(open black circles).

In our Fe/GaN(0001) samples, we have three Pitsch-Schrader
domains. The general expression of the total anisotropy energy
is an area-weighted mean of the three domains, which is
used afterwards for the analyis of the experimental results.
The corresponding expressions, however, are too bulky to be
reproduced here and do not aid the understanding of the sixfold
symmetry shown in Fig. 3. This understanding can be gained
by assuming that the area fraction of each domain is precisely
1/3, for which we have to calculate simply [εA(φ) + εA(φ +
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FIG. 3. (Color online) In-plane normalized RMCs of Fe films on
(a) GaN(0001) and (b) GaN(0001̄) obtained at room temperature with
the magnetic field (H ) parallel to the films’ surfaces. Solid lines are
fits as explained in the text.

120◦) + εA(φ + 240◦)]/3. The average anisotropy energy is
then given by

ε0001
A = εPS

A = 7
32K1 + 1

64K2 + 123
2048K3

− 1
256 (2K2 + 3K3) cos 6φ, (3)

in which the K1 term does not depend on the azimuthal angle
φ. In addition, the only remaining dependence on φ results in
a sixfold symmetry.

We proceed in the same way for Fe/GaN(0001̄). The
average anisotropy energy of the three cube-on-hexagon
domains εCoH

A = 1
8K1 + 3

128K3 is independent of the in-plane
azimuthal angle. The six Burgers domains can be considered
to consist of two sets of PS domains rotated in-plane by
±5.26◦, resulting in anisotropy energies εPS

A (φ + 5.26◦) and
εPS
A (φ − 5.26◦). Thus, the anisotropy energy, averaged over

the six Burgers and the three cube-on-hexagon domains, is
given by

ε0001̄
A = 3

16K1 + 1
96K2 + 49

1024K3

− 1
384 cos(31.56◦)(2K2 + 3K3) cos 6φ. (4)

As for the case of Fe/GaN(0001), the K1 term does not depend
on φ. In other words, the only contributions to the in-plane
magnetic anisotropy of Fe layers on both GaN(0001) and
GaN(0001̄) stem from K2 and K3. Note that this statement
also applies to the uniaxial anisotropy originating from an
anisotropic interface between Fe and GaN(0001) [8], which
drops out as well when averaging over the multiple domains.

For a fit of the in-plane RMC, we assume that the
magnetization reversal proceeds by coherent rotation. The
equilibrium direction of magnetization is determined by the

local minimum of the magnetic free energy ε, which is
obtained by setting ∂ε/∂φ = 0 and ∂2ε/∂φ2 > 0:

sin(6φ) − H

6A3/Ms

sin(φ − φ0) = 0, (5)

cos(6φ) − H

36A3/Ms

cos(φ − φ0) > 0, (6)

with the effective anisotropy constant A3 = − 1
256 (2K2 + 3K3)

for Fe films on GaN(0001) and A3 = − 1
384 cos(31.56◦)(2K2 +

3K3) for Fe films on GaN(0001̄). Fitting the experimental data
with the simplified expressions deduced with the assumption
of an exactly equal area fraction yields a value of A3 equal
to −1.06 × 104 and −6.23 × 103 erg/cm3 for Fe films on
GaN(0001) and GaN(0001̄), respectively.

The experimental data, particular those for the Fe film on
GaN(0001) [Fig. 3(a)], do not exhibit a perfect sinusodial
shape but are modulated with an amplitude depending on φ0.
To account for this observation, we allow the area fractions to
be distributed unequally and thus do not use Eqs. (5) and (6),
but the analogous full expression derived from Eq. (2) and a
corresponding one for Fe on GaN(0001̄). For the data shown
in Fig. 3(a), the best fit was obtained for area fractions of
0.339, 0.331, and 0.330, a very slight deviation from an equal
distribution and consistent with our HRXRD results within the
error bar of these experiments. The best fit for the data shown
in Fig. 3(b) returned equal area fractions of 0.333. The values
of A3 obtained by these fits are identical to those determined
by the simplified expressions, i.e., −1.06 × 104 and −6.23 ×
103 erg/cm3 for Fe films on GaN(0001) and GaN(0001̄),
respectively. Using these values and that of 2.2 × 104 erg/cm3

for K2 determined in [6], we obtain almost-identical values
for K3 for Fe films on GaN(0001) and GaN(0001̄), namely,
9.19 × 105 and 9.21 × 105 erg/cm3, respectively.

K3 as determined from these experiments is unexpectedly
large, namely, almost 50 times larger than K2 and twice as
large as K1. This result gives rise to the question whether
these values could be an artifact produced by the unequal area
fraction of the multiple domains mentioned above. However,
we have used the full expressions for the magnetocrystalline
energy, and the term proportional to K1 was thus fully taken
into account. The impact of an unequal area fraction on the in-
plane RMC is shown in Figs. 4(a)–4(c). Evidently, even a slight
deviation from an equal partitioning results in a pronounced
change in the curves. Moreover, Figs. 4(d)–4(g) show that
for significantly smaller values of K3, the RMC would be
essentially isotropic. To obtain the sixfold symmetry and to
reproduce the amplitude of the modulation observed in the
experiment, K3 needs to be of the same magnitude as obtained
from the fits in Fig. 3.

To critically examine these data, we investigate the sam-
ples by an independent technique: FMR spectroscopy. We
measured the magnetic anisotropy of the samples by FMR
at a frequency ω0 of 9.0 GHz. An external field was applied
in-plane in different directions at room temperature. For Fe
films on GaN(0001), the azimuthal angle dependence of the
FMR spectra and resonance field Hr are shown in Fig. 5(a).
The resonance fields with the magnetic field parallel (H ‖

r )
and perpendicular (H⊥

r ) to the easy axis are 400 and 705
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FIG. 4. (Color online) Calculated in-plane RMCs of Fe films on
GaN(0001) with K1 = 4.7 × 105 and K2 = 2.2 × 104 erg/cm3. (a–c)
K3 was assumed to have a value of 9 × 105 erg/cm3, and the area
fractions were changed as indicated. (d–g) We have kept the area
fraction constant and, instead, varied K3. For all curves, the magnetic
field of 200 Oe was assumed to be parallel to the surfaces.

Oe, respectively, as shown in Fig. 5(b). Theoretically, the
resonance frequency ω0 for a planar system is given by
(ω0/γ )2 = BH with the gyromagnetic ratio γ [22]. Here, we
assume that γ and the value of B are independent of the
in-plane azimuthal angle φ, which implies that the value of the
static field H is independent of φ as well. Within the concept
of the anisotropy energy in terms of an equivalent magnetic
field [22], the in-plane anisotropy field is defined by HA =
M−1

s ∂2ε0001
A /∂φ2 [23,24]. Combining this result with Eq. (3),

we obtain HA = −36A3M
−1
s cos 6φ. Setting φ = 0◦ for H

‖
A

and φ = 90◦ for H⊥
A , we obtain 36A3/Ms = (H ‖

r − H⊥
r )/2

with H = H
‖
A + H

‖
r = H⊥

A + H⊥
r . From the fit depicted in

Fig. 5(b), A3 = −5.7 × 103 erg/cm3.
In the same way, Figs. 6(a) and 6(b) show the FMR spectra

of Fe films on GaN(0001̄) and the resonance fields as a function
of the azimuthal angle φ, respectively. From the fit to the
latter, we obtain H

‖
r = 470 Oe and H⊥

r = 690 Oe, and thus
A3 = −4.2 × 103 erg/cm3.

Using these values for A3 and K2 = 2.2 × 104 erg/cm3 [6],
we obtain a K3 of 4.70 × 105 erg/cm3 for Fe films on

FIG. 5. (Color online) (a) In-plane angular dependence of the
first derivative of FMR spectra obtained at room temperature with the
magnetic field parallel to the surface for the Fe film on GaN(0001).
(b) Experimental resonance field Hr (φ0) [filled (red) circles] and the
fit by a sine [solid (blue) line].

FIG. 6. (Color online) (a) In-plane angular dependence of the
first derivative of FMR spectra obtained at room temperature with the
magnetic field parallel to the surface for the Fe film on GaN(0001̄).
(b) Experimental resonance field Hr (φ0) [filled (red) circles] and the
fit by a sine [solid (blue) line].
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GaN(0001) and 6.15 × 105 erg/cm3 by for Fe films on
GaN(0001̄). These values are slightly smaller than those
obtained by RMC. This deviation is no surprise since RMC
is quasistatic, while FMR is a dynamic technique for which
our analysis holds only approximately. Most important,
however, is the fact that the values obtained by FMR are
of the same order of magnitude as those determined by
RMC. The fact that two entirely dissimilar experimental
techniques arrive at essentially the same result confirms that
the anisotropy constant K3 for Fe is indeed unexpectedly
large, namely, at least as large as K1. For future studies of
the magnetic anisotropy of Fe films, the term proportional
to K3 therefore cannot, in general, be neglected. Besides
this insight, it would be most desirable to understand the

physical reason for the unexpectedly large values of K3 for
Fe. To attain this understanding, we need to identify the
mechanisms determining the magnitude of the higher-order
anisotropy constants of the metallic ferromagnets Fe, Ni,
and Co.
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