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Nonlocal damping of helimagnets in one-dimensional interacting electron systems
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We investigate the magnetization relaxation of a one-dimensional helimagnetic system coupled to interacting
itinerant electrons. The relaxation is assumed to result from the emission of plasmons, the elementary excitations
of the one-dimensional interacting electron system, caused by slow changes of the magnetization profile. This
dissipation mechanism leads to a highly nonlocal form of magnetization damping that is strongly dependent on
the electron-electron interaction. Forward-scattering processes lead to a spatially constant damping kernel, while
backscattering processes produce a spatially oscillating contribution. Due to the nonlocal damping, the thermal
fluctuations become spatially correlated over the entire system. We estimate the characteristic magnetization
relaxation times for magnetic quantum wires and nuclear helimagnets.
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I. INTRODUCTION

Recently, intense interest has developed in the helical
magnetic ordering of one-dimensional (1D) systems of local
moments coupled to itinerant electrons. Such systems exhibit
a variety of intriguing many-body phenomena, such as spin-
Peierls instabilities [1,2] and induced topological supercon-
ductivity [3–5], which result from the details of magnetism,
electronic structure, and electron-electron interactions. These
phenomena may be relevant for a wide variety of physical
systems, ranging from magnetic atoms on superconducting
[3,6–10] and normal metal [11] substrates to single walled
carbon nanotubes [12] and semiconductor-based quantum
wires [5,13,14].

While much of the work in this area so far has focused on
static and thermodynamic properties of the 1D helimagnets,
a richer understanding may be gained by developing and
employing new dynamical probes for assessing the behaviors
of these systems. For example, an interesting self-tuning effect
was proposed for systems dominated by a Ruderman-Kittel-
Kasuya-Yoshida (RKKY)-type interaction [12–15]: the local
moments are predicted to order into a spiral arrangement
which, through coherent backscattering, gaps out one spin
channel of the itinerant electron system for any value of
the electron density. This remarkable phenomenon was even
suggested as providing a route towards realizing topologically
protected Majorana bound states in quantum wires [5,8,9].
However, because direct probes of magnetization are unavail-
able for many systems, it can be challenging to positively
identify this intriguing magnetic state (necessarily via indi-
rect means) [14]. With further theoretical understanding of
dynamical responses, such as typical damping or relaxation
times, additional tests (e.g., density quenches which change
the preferred ordering wave vector) could be used to clarify
the natures of the underlying states.

More generally, magnetization relaxation processes de-
termine the magnetic response to external perturbations as
well as to spontaneous thermal fluctuations. Furthermore,
the nature of the magnetic response is crucially important
for noise and magnetization dynamics in magnetoelectronic
devices [16,17]. A better understanding of the spin dynamics
in 1D helimagnets may pave the way for exploring phenomena
such as current-driven magnetization dynamics, with potential

practical applications beyond those envisaged so far. Thus,
the investigation of microscopic damping mechanisms is
essential for developing a thorough fundamental and practical
understanding of these exciting new magnetic systems.

Given the motivations above, in this work we investigate
the relaxation of 1D helimagnets via the emission of collective
excitations into the interacting itinerant electron system. Note
that the 1D nature of the itinerant system is important—our
theory is meant to describe quasi-1D systems with a single
transverse mode at the Fermi energy (e.g., semiconductor
quantum wires [14]). The elementary excitations of these
1D electronic systems are plasmons, which describe density
waves. Interestingly, previous theoretical works have predicted
that electron-electron interactions in such 1D systems may play
important roles both in establishing ordering [12,13] and in the
relaxation dynamics of weakly coupled (nonordered) nuclear
spins [18,19]. In this work, we use a bosonization approach
to study the nonperturbative effects of electron-electron
interactions on the damping of ordered spins. We find that
interactions have a profound effect on damping, leading to an
enhancement of the damping by several orders of magnitude.
The damping has a highly nonlocal character. Consequently,
the thermal fluctuations become spatially correlated over the
entire sample. We estimate the characteristic magnetization
relaxation times due to this mechanism for two classes of
systems: (Ga,Mn)As quantum wires and nuclear helimagnets
formed in GaAs quantum wires.

II. THEORY AND MODEL

Our approach is based on the theoretical framework
developed for magnetization damping in metallic ferromagnets
[20,21]. A key ingredient of the model is that the dynamics of
the low-lying collective spin excitations are parametrized by
a classical magnetization order-parameter field whose magni-
tude is assumed to be constant in time and homogeneous in
space, while its local orientation is allowed to fluctuate. In this
case, the evolution of the spin system can be described by the
Landau-Lifshitz-Gilbert (LLG) phenomenology [16,17,22]:

ṁ(z,t) = −γ m(z,t) × [Heff(z,t) + hT (z,t)] +
m(z,t) ×

∫
dz′α(z,z′)ṁ(z′,t). (1)
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FIG. 1. (Color online) Helimagnet formed in a 1D conductor.

Here, the unit vector m(z,t) parametrizes the local spin
order and is oriented parallel to the magnetization vector
M(z,t) = Msm(z,t), γ = gμB/� is the gyromagnetic ratio in
terms of the g factor of local spins and the Bohr magneton μB ,
and Heff = −δF/δM is the effective field found by varying
the magnetic free-energy functional F [M] with respect to
the magnetization. The quantity hT (z,t) in the first line is a
stochastic magnetic field induced by the thermal fluctuations
(to be discussed further below). We assume that the free-energy
functional stabilizes an equilibrium helimagnetic texture of the
form [5,8,11–13]

m0(z) = [cos(qz), sin(qz),0], (2)

where q depends on the ordering mechanism. Throughout this
work, we use coordinate axes with the z axis oriented along
the 1D conductor (see Fig. 1).

Magnetization relaxation is described by the second-rank
Gilbert damping tensor αij (z,z′) in Eq. (1). We consider mag-
netization relaxation via excitations of the itinerant electron
system. In this case, the Gilbert damping tensor is given by
[20,21] (see Appendix A for a derivation)

αij (z,z′) = − 4γ h2
0

�2Ms

lim
ω→0

�m[χij (z,z′,ω)]

ω
, (3)

where χij (z,z′,ω) = ∫ ∞
−∞ dt χij (z,z′,t) exp(iωt) is the Fourier

transform of the spin susceptibility of the itiner-
ant electrons, χij (z,z′,t) = −(i/�)θ (t)[ŝi(z,t),ŝj (z′,0)]. Here,
ŝ(z,t) = (�/2)ψ†(z,t)σψ(z,t) is the spin-density operator for
itinerant electrons, taken in the interaction picture with respect
to Hamiltonian (4) below, with the static magnetization (2).
Above, σ is the vector of Pauli matrices and ψ(z)=
[ψ↑(z),ψ↓(z)] is the spinor-valued fermionic field operator.

We model the itinerant electrons via the Hamiltonian:

H =
∫

dz ψ†(z)

[
p̂2

z

2m
+ h0m(z,t) · σ

]
ψ(z)

+ 1

2

∫∫
dzdz′ ψ†

σ (z)ψ†
σ ′(z′)Vee(z − z′)ψσ ′(z′)ψσ (z),

(4)

where p̂z is the momentum operator, Vee is the electron-
electron interaction potential, and h0 is the magnetic coupling.
Summation over repeated indices is implied.

In the calculation below, we aim to evaluate the Gilbert
damping tensor in Eq. (3), using the spin susceptibility for
the electronic system described by Eq. (4), with a fixed
chemical potential. Linearizing around the Fermi points, we
will develop a Luttinger-liquid-type description of the nearly

helical system, allowing interactions to be taken into account
nonperturbatively.

III. RESULTS

We now explicitly calculate the Gilbert damping tensor
in Eq. (3). To facilitate calculation of the spin susceptibility,
we transform to a nonuniformly rotated frame via the unitary
transformation ψu = U (z)ψ , with U (z) = eiqzσz/2. This trans-
formation “untwists” the helix, rendering the free-electron part
of the transformed Hamiltonian Hu = UHU † translationally
invariant,

H (0)
u =

∫
dz ψ†

u(z)

[
p̂2

z

2m
− �q

2m
σzp̂z + h0σx

]
ψu(z), (5)

while the interaction term is unaffected. In this representation,
the spin susceptibility and the Gilbert damping tensor trans-
form to χu(z,z′,t) = R(z)χ(z,z′,t)RT (z′) and αu(z,z′,t) =
R(z)α(z,z′,t)RT (z′), where R(z) is the SO(3) matrix asso-
ciated with U (z). The energy dispersion of H (0)

u is shown in
Fig. 2; its eigenfunctions are ψn,k(z) = ηn,k ⊗ ψn,k(z), where
n ∈ {1,2} is the band index, ηn,k is the eigenspinor, and
ψn,k(z) = exp(ikz)/

√
L, for a system of length L.

In this work, we set the chemical potential in the gap that
separates the bands near k = 0, such that the single-particle
dispersion in Eq. (5) features only a single branch of right and
left moving modes at the Fermi energy. We neglect interband
couplings and write an effective description within the lowest
band, linearized about the Fermi wave vectors ±kF . We fix the
spinor parts of the wave functions to their values at the Fermi
energy (Fig. 2) [23].

To compute the spin-spin susceptibility in the presence
of electron-electron interactions, we employ a bosonic de-
scription. As a first step, we express the fermionic field
operator (projected into the lowest band) as a superposi-
tion of fields representing right (+) and left (−) movers:
ψu(z) = ψ+(z) + ψ−(z). The fields ψ r (r ∈ {+,−}) take the
form ψ r = ηr ⊗ ψr (z), where ηr = η1,rkF

and the spatial
part (in terms of the destruction operators ck,r ) is ψr (z) =

1√
L
eirkF z

∑
k eikzck,r . Substituting the fermionic field operator

-kF kF

2h0

k

E

-vF vF

n= 2

n= 1

FIG. 2. (Color online) Energy dispersion of the gauge trans-
formed free-electron Hamiltonian H (0)

u . The bosonization is per-
formed by linearizing the dispersion about the Fermi wave vectors
k = ±kF and fixing the k-dependent eigenspinors ηr to their values
at the Fermi energy.
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into the Hamiltonian Hu, performing a Fourier transformation
to k space, and evaluating Vee(q) at momentum zero and
2kF for forward-scattering and backscattering processes,
respectively, we obtain

Hu =
∑
k,r

r�vF kc
†
k,rck,r +

∑
q,r

(g2ρq,rρ−q,−r + g4ρq,rρ−q,r ).

(6)
Here, vF = �kF /m − �qη

†
+σzη+/2m, g2 = [Vee(0) − |η†

+η−|2
Vee(2kF )]/2L, g4 = Vee(0)/2L, and ρq,r = ∑

k c
†
k−q,rck,r is

the Fourier-transformed density operator for right and left
movers. Following the standard procedure [24], we write Eq.
(6) in the bosonized form:

Hu = �

2π

∫
dz

[
ueffK(∂zθ )2 + ueff

K
(∂zφ)2

]
, (7)

where φ and θ are the bosonic fields, ueff is the density wave
velocity, and K is the Luttinger parameter.

The bosonic representations of the fermionic fields are

ψ r (z) = ηr ⊗ Ur√
2πa

eirkF ze−i[rφ(z)−θ(z)], (8)

where a is an infinitesimal short distance cutoff [25] and {Ur}
are the Klein factors. The repulsive electron-electron interac-
tion implies that 0 < K � 1, where K = 1 for noninteracting
electrons.

We calculate the spin susceptibility following the standard
approach for Luttinger liquids (see Ref. [24] for details).
The resulting (imaginary) time-ordered spin-spin correla-
tion function [26], χ̃u,ij (z,z′,τ ) = −〈Tτ ŝi(z,τ )ŝj (z′,0)〉, is
diagonal and can be written as χ̃u,ii(z̃,τ ) = χ̃

(0)
u,ii(z̃,τ ) +

χ̃
(2kF )
u,ii (z̃,τ ) cos(2kF z̃), where

χ̃
(0)
u,ii = −

(
�

2π

)2
K (i)�++

ii

2

υ2 − z̃2

(z̃2 + υ2)2
, (9)

χ̃
(2kF )
u,ii = −

(
�

2π

)2
�+−

ii

2a2

(
a2

z̃2 + υ2

)K

. (10)

Here, z̃ = z − z′, υ = ueffτ + a sign(τ ), K (x) = K (y) = K ,
K (z) = K−1, and �rr ′

ii = |η†
rσiηr ′ |2. The spin susceptibility

is χu,ii(z̃,t) = −(2/�)θ (t)�m[χ̃u,ii(z̃,t)], where χ̃u,ii(z̃,t) is
the time-ordered correlation function in real time, which
is obtained via the Wick rotation τ = it + 0+sign(t). For
K < 1, χ

(2kF )
u,ii (ω)/ω diverges in the low-frequency limit. We

regularize the divergence by evaluating the expression at the
low-frequency cutoff ω0 = ueff2π/L set by the finite length of
the system [27].

The analysis above gives the Gilbert damping tensor:

αu,ii(z,z
′) = α

(0)
u,ii + α

(2kF )
u,ii cos(2kF z̃), (11)

α
(0)
u,ii = γ h2

0K
(i)�++

ii

2π�Msu
2
eff

, (12)

α
(2kF )
u,ii = γ h2

0�
+−
ii FK (ζ )

21/2+Kπ3/2�Msu
2
eff�(K)

. (13)

Here, �(K) is the gamma function, ζ ≡ aω0/ueff , and
FK (ζ ) = πζK−3/2{[IK−1/2(ζ ) − L1/2−K (ζ )] − 2ζ cos(Kπ )
KK−1/2(ζ )}, where Iν(ζ ) is the modified Bessel function of

the first kind, Lν(ζ ) is the modified Struve function, and
Kν(ζ ) is the modified Bessel function of the second kind.
To obtain the laboratory-frame damping tensor, the trans-
formation α(z,z′,t) = RT (z)αu(z,z′,t)R(z′) must be applied.
We continue the analysis in the rotated frame, where the
expressions are much simpler.

IV. DISCUSSION

Equations (11)–(13) are the central results of this work,
and describe magnetization relaxation of 1D helimagnets via
plasmon excitations.

The damping consists of two parts with very distinct
position dependencies: a homogeneous term ∼α(0) and a
rapidly oscillating term ∼α(2kF ). The corresponding highly
nonlocal magnetization relaxation caused by the plasmon
excitations differs markedly from the damping of conventional
metallic ferromagnets, which is believed to be local [28].

Constraints of the model reduce the number of independent
tensor elements. First, �++

yy = �+−
zz = 0 implies that the

damping tensor is described by four independent coefficients:
α(0)

u,xx , α(0)
u,zz, α(2kF )

u,xx , and α(2kF )
u,yy . Second, the constraint ṁ · m =

0 imposed by normalization implies that ṁx = 0 in the rotated
reference frame (for small δm). Thus, the damping is governed
by only two coefficients: α(0)

u,zz and α(2kF )
u,yy .

What are the characteristics of these two independent
damping coefficients? The tensor element α(0)

zz originates from
forward-scattering processes and governs the damping of
the long-wavelength spin-wave modes. Similarly, α(2kF )

yy is
associated with electronic backscattering, and controls the
relaxation of short-wavelength modes.

Interestingly, α(0)
zz is proportional to the momentum-

momentum correlator 〈∂z̃θ (z̃,τ )∂z̃θ (0,0)〉, and is thus inversely
proportional to the Luttinger parameter K . Consequently,
electron-electron interaction enhances α(0)

u,zz as K−1. A much
more complex dependency of the electron-electron interac-
tions is seen in the magnetization damping caused by backscat-
tering processes. Remarkably, electron-electron interactions
may increase α(2kF )

yy by nearly four orders of magnitude
compared to its value in the noninteracting limit K = 1
[Fig. 3(a)]. The tensor element α(2kF )

yy reaches a maximum
at K ≈ 0.1 before it drops quickly to zero in the strongly
interacting regime K → 0. In this limit, the potential energy
(ueff/K)(∂zφ)2 of the bosonic Hamiltonian (7) completely
governs the electron dynamics and density variations of the
Luttinger liquid become insusceptible to time variations in the
magnetization. The dramatic enhancement of α(2kF )

yy is related
to the fact that electron-electron interactions make the damping
extremely sensitive to ζ ∼ a/L, which measures the ratio of
the short-distance cutoff to the long-distance cutoff [Fig. 3(b)].
In the absence of interactions, α(2kF )

yy approaches a constant
value in the limit ζ → 0. However, with interactions, α(2kF )

yy is
singular in this limit and the singularity becomes stronger with
increasing strength of the interactions.

To investigate the experimental consequences of
Eqs. (11)–(13), we discuss thermal fluctuations and estimate
the characteristic relaxation time for two classes of systems
which are proposed to hold 1D helimagnetic states. Addition-
ally, we propose a method for probing the relaxation time in
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FIG. 3. (Color online) (a) The dimensionless damping parameter
α(2kF )

∗ (K,ζ ) = α(2kF )
u,yy (K,ζ )/α(2kF )

u,yy (1,ζ ) as a function of the electron-
electron interaction parameter K with ζ = aω0/ueff fixed at ζ =
3.1 × 10−3. (b) The damping parameter as a function of ζ for
different K.

nuclear wires via transport measurements. The magnetic order
is assumed to be stabilized by the RKKY interaction, implying
q = kF [29].

The form of the damping tensor has remarkable impli-
cations for the statistical properties of thermal fluctuations.
While the average of the stochastic magnetic field hT in
Eq. (1) is zero, 〈hT 〉 = 0, its correlations (in accordance with
the fluctuation-dissipation theorem) are given in the classical
(Maxwell-Boltzmann) limit as [20,30]

〈hT,i(z,t)hT,j (z′,t ′)〉 = 2kBT

γMs

αij (z,z′)δ(t − t ′), (14)

where T is the temperature and the average 〈...〉 is taken over
an ensemble in thermal equilibrium. According to Eq. (14),
the thermal fluctuations are correlated over the entire sample.
The fluctuations divide into two distinct classes: one class
characterized by a spatially constant correlation and a second
class characterized by an oscillating ∼ cos(2kF z̃) correlation.
Strongly correlated thermal fluctuations of this form have not
been reported or investigated before in any magnetic system,
and a thorough investigation of how the associated stochastic
field hT (z) in Eq. (1) influences the magnetization dynamics
should be an interesting task for future studies.

For a magnetization precessing at frequency ω, Eq. (1)
yields two characteristic relaxation times τ

(0)
rel and τ

(2kF )
rel ,

associated with the homogeneous and oscillatory dissipation
terms: τ

(0,2kF )
rel ∼ [α(0,2kF )Lω]−1. We now estimate τ

(0,2kF )
rel

for two classes of systems, which are believed to host 1D
helimagnetism [5]: Ga0.98Mn0.02As quantum wire and GaAs
wire in which the nuclear spins are hyperfine coupled to the
itinerant system (see Appendix B for material parameters).
The (Ga,Mn)As and GaAs wire cross sections are assumed
to contain 50 × 50 unit cells. The characteristic magnon
frequency of the first excited mode is ω = kBTc/�I

1/(3−2K)
⊥

[13], where Tc is the critical temperature and �I⊥ is the total
spin of the cross section. We assume that each unit cell is
fully spin polarized. For the magnetic (Ga,Mn)As wire, we
find τ

(0)
rel = 2.3 × 10−8 s and τ

(2kF )
rel = 7.6 × 10−11 s, while

for the nuclear wire the relaxation times are τ
(0)
rel = 1.0 s and

τ
(2kF )
rel = 6.4 × 10−3 s.

Dynamical probes offer new routes for characterizing the
nature of 1D helimagnetic systems, providing complementary
information to that obtained in static (dc) measurements. For
example, consider the recent experiment of Ref. [14], in which
the conductance of a GaAs-based quantum wire was observed
to drop from 2e2/h to e2/h when the temperature was reduced
to below 0.1 K. The appearance of an e2/h plateau hints at the
lifting of spin degeneracy, and was interpreted as evidence of
the formation of a nuclear-spin helix. Importantly, within the
model used to interpret the experiment, the spatial period of the
helix tunes itself to be equal to half of the Fermi wavelength,
i.e., it is directly linked to the density of the electronic system.
Furthermore, the appearance of an e2/h plateau is directly
linked to this commensuration between the ordering and Fermi
wave vectors. A rapid change of backgate voltage which alters
the electron density should thus destroy the commensurability;
just after such a quench, one would then expect to observe
a conductance of 2e2/h, which would gradually return to a
value of e2/h as the nuclear system finds its new equilibrium
order, on a time scale set by the magnetic relaxation rate.
Taking similar assumptions and parameter values to those of
the model used to support the conclusions of Ref. [14], we
predict very long relaxation times for the nuclear magnetic
order, on the order of milliseconds or more. Nuclear-spin
diffusion, another possible important relaxation mechanism,
is expected to become effective on longer time scales (see
Appendix C). Dynamics on such time scales should in principle
be observable in experiments, and therefore may provide
crucial independent means for verifying the interpretation of
the experiment.

In conclusion, we have developed a theoretical formalism
for describing magnetization dissipation of 1D helimagnets via
the emission of plasmon excitations. The damping is found to
be highly nonlocal and strongly dependent on the electron-
electron interaction, differing markedly from the damping of
conventional metallic ferromagnets.
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APPENDIX A: DERIVATION OF DAMPING TENSOR

We calculate the magnetization damping rate by relating it
to the energy absorption rate of the itinerant electron system
subjected to small fluctuations about a static helimagnetic pro-
file m0(z). In describing the interaction between the magnetic
order-parameter field and the itinerant electron system, we
assume that the magnetization evolves very little over the
characteristic time scales of electron dynamics. In this case,
the response of the electron system can be calculated using
linear-response (Kubo) theory.
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The total-energy dissipation of the magnetic system is

Ė =
∫

dz Ṁ · δF

δM
. (A1)

The time derivative Ṁ is determined by the LLG equation,
which yields the energy dissipation:

Ė(t) = −Ms

γ

∫∫
dzdz′ ṁ(z,t) · [α̃(z,z′)ṁ(z′,t)]. (A2)

Due to energy conservation, the energy lost by the magnetic
system must be gained by the itinerant electron system to
which it is coupled. This implies that Ė = −〈Ḣ (t)〉, where
H (t) is the Hamiltonian (4) of the itinerant system coupled to
the magnetization m(z,t) = m0(z) + δm(z,t).

We now use linear-response theory to obtain the rate of
change of the electronic energy due to a slow evolution of the
magnetization m(z,t) [32]:

〈Ḣ (t)〉 = − i

�

∫ ∞

−∞
dt ′θ (t − t ′)〈[Ḣ (t),δH (t ′)]〉, (A3)

where θ (t) is the Heaviside step function, and δH (t ′) =
(2h0/�)

∫
dz′δm(z′,t ′) · ŝ(z′,t ′) is the perturbing Hamiltonian

produced by the small variation δm(z′,t ′) of the helimag-
netic order. Here, ŝ(z′,t ′) is the spin-density operator ŝ(z) =
(�/2)ψ†(z)σψ(z), taken in the interaction picture with respect
to the unperturbed Hamiltonian.

Fourier transforming Eq. (A3) with respect to time and
using Ḣ (t) = (2h0/�)

∫
dz ṁ(z,t) · ŝ(z,t) yields

− iω〈H (ω)〉 = 1

2π

(
2h0

�

)2 ∫∫
dzdz′

∫
dω′i(ω − ω′)

×mi(z,ω − ω′)
iχij (z,z′,ω′)

ω′ iω′δmj (z′,ω′),

(A4)

where χij (z,z′,ω) = ∫ ∞
−∞ dt χij (z,z′,t) exp(iωt) is the

Fourier transform of the spin susceptibility χij (z,z′,t) =
−(i/�)θ (t)[ŝi(z,t),ŝj (z′,0)]. To leading order in the precession
frequency, the behavior of the energy change is captured by
replacing iχij (ω)/ω by its value in the zero-frequency limit.
Transforming back to the time domain and using δṁj = ṁj

gives the energy absorption rate:

〈Ḣ (t)〉 = 4h2
0

�2

∫∫
dzdz′ṁi

[
lim
ω→0

i
χij (z,z′,ω)

ω

]
ṁj . (A5)

Comparing Eq. (A5) with Eq. (A2), we identify the following
expression for the Gilbert damping tensor:

αij (z,z′) = − 4γ h2
0

�2Ms

lim
ω→0

�m[χij (z,z′,ω)]

ω
. (A6)

TABLE I. Estimates of material parameters for two classes of
systems (adapted from Refs. [5] and [13]).

Magnetic wire Nuclear wire

Material (Ga,Mn)As GaAs
L (μm) 20 20
μF (meV) 20 5.6
a (nm) 5 10
K 0.5 0.5
ueff (ms−1) 3.2 × 105 1.7 × 105

Ms/γ (J s m−1) 2.3 × 10−23 2.8 × 10−21

h0 (meV) 5 0.07
I⊥ 500 15 000
Tc (K) 2 0.01

APPENDIX B: MATERIAL PARAMETERS

Table I shows typical material parameters of (Ga,Mn)As
quantum wires and nuclear helimagnets formed in GaAs
quantum wires. These parameter values are used in the main
text to estimate the characteristic relaxation times. Here, L is
the length of the quantum wire, μF is the chemical potential, a
is the short distance cutoff [25], K is the Luttinger parameter,
ueff is the density wave velocity, Ms/γ is the spin density of
the 1D magnetic system, h0 describes the coupling between
the itinerant electrons and the ordered spin system, I⊥ is the
total spin contained in the cross section of the wire, and Tc is
the critical temperature of the spin system [13].

The short-distance cutoff (given by the chemical potential)
together with the length of the wire and the density wave
velocity determine the value of the dimensionless ζ parameter,
ζ = aω0/ueff . Because the damping becomes highly sensitive
to the values of ζ and K in the presence of interactions (Fig. 3),
we believe uncertainties in these two parameters govern the
sensitivity in the relaxation times estimated from the values
in Table I. While α

(0)
rel only depends on K , the backscattering

term α
(2kF )
rel grows as ζ becomes small (see Fig. 3), rising

sharply for smaller K (i.e., stronger interactions). For fixed
ζ , the relaxation is strongly enhanced by interactions up to a
maximum value and then falls off sharply.

APPENDIX C: RELAXATION VIA
NUCLEAR-SPIN DIFFUSION

Let τ (d) denote the characteristic magnetization relaxation
time induced by nuclear-spin diffusion. The spin-diffusion
constant D of GaAs has been estimated to be on the order
of D ∼ 10−17 m2/s [33]. The relaxation time τ (d) is the time
required to diffuse from an internal point of the quantum wire
to the surrounding nuclei, i.e., a diffusion length of about the
wire diameter d ∼ 50a0 (where a0 is the lattice constant of
GaAs). This leads to the following estimate of the relaxation
time:

τ d
r = d2

D
∼ 80 s. (C1)
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Vedmedenko, S. Blügel, S. Heinze, K. von Bergmann, A.
Kubetzka, and R. Wiesendanger, Phys. Rev. Lett. 108, 197204
(2012).

[12] B. Braunecker, P. Simon, and D. Loss, Phys. Rev. Lett. 102,
116403 (2009).

[13] B. Braunecker, P. Simon, and D. Loss, Phys. Rev. B 80, 165119
(2009).

[14] C. P. Scheller, T.-M. Liu, G. Barak, A. Yacoby, L. N. Pfeiffer,
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