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Coexistence of magnetic order and Kondo effect in the Kondo-Heisenberg model
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The Kondo lattice model is investigated through a fermionic mean-field approximation. The obtained phase
diagram, including the pure ferromagnetic (FM), antiferromagnetic (AF), Kondo (K), and mixed phases, is in
good agreement with previous studies. Calculations on the simple cubic and square lattices confirm a robust
coexistence of ferromagnetism and Kondo effect (FM + K), sustained by a partial Kondo screening, which leads
to the concept of a spin selective Kondo insulator. We have also obtained a coexistence of antiferromagnetism and
Kondo effect (AF + K), which requires the intervenience of a next-nearest-neighbor hopping t ′ and a Heisenberg
exchange Jij . The effect of temperature and pressure is described by the behavior of the order parameters. The
corresponding Néel temperature TN and Kondo temperature TK are plotted in the form of a Doniach diagram.
The presence of the intermediate mixed phases is fundamental to determine the order of the magnetic phase
transitions as one approaches the quantum critical point.
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I. INTRODUCTION

The magnetic properties of heavy-fermion materials are
mainly determined from the competition between the Kondo
effect and magnetic order, usually described within the
framework of the Anderson lattice or Kondo lattice Hamil-
tonians [1,2]. Despite the cumulative theoretical work on
these models, through different many-body techniques, several
points remain to be further explored, implying a generalization
of the standard Doniach diagram in multiple aspects. In
antiferromagnetic materials such as YbRh2Si2 and CeCu2Si2,
different types of magnetic transitions can be found, which
may involve a reconstruction of the Fermi surface in the
neighborhood of the quantum critical point (QCP) [3–5]. In
the case of ferromagnetic materials, a long-standing challenge
concerns the attainability of a ferromagnetic QCP [6–11].
Recently, the need of a global phase diagram, which includes
the interplay of frustration and Kondo effect [12,13], has been
emphasized. Furthermore, new phases have been identified in
these systems, e.g., with charge order [14–16] or partial Kondo
screening, where Kondo screened sites coexist with magnetic
sites [17,18].

In this context, the mean-field pseudofermion approach
remains a valuable tool, as it provides a unifying picture
for the various heavy-fermion compounds, with the ability
of unveiling new phases, as recently brought into evidence.
Nevertheless, a variety of such approximations can be found
in the literature, and they may not be a priori equivalent.
Some of the concerned papers considered the interplay of the
Kondo effect with short-range magnetic correlations [19–21].
The Lifshitz transitions reported in Refs. [22,23] refer to this
case. Long-range magnetic order has been included within
the fermionic approach in Refs. [24–33], and the effect of
a magnetic field has been considered in Refs. [34,35]. In
Ref. [36], a dynamical mean-field theory study revealed the
existence of a spin-selective Kondo insulator (SSKI), where
the Fermi level is located at the gap for one spin direction
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only. This state corresponds to the mixed ferromagnetism
and Kondo effect (FM + K) state with a plateau in the total
magnetization, as reported in Refs. [26–28]. In Refs. [32,33],
a rich phase diagram has been obtained for the frustrated
Shastry-Sutherland lattice.

We propose here an alternative version of the method which
is adequate to describe the competition between magnetic
order and Kondo effect, including their possible coexistence.
We argue that the intrinsic ambiguity in defining the particular
decoupling of the interaction terms appearing in the Kondo
lattice model can be circumvented by an appropriate choice of
the starting Hamiltonian and the order parameters.

For concreteness, we will focus on a square lattice. This
choice has been motivated by the possibility of a direct
comparison with the literature, and also by its connection to
the Shastry-Sutherland lattice, considered in Ref. [32]. We
also discuss some results obtained for a constant density of
states and for a simple cubic lattice. The idea is to analyze
and test the performance of the fermionic mean-field approach
as a reliable approximation to the Kondo lattice and related
models.

The present results confirm and complement some previous
related studies, reinforcing their significance. They clarify the
evolution of the phase diagram as a function of the relevant
parameters, including the effect of the Kondo interaction JK ,
the intersite exchange Jij , the hoppings tij , the electronic
concentration n, and the temperature T .

In the next section, we introduce the fermionic mean-field
approach for the Kondo-Heisenberg Hamiltonian. In Sec. III,
we present some selected results describing the phase diagram
of the model on a square lattice, and connect the present work
with previous related studies. In Sec. IV, we complement the
discussion and present a summary of the conclusions.

II. MODEL AND APPROXIMATION

A. The fermionic Hamiltonian

The Kondo lattice and Anderson lattice Hamiltonians, with-
out losing their respective identities as independent physical
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models, may be related to each other in the appropriate limits,
as discussed, e.g., in Ref. [37]. The correspondence between
these models has been established in Ref. [2], based on the
Schrieffer-Wolff transformation [38]. The interacting part of
the Hamiltonian generated by this canonical transformation
can be written as a sum of terms

HK = H′
K + Hcf + Hch, (1)

where

H′
K = JK

∑

i

Si · si , (2)

Hcf = −JK/4
∑

iσσ ′
n

f

iσ ′n
c
iσ , (3)

Hch = −JK/4
∑

iσ

(c†iσ̄ c
†
iσ fiσ fiσ̄ + H.c.). (4)

The term H′
K describes a local antiferromagnetic exchange

interaction (with JK > 0) between localized spins Si and
conduction electron spins si .

The fermionic representation for the localized spins with
S = 1/2 introduces pseudofermion or spinon operators f

†
iσ

and fiσ (reminiscent from the f -electron orbital in the original
Anderson lattice model):

Sz
i = 1

2

(
n

f

i↑ − n
f

i↓
)
, (5)

Sσ
i = Sx

i + izσ S
y

i = f
†
iσ fiσ̄ , (6)

where n
f

iσ = f
†
iσ fiσ is the pseudofermion number operator,

and z↑ = +1, z↓ = −1. Similar expressions can be used for
the conduction electron spins si in terms of operators c

†
iσ and

cjσ .
The scalar product of spin operators in Eq. (2) can be

factorized as

Si · si = 1

2

∑

σ

f
†
iσ̄ fiσ c

†
iσ ciσ̄ + 1

4

∑

σσ ′
zσ zσ ′f

†
iσ fiσ c

†
iσ ′ciσ ′ .

(7)

Before proceeding to any decoupling of the products of
four operators appearing in Eq. (7), we adopt an alternative
expression for the Hamiltonian defined by Eqs. (1)–(4) in the
form

HK = −JK

∑

iσ

λiσ̄ λiσ − JK/2
∑

iσ

n
f

iσ̄ nc
iσ , (8)

where we introduce the Hermitian operator

λiσ = 1/2(f †
iσ ciσ + c

†
iσ fiσ ). (9)

Heisenberg exchange interactions
∑

i Jij Si · Sj can also be
included in the model to account for the interactions between
localized spins Si :

HH = −1/2
∑

ijσ

Jij γ̃
σ̄
ij γ̃ σ

ij − 1/4
∑

ijσ

Jijn
f

iσ̄ n
f

jσ , (10)

where

γ̃ σ
ij = 1/2(f †

iσ fjσ + f
†
jσ fiσ ). (11)

This term incorporates the Ruderman-Kittel-Kasuya-Yosida
interaction induced by the Kondo exchange coupling JK (see,
e.g., Refs. [16,37]). By second-order perturbation theory, an
effective coupling Jij ∼ J 2

K is found in the pure Kondo lattice,
so that magnetic phases are present even in this case. With
the explicit inclusion of this Heisenberg term, Jij will be
considered here as an independent parameter, as in Ref. [32].

The model is thus described by the complete Hamiltonian

H = Ht + HK + HH , (12)

where

Ht = −
∑

ijσ

tij c
†
iσ cjσ (13)

represents the conduction electron band.
The Hamiltonian expressed by Eq. (12) [with its terms

defined in Eqs. (8), (10), and (13)] constitutes by itself a
third independent model, in addition to the Kondo lattice
and Anderson lattice Hamiltonians. From the way it was
derived, it is conceptually located in between these two
traditional models, so that it should lead presumably to the
same physics as the Kondo lattice, in the limit of validity of
the Schrieffer-Wolff transformation.

B. Mean-field approximation

The products of operators in Eqs. (8) and (10) can be treated
following a standard mean-field approximation

λiσ̄ λiσ ≈ 〈λiσ̄ 〉λiσ + 〈λiσ 〉λiσ̄ − 〈λiσ̄ 〉〈λiσ 〉, (14)

γ̃ σ̄
ij γ̃ σ

ij ≈ 〈
γ̃ σ̄

ij

〉
γ̃ σ

ij + 〈
γ̃ σ

ij

〉
γ̃ σ̄

ij − 〈
γ̃ σ̄

ij

〉〈
γ̃ σ

ij

〉
, (15)

n
f

iσ̄ nc
iσ ≈ 〈

n
f

iσ̄

〉
nc

iσ + 〈
nc

iσ

〉
n

f

iσ̄ − 〈
n

f

iσ̄

〉〈
nc

iσ

〉
, (16)

n
f

iσ̄ n
f

jσ ≈ 〈
n

f

iσ̄

〉
n

f

jσ + 〈
n

f

jσ

〉
n

f

iσ̄ − 〈
n

f

iσ̄

〉〈
n

f

jσ

〉
. (17)

We obtain an effective fermionic Hamiltonian describing
hybridized, uncorrelated bands

H′ = Ht + Ht̃ + HṼ + Hf + Hh, (18)

where

Ht̃ = −
∑

ijσ

t̃ σij f
†
iσ fjσ , (19)

HṼ = −
∑

iσ

Ṽiσ (f †
iσ ciσ + c

†
iσ fiσ ), (20)

Hh =
∑

iσ

zσ

(
h

f

i + h̃i

)
n

f

iσ +
∑

iσ

zσ hc
i n

c
iσ , (21)

and

Hf = Ef

∑

iσ

n
f

iσ . (22)

The effective parameters depend on the self-consistent
mean-field parameters: t̃ σij = Jij 〈γ̃ σ̄

ij 〉 and Ṽiσ = JK〈λiσ̄ 〉.
Magnetic long-range order is related to the molecular fields
h

f

i = 1
2JK〈sz

i 〉 and hc
i = 1

2JK〈Sz
i 〉, which imply a magnetic

coupling between local and itinerant moments, and h̃i =
1/2

∑
j Jij 〈Sz

j 〉, which couples directly the localized spins at
neighboring sites.
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The energy Ef is a Lagrange multiplier introduced in
Eq. (22) in order to fix the f electron number 〈nf 〉 =∑

σ 〈nf

iσ 〉 = 1. The chemical potential μ is fixed from the
constraint

∑
σ 〈nc

iσ 〉 = n, where n is the conduction electron
concentration.

The transformation from the Anderson to the Kondo
lattice Hamiltonian introduces a constraint on the f -electron
concentration, which may be imposed explicitly as nf = 1
(by projecting out the states with nf 	= 1), or on the average as
〈nf 〉 = 1. The former would imply a vanishing value of 〈λ〉.
On the other hand, most pseudofermion approaches (including
the present one) adopt the latter choice of the constraint, which
allows a finite value of 〈λ〉. Within the mean-field decoupling,
〈λ〉 assumes the role of an order parameter associated with the
Kondo “phase.”

In a similar way, the average 〈γ̃ 〉 describes the correlation
between magnetic moments at neighboring sites, as discussed
in Ref. [21]. It allows a correct treatment of valence bond solid
and spin-liquid (resonating-valence-bond-type) states [32].
Here the pure magnetic phases (without coexistence) consist of
quite trivial magnetic solutions (of the complete Hamiltonian)
with both 〈λ〉 = 0 and 〈γ̃ 〉 = 0. These mean-field parameters
acquire a new interpretation after the introduction of the
effective Hamiltonian in Eq. (18). The parameters Ef and
Ṽ become clearly distinct from the corresponding parameters
Ef and V in the original Anderson model.

The internal energy per site corresponding to the original
Hamiltonian H in Eq. (12) can be expressed as

E = −
∑

jσ

tσij
〈
γ σ

ij

〉 − 1

2

∑

jσ

t̃σij
〈
γ̃ σ

ij

〉 −
∑

σ

Ṽiσ 〈λiσ 〉

+ h̃i

〈
Sz

i

〉 + JK

〈
Sz

i

〉〈
sz
i

〉
, (23)

where γ σ
ij = 1/2(c†iσ cjσ + c

†
jσ ciσ ).

The phase diagram is determined by the competition among
the multiple phases described by the self-consistent parameters
〈λiσ 〉 and 〈Sz

i 〉. They include the pure ferromagnetic (FM)
and antiferromagnetic (AF) phases, in absence of Kondo
effect, with 〈λiσ 〉 = 0 and 〈Sz

i 〉,〈sz
i 〉 	= 0; the pure Kondo (K)

phase in absence of magnetic order, with 〈λiσ 〉,〈γ̃ σ
ij 〉 	= 0 and

〈Sz
i 〉 = 0; and also the mixed phases with coexistence, where

all averages are different from zero. In the case of coexistence,
the numerical solution interpolates between the adjacent
pure phases. Differently from previous approaches [30,33],
the method does not require any control parameter x, because
each term appearing in Eqs. (8) and (10) evokes only one of
the allowed order parameters.

III. RESULTS

A. The pure Kondo lattice case ( J,t ′ = 0)

For the sake of comparison with the literature, we have ap-
plied the present decoupling to the case of a rectangular density
of states, adopted in most of the related treatments [2,19,21,24–
28,31,39]. The corresponding results will not be shown
explicitly, as additional figures, in this section, but it is
important to comment on them, stressing the coincidences
and eventual divergences.

The results obtained (if one restricts to the pure phases FM,
AF, and K) reproduce quantitatively the ground-state phase
diagram JK × n of the Kondo lattice model shown in Fig. 4
from Ref. [2]. Such coincidence is far from obvious, because
the phase boundaries depend strongly on the particular way the
two terms in the right-hand side of Eq. (7) are decoupled. This
agreement establishes a correspondence between the present
version of the fermionic mean-field approach, and the method
adopted in Ref. [2], which relies on a functional integration
approach based on a Hubbard-Stratanovitch transformation.

A similar diagram has been obtained in Fig. 3 of Ref. [39] by
the Gutzwiller variational method. It is worth remarking that,
in this reference, n = (nc + 1)/2, where nc is the electronic
concentration, so that the FM/AF interface at n = 0.82
corresponds to nc = 0.64, which coincides with Ref. [2]. Thus,
a quantitative difference between the two diagrams is evident
only in the vertical axis, where the magnetic region is reduced
by a factor about 1/2 in Ref. [39].

We have also obtained a coexistence of ferromagnetic order
and Kondo effect (FM + K) in a region between the pure K and
FM phases, where our results are in good agreement with those
reported in Refs. [26–28]. Our calculated diagram including
the phase FM + K is very similar to Fig. 2(a) from Ref. [27].
Again, this coincidence indicates an equivalence between the
two calculations, even though the decoupling approximations
are justified in a different way. However, the mentioned figure
from Ref. [27] does not show the location of the AF phase,
which should be present for n > 0.64, as discussed above. We
have also verified that the pure AF phase is stable against the
FM + K phase (when both solutions are present). We have not
found any region of coexistence AF + K for J = 0, in contrast
to Ref. [31], where it has been detected in a narrow region
between the AF and K phases.

The results presented below correspond to calculations
performed on a square lattice with nearest-neighbor and
next-nearest-neighbor hoppings t and t ′, respectively. We also
considered the effect of a nearest-neighbor exchange Jij = J .
As a first step to construct the phase diagram, we have
considered the pure K, FM, and AF self-consistent solutions.
Equation (23) is then used to determine the stable phase for
a given set of parameters: t , t ′, JK , J , and the conduction
electrons concentration n.

We apply the Green’s function method to the effective
Hamiltonian H′, as described in Ref. [32]. For the ferro-
magnetic and nonmagnetic phases, the system of equations
is solved by direct spatial Fourier transformation on the square
lattice, assuming a homogeneous solution with site indepen-
dent averages. For the antiferromagnetic phase, a two-site basis
has to be considered, where translational invariance is assumed
on the two sublattices. The solution is formally similar to the
case of the Shastry-Sutherland lattice in Ref. [32], but with
matrices of size 2 × 2, and including all diagonal hopping
terms. The thermal averages are computed in the standard
way, by integrating the self-consistently calculated densities
of states multiplied by the Fermi distribution function [26,40].

Figure 1 illustrates the phase diagram of the Kondo lattice
at zero temperature with J = 0 and t ′ = 0. The K phase
dominates for sufficiently large values of JK , which depends
on the electron concentration n. For small JK , the AF phase
appears around half-filling for n > 0.586, and the FM phase
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FIG. 1. (Color online) Ground-state phase diagram of the KLM
on a square lattice for t ′ = 0 and J = 0, showing the mixed phases
SSKI and FMK.

dominates at lower concentrations. The diagram is symmetric
with respect to n = 1. The saturated FM solution (in which
〈sz

i 〉 = −n/2) is identified as FMS. Nearby the underlying
FM/K boundary (marked by a thin line) one can identify
an intermediate region of coexistence of ferromagnetism and
Kondo effect (FM + K).

Two regions, named SSKI and FMK, can be distinguished
within the mixed FM + K phase. The lower JK region
corresponds to a SSKI state, characterized by the formation of
a partial Kondo singlet combining all minority-spin conduction
electrons (〈nc

↑〉) with an equivalent number of majority-spin
conduction electrons and f electrons of both spins [36]. The
remaining majoritary-spin f and c electrons are antiferromag-
netically coupled at each site, forming a ferromagnetic state.
The corresponding commensurability condition 〈nc

↑〉 = 〈nf

↓〉
emerges spontaneously in this region, associated to a plateau
in the total magnetization 〈Sz

i 〉 + 〈sz
i 〉 = (1 − n)/2.

The evolution of the order parameters through the mixed
phase region is shown in Fig. 2. The transition from the FM
phase to the SSKI phase is marked by discontinuities in the
averages 〈λiσ 〉, 〈Sz

i 〉, and 〈sz
i 〉 (around JK/t = 2.1). The total

magnetization is illustrated by the black line, which exhibits
a horizontal plateau (for 2.1 < JK/t < 2.5) in the SSKI state.
By further increasing JK/t , the system enters a competing
(FMK) region, where the Kondo effect gradually reduces the
magnetizations 〈Sz

i 〉 and 〈sz
i 〉, leading eventually to a sharp

transition to the nonmagnetic K phase (around JK/t = 2.7).
The dashed line shows the behavior of 〈λiσ 〉 in the pure K
phase in absence of magnetic order, when it would be nonzero
down to JK = 0. The Kondo breakdown is characterized by
the vanishing of 〈λiσ 〉 at JK = 2.2t when magnetic order is
allowed.

The phase diagram depicted in Fig. 1 can be compared with
the phase diagram shown in Fig. 9 of Ref. [39] for the square
lattice. Again, we observe a perfect agreement in the position
of the boundary FM/AF about nc = 0.58. After transforming
the values expressed in the vertical axis, the magnetic region is
reduced by the same factor 1/2 when compared to our method,
as observed above in the case of a constant density of states. It

1.0 1.5 2.0 2.5 3.0 3.5 4.0

JK /t

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

<λσ>

<Sz>

<sz>

FIG. 2. (Color online) Magnetizations 〈Sz
i 〉 (red) and 〈sz

i 〉 (blue),
and the averages 〈λiσ 〉 (green) as a function of JK for n = 0.3, t ′ = 0,
and J = 0 in the low-temperature limit. The dashed line corresponds
to the value of 〈λiσ 〉 in the pure K phase. The black line is the total
magnetization 〈Sz

i 〉 + 〈sz
i 〉.

is evident, from both methods, that the lattice geometry affects
the details of the phase diagram. Therefore, when we include
the mixed phases, we are generalizing the previous diagrams
reported in Refs. [27,39] in multiple aspects.

Figure 3 shows the densities of states of spin-up and spin-
down electrons in the presence of the magnetization plateau.
The arrow indicates the Fermi level position, which clearly lies
inside a gap in the minority (up) spin band, while the majority
(down) spin band is conducting.

We have also evaluated the corresponding curves of the
Curie temperature TC and the Kondo temperature TK as a
function of JK/t , which lead to a ferromagnetic Doniach
diagram, qualitatively similar to the phase diagram obtained
in Ref. [26] assuming a constant density of states.

B. The Kondo-Heisenberg lattice (with J,t ′ �= 0)

As the antiferromagnetic exchange coupling J is turned on,
the AF phase grows into the FM region, which eventually is
shifted into the K region, becoming unstable. The evolution
of the pure phases FM, AF, and K as a function of J and t ′
is illustrated in Fig. 4. We observe that the value J = 0.5t is
sufficiently high to entirely suppress the FM phase in Fig. 4(b).
In the presence of t ′, the diagram becomes asymmetric with
respect to half-filling, as shown in panel 4(c). Figure 4(d)
illustrates the opposite case with a ferromagnetic coupling J <

0, where the phase diagram yields a sequence of transitions
FM-AF-K as a function of JK (for 0.82 < n < 1.00), which
corresponds to the observed behavior, e.g., in CeRu2Ge2 [7]
and CeAgSb2 [8] under pressure.

The phase boundaries are defined from the intersections
of the energy curves for the competing solutions. This is
shown in Fig. 5 for n = 0.8, t ′ = 0.8t , and J = 0.5t , as the
crossing of the K and AF energy curves. Figure 5 also shows
the solution AF + K with coexistence of antiferromagnetic
long-range order and Kondo effect, which turns out to be
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FIG. 3. (Color online) Densities of states for spin-up (top) and spin-down (bottom) f and c electrons for JK = 2.3t and n = 0.3, in the
SSKI phase. The inset amplifies the region around the Fermi level.

favored in the neighborhood of the AF/K boundary. The energy
curve of the AF + K phase interpolates smoothly between the
pure K and AF curves.

The boundaries of the region AF + K can be determined
from the order parameters. They are plotted in Fig. 6 as a
function of JK/t for a fixed value of n. The curves show
how the magnetic moments are reduced by the Kondo effect.
The transition from the AF + K phase to the AF phase, as
JK decreases, is continuous, with the order parameters 〈λiσ 〉
decreasing smoothly to zero. Analogously, the transition from
the AF + K phase to the K phase, as JK increases, is marked
by the vanishing of the magnetization curves at a given value
JKc. The effect of temperature T is also illustrated. As T

increases, the value of JKc shifts downwards, while the width
of the AF + K region decreases. The transition AF + K/K
becomes sharper as the temperature is further reduced below
T = 0.01t . The dashed line indicates the variation of 〈λiσ 〉 in

FIG. 4. (Color online) Ground state phase diagram (without
phase coexistence) of the KLM on a square lattice for (a) t ′ = 0
and J = 0.01t , (b) t ′ = 0 and J = 0.5t , (c) t ′ = 0.8t and J = 0.5t ,
and (d) t ′ = 0 and J = −0.01t .

the pure K phase. As discussed above with respect to Fig. 2,
the presence of magnetic order anticipates the vanishing of
these spin dependent order parameters, which evolve gradually
within the mixed phase.

Comparing to the FM case described above, a noticeable
difference concerns the respective transitions from the pure
magnetic phase to the mixed phase, which was discontinuous
in the FM case (associated with the appearance of the
magnetization plateau in the SSKI phase), but is found to
be continuous in the AF case. Following the analysis of the
case t = 0, t ′ 	= 0 in Ref. [29], one can infer that the same
mechanism leading to the SSKI phase is present in each
sublattice, contributing to sustain the coexistence AF + K,
although no corresponding SSKI phase can be distinguished
for t 	= 0 as in the ferromagnetic case.

Figure 7 shows the evolution of the Fermi surface (which is
holelike) from the pure AF phase to the mixed AF + K phase,
changing from a squarelike shape to a circle as it approaches
the K phase. For JK = 3.50t , the f electrons are localized and
completely decoupled from the conduction electrons, but for
JK = 3.55t they become hybridized. The change of the Fermi

2 3 4 5

JK /t
-2.8

-2.6

-2.4

-2.2

E/t

K

AF+K

AF

FIG. 5. (Color online) Comparison of the internal energies of the
competing phases for n = 0.8, t ′ = 0.8t , and J = 0.5t .
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3.2 3.4 3.6 3.8 4.0 4.2 4.4

JK /t

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

<λσ>

<S z>

<sz>

T=0.01tT=0.05t
T=0.08t

T=0.1t

FIG. 6. (Color online) Magnetizations 〈Sz
i 〉 (red) and 〈sz

i 〉 (blue)
as a function of JK/t for n = 0.8, t ′ = 0.8t , and J = 0.5t , for
different values of T . The averages 〈λiσ 〉 (green) are also shown
for T = 0.01t (the dashed line corresponds to the pure K solution).

surface at the AF/AF + K boundary is smooth, and a slight
increase of the Fermi volume signalizes the contribution of the
f electrons.

Both parameters t ′ and J (>0) favor antiferromagnetism,
and finite values of t ′ and J are required to produce a region
of coexistence AF + K. This is illustrated in Fig. 8 through the
diagram J × JK for n = 0.8 and t ′ = 0.4t . Within numerical
precision, the region AF + K seems to collapse at a point P
on the boundary AF/K, located at JK ≈ 3.2t , J ≈ 0.30t for
the parameters used in the figure. Below this point one has a
direct transition between AF and K phases. For larger values
of t ′ a similar diagram is obtained, where point P is shifted
downwards along the AF/K line.

The temperature variation of the averages is shown in Fig. 9.
The top panel represents a situation where the ground state
corresponds to the mixed AF + K state, where 〈Sz

i 〉 goes to
zero at the Néel temperature TN . For higher temperatures, the

kxa

kya

π

π

-π 0
-π

0 JK=3.50t
JK=3.55t
JK=4.00t

FIG. 7. (Color online) Evolution of the Fermi surface as a func-
tion of JK for the same parameters considered in Fig. 6 with
T = 0.01t .

FIG. 8. (Color online) Diagram J × JK for n = 0.8 and t ′ =
0.4t . The boundary between the underlying pure phases K and AF is
indicated by the blue line. The mixed AF + K phase develops around
this line on the right of point P.
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FIG. 9. (Color online) Magnetizations and 〈λiσ 〉 as a function of
temperature for n = 0.8, t ′ = 0.8t , J = 0.5t , with (a) JK = 3.8t and
(b) JK = 3.2t .
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FIG. 10. (Color online) Kondo temperatures TK and TK0 and
Néel temperatures TN and TN0 as a function of JK/t for n = 0.8,
t ′ = 0.8t , and J = 0.5t .

system is in the pure K phase, and eventually the 〈λ〉 value goes
to zero at the Kondo temperature TK . In panel (b), the ground
state is the pure AF state, and the system evolves directly to
the K phase through a first-order transition.

In Fig. 10, we show the corresponding Doniach diagram,
where we plot the curves of TN and TK , compared to the
corresponding temperatures TN0 (in absence of Kondo effect)
and TK0 (without long-range order). The study of the mixed
phase is fundamental to determine the emergence of magnetic
order below TK for values of JK above the crossing of the
curves TN0 and TK0. The diagram is similar to the one obtained
in Ref. [30] for a simple cubic lattice, where the mixed phase
AF + K has been denoted as a spin density wave.

The transition from the K to the PM phase as a function
of temperature is a well-known artifact of the method, which
demands an appropriate interpretation, as long as no symmetry
is broken. This point can be better understood in connection to
other approaches, as discussed, e.g., in Ref. [40], where 〈λ〉 is
found to decrease monotonically with temperature T . In that
case, the Kondo temperature TK was given by the crossover
temperature between the magnetic and Kondo regimes, which
can be defined from the minimum of the derivative of 〈λ〉
with respect to T . A similar interpretation may be applied
to the transitions between the AF and AF + K phases, or
between the FM and FM + K phases described above, as a
function of JK .

When J 	= 0, the vanishing of 〈λ〉 at low temperatures with
decreasing JK is expected to occur even in absence of long-
range order. This is shown by the curve TK0 in Fig. 10 which
describes the prolongated boundary between the K and PM
phases, which goes to zero at JK = 1.1t . It is a consequence
of the short-range correlations driven by J on the K phase,
as previously studied in Ref. [21]. The Kondo breakdown is
anticipated at low temperature with the emergence of the AF
phase (with long-range order), similar to the FM case discussed
in Sec. III A.

In the fermionic mean-field approach it implies a topo-
logical transition, separating a magnetic phase with a small
Fermi surface from a nonmagnetic (K) or magnetic (AF + K)

phase, charaterized by a large Fermi surface enhanced by the
c-f mixing. In agreement with the discussion in Ref. [4],
this Lifshitz transition may coincide or not with the magnetic
transition, depending on the existence of the intermediate
phase. However, it is important to stress that in our treatment
the presence of t ′ and J (not included in the variational Monte
Carlo method of Ref. [4]) is fundamental to produce the
coexistence AF + K.

IV. DISCUSSION

From the behavior of the order parameters associated to the
FM, AF, and K phases, we have made a quite wide analysis of
the phase diagram, being able to identify the regions where the
coexistences FM + K and AF + K can be found. The evolution
of the phases has been studied as a function of temperature T ,
electronic concentration n, and the different parameters of the
Hamiltonian.

For t ′ = 0 and J = 0, the FM phase is present in the phase
diagram for n < 0.586 and small values of JK . A coexistence
FM + K is realized in a region around the FM-K boundary,
which can be divided in the two distinct solutions SSKI and
FMK, as shown in Fig. 1. For this case, explicit calculations
have also been performed on a simple cubic lattice. The results
are qualitatively similar to those shown in Figs. 1 and 3, con-
firming that the occurrence of a spin-selective Kondo insulator
is not restricted to a particular geometry, and suggesting that
it may be widespread in heavy-fermion materials.

The presence of t ′ and J causes a substantial change in the
phase diagram, as illustrated in Fig. 4. For moderate positive
values of J and t ′, the AF phase is favored, causing a suppres-
sion of the FM phase (and any possible coexistence FM + K).
In this case, the coexistence AF + K may be sustained in
the neighborhood of the AF/K boundary. Consequently, the
magnetic transitions observed in antiferromagnetic heavy-
fermion compounds may consist of a direct transition between
the pure AF and K states, or an indirect transition passing
through the mixed AF + K phase. Such description seems to be
consistent with Refs. [4,30], but the nature of the respective AF
phase is clearly distinct, which explains the different evolution
of the Fermi surfaces.

Here the allowed phases were restricted to the pure FM,
AF, K, and their mixed phases. These simple phases can
be accounted for by a one- or two-site basis, assuming
translational invariance (on each sublattice) and without charge
order (CO). We have not found any alternative magnetic
solution with 〈γ 〉 	= 0 when 〈λ〉 = 0. Such solution was
reported in Ref. [33], but it requires the tuning of an
interpolation parameter (which is absent in our formulation).
Other competing phases, such as AF with CO at quarter-filling
have not been considered, but they can be addressed by the
method in a further work.

The Shastry-Sutherland lattice can be viewed as a square
lattice with a four-site basis. We have verified that the
results of Ref. [32] for the Shastry-Sutherland lattice remain
qualitatively unchanged within the present version of the
mean-field decoupling, in particular, the double magnetic
transition obtained by varying JK .

The present results can be verified for the various heavy-
fermion compounds within the usual Doniach picture in which
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the effect of pressure is mainly governed by the parameter
JK/t . The method can be further explored to describe other
competing phases driven by frustration, such as a valence
bond solid, spin liquid, charge order, inhomogeneous phases
with partial Kondo screening, and the corresponding mixed
phases.
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