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The impact of the flexoelectric effect on the generalized susceptibility and soft phonon dispersion is not
well known in the long-range-ordered phases of ferroics. Within the Landau-Ginzburg-Devonshire approach
we obtained analytical expressions for the generalized susceptibility and phonon dispersion relations in the
ferroelectric phase. The joint action of the static and dynamic flexoelectric effects induces nondiagonal
components of the generalized susceptibility, whose amplitude is proportional to the convolution of the
spontaneous polarization with the flexocoupling constants. The flexocoupling essentially broadens the k spectrum
of the generalized susceptibility and leads to an additional “pushing away” of the optical and acoustic soft mode
phonon branches. The degeneracy of the transverse optical and acoustic modes disappears in the ferroelectric
phase in comparison with the paraelectric phase due to the joint action of flexoelectric coupling and ferroelectric
nonlinearity. The results obtained might be mainly important for theoretical analyses of a broad spectrum of
experimental data, including neutron and Brillouin scattering.
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I. INTRODUCTION

It is difficult to overestimate the significance of the contri-
bution of flexoelectric phenomena to the electromechanics of
meso- and especially nanoscale objects, for which strong strain
gradients are inevitably present at the surfaces, interfaces,
and around point and topological defects [1–3]. According
to experiments and Ginzburg-Landau-type theories, flexoelec-
tricity should strongly influence a broad spectrum of local
electromechanical responses of spatially inhomogeneous sys-
tems with inherent strain and/or polarization gradients. These
include flexoelectricity-driven imprinting [4–6] and internal
bias in thin films [7,8], the spontaneous flexoelectric effect
in nanoferroics [9], and the dead layer effect on ferroelectric
thin films conditioned by flexoelectricity [10,11]. Flexoelec-
tric coupling greatly changes the structural, energetic, and
electrotransport properties of the domain walls and interfaces
in ferroelectrics [12–16] and ferroelastics [17–19], leads to
the noticeable hardening of ferroelectrics at nanoindentations
[20–22], and significantly affects the local electrochemical
strains appearing in response to the excitation of materials
with mobile charges by the strongly inhomogeneous electric
field of the atomic force microscope tip [23,24] as well as
the mechanical writing of ferroelectric polarization by the
tip [25]. Notably, flexoelectricity is allowed by symmetry in
any material, making the effect widespread and attractive for
advanced applications.

Following a classical definition, the static flexoelectric
effect is the response of electric polarization to an elastic
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strain gradient (direct effect), and, vice versa, the polarization
appearing as a response to the strain gradient (inverse effect)
[7,26–28]. The induced strain is linearly proportional to the
polarization gradient u

sf

ij = −fijkl∂Pk/∂xl,, where fijkl are
the components of the flexocoupling tensor [1–3], and Pk are
the polarization components. While the static bulk flexoelectric
effect can be viewed as an analog of the piezoelectric effect,
the dynamic flexoelectric effect, first introduced by Tagantsev
as P

df

i = −Mij∂
2Uj/∂t2, where Uj is an elastic displacement

and Mij is a flexodynamic tensor, has no such analog, because
it corresponds to the polarization response to accelerated
motion of the medium in the time domain (see e.g. Refs. [2,3]).

Despite its great importance there are only a few ferroics
for which the static flexocoupling tensorial coefficients has
been measured experimentally [29–32], obtained from early
microscopic estimates [27], or by recent ab initio calculations
[33,34]. The experimental and theoretical results are rather
contradictory, indicating a limited understanding of the effect’s
nature. The situation with dynamic flexocoupling coefficients
is even more unclear. Recently, Kvasov and Tagantsev evalu-
ated the strength of the dynamic flexoelectric effect from ab
initio calculations and it appeared comparable to that of the
static bulk flexoelectric effect [35]. In accordance with this
[35] and earlier studies [36,37], an accurate analysis of the
soft phonon spectra extracted from the neutron and Brillouin
scattering data can provide information about the components
of the total flexocoupling coefficient.

It is remarkable that there is an important class of physical
problems for which the impact of flexocoupling can be
critically important but is not enough studied, and some aspects
have been studied rather poorly, including the influence of the
static and dynamic flexocouplings on the long-range order
parameter fluctuations in the ordered phase of ferroics. Let
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us underline that the basic experimental methods collecting
information about the fluctuations are dynamic dielectric
measurements and neutron and Brillouin scattering [38–40].
Available experimental and theoretical results (see, e.g.,
[41–43]) mostly demonstrate the significant material-specific
impact of the flexocoupling on the scattering spectra. For
instance the theory [36,37] predicts a sharp maximum for
SrTiO3 in the field dependence of the dielectric loss due to
the significant flexoelectric coupling between the soft mode
and acoustic phonon branches, while the analogous field
dependence of the loss for Ba0.6Sr0.4TiO3 appeared monotonic
because of small flexoelectric coupling.

The impact of the flexoelectric effect on the generalized
susceptibility and soft phonon dispersion is not well known
theoretically in the long-range-ordered phases of ferroics.
This gap in knowledge motivated us to solve the problem for
ferroics with local disordering sources (e.g., chemical strains
originating from impurity ions or vacancies).

II. GENERAL THEORY: ANALYTICAL RESULTS NEAR
THE CENTER OF THE BRILLOUIN ZONE

The generalized expression for the free energy functional
has the following form [24]:

F =
∫

V

d3r

[
αPiPi + αijklPiPjPkPl + αijklmnPiPjPkPlPmPn + gijkl

2

(
∂Pi

∂xj

∂Pk

∂xl

)
− PiEi − qijkluijPkPl + cijkl

2
uijukl

+ fijkm

2

(
uij

∂Pm

∂xk

− Pm

∂ uij

∂xk

)
+ [�ij (n − ne) + βij (N+

d − N+
de)]uij

]
. (1)

Hereinafter summation is performed over all repeating in-
dices; Pi is the electric polarization. The expansion coefficient
α is temperature dependent, α = αT (T − TC), where T is the
absolute temperature and TC is the Curie temperature. The
elastic strain tensor is umn, qmnij is the electrostriction tensor,
and fmnli is the flexoelectric effect tensor. The higher-order
coefficients αijkl and αijklmn are regarded as temperature
independent; gijkl are gradient coefficient tensors, and cijkl are
elastic compliances. Also we introduce the fluctuations of the
electron density, δn(r) = n(r) − ne, and donor concentration,
δNd (r) = N+

d (r) − N+
de, from the space charge equilibrium

values ne and N+
de. The electron density in the conduction

band is n and N+
d is the concentration of ionized donors, e.g.,

impurity ions or oxygen vacancies. The deformation potential
tensor is denoted by �ij and the Vegard expansion tensor is
βij .

The dynamic equations of state can be derived from the
minimization of the Lagrange function L = F − T , where the
kinetic energy T is given by the expression T = μ

2 ( ∂Pi

∂t
)2 +

Mij
∂Pi

∂t

∂Uj

∂t
+ ρ

2 ( ∂Ui

∂t
)2,which includes the dynamic flexoelec-

tric coupling with the tensorial strength Mij [2]. Ui is the elastic
displacement and ρ is the density of the ferroelectric. The
corresponding time-dependent Landau-Ginzburg-Devonshire-
type equation of state for ferroelectric polarization reads

μ
∂2 Pi

∂t2
+ Mij

∂2Uj

∂t2
+ 2(αδij − umnqmnij )Pj

+ 4αijklPjPkPl + 6αijklmnPjPkPlPmPn

− gijkl

∂2Pk

∂xj∂xl

= fmnli

∂ umn

∂xl

+ Ei. (2)

The total field is the sum of depolarization (d) and small
probing external (ext) fields, Ei = Ed

i + δEext
i . The field

should be found self-consistently from the electric potential
φ as Ek = −∂ φ/∂xk , since the potential satisfies the Poisson

equation

εbε0
∂2φ

∂x2
i

= ∂Pi

∂xi

+ e(N+
d − n), (3)

where εb is the background permittivity [44] and ε0 = 8.85 ×
10−12 F/m is the dielectric permittivity of vacuum, e(N+

d − n)
the space charge density, and e = 1.6 × 10−19 C the electronic
charge.

The elastic strains uij and stresses σij are related via the
generalized Hooke’s law, which includes the conventional
Hooke’s relation, deformation and chemical stresses, and
flexoelectric and electrostriction terms [23,24]. Since the time-
dependent equation of mechanical equilibrium, ∂σij /∂xj =
ρ∂2Ui/∂t2, should be valid, the equation transforms into a
dynamic Lamé-type equation for elastic strain

cijkl

∂2Ul

∂xj ∂xk

− ρ
∂2Ui

∂t2
− Mij

∂2Pj

∂t2

= − ∂

∂xj

(
�ij δn + βij δNd + fijkl

∂Pl

∂xk

− qijklPkPl

)
.

(4)

In order to derive expression for the linear generalized
susceptibility and the correlation function, let us linearize
Eq. (2) for polarization and Eq. (4) for the displacement
in the vicinity of the spontaneous values ukl = u

(s)
kl + δukl

and Pi = P
(s)
i + δPi , where u(s)

mn = smnij qijklP
(s)
k P

(s)
l is the

spontaneous strain related to the spontaneous polarization
P

(s)
l . Both spontaneous strain and polarization are supposed

to be coordinate and time independent in the considered bulk
system. The electric field Ei = E

(s)
i + δEd

i + δEext
i , where

the depolarization field fluctuations δEd
i will be estimated in

the Debye approximation as described in Appendix A of the
Supplemental Material [45].

The Fourier representations in the spatial k and frequency
ω domains of the linearized solution for polarization and strain
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fluctuation have the forms

δP̃j (k,ω) = [
δẼext

i + ikj ′Smi ′ (k,ω)
(
2iknqmnijP

(s)
j + fmnliklkn − Mmiω

2
)
δC̃i ′j ′

]
χ̃ij (k,ω), (5a)

δŨk(k,ω) = −ikj δC̃ij Sik(k,ω) + Sik(k,ω)χ̃sl(k,ω)
(
fijmlkj km − Milω

2 − 2ikj qijnlP
(s)
n

)
× [

δẼext
s + i

(
fqnpskpkn − Mqsω

2
)
kj ′Sqi ′ (k,ω)δC̃ij

]
, (5b)

where δC̃ij = (�ij δñ + βij δÑd ). Since the harmonic approach
(5) is applicable for small wave vector k, we would like to
underline that we did not aim to reach quantitative agreement
between the calculated and experimentally observed soft
phonon spectra in the entire first Brillouin zone. Consideration
of the problem for higher k values requires inclusion of the
anharmonicity and higher gradient terms [46].

The generalized susceptibility χ̃ij (k,ω), which is in fact the
correlation function, and the elastic function Sir (k,ω) included
in Eqs. (5) are given by the expressions

χ̃−1
ij (k,ω) = βij (k,ω) + 
ipjl(k,ω) + Qij (k,ω)

+ γijkl(k,ω)P (s)
k P

(s)
l , (6a)

S−1
ik (k,ω) = cijklklkj − ρω2δik. (6b)

Here the linear dynamic stiffness is affected by the depo-
larization effect as βij (k,ω) = (2α − μω2)δij + kikj

εbε0(k2+R−2
d )

,

where Rd is the Debye screening radius. The nonlinear
stiffness is γijkl(k,ω) = 12αijkl − 2qmnij qi ′j ′klsmni ′j ′ −
4qmnilqi ′j ′jkkj ′knSmi ′ (k,ω) + 30 αijklmnP

(s)
m P (s)

n . The
flexoelectric coupling changes the polarization gradient
coefficient tensor gipjl to an ω- and k-dependent tensorial
function that has the following form 
ipjl(k,ω) = gipjlkpkl −
(fmnliknkl − Mmiω

2)(fi ′j ′pj kj ′kp − Mi ′jω
2)Smi ′(k,ω). The

additional complex term Qij (k,ω) is proportional to the
convolution of the spontaneous polarization vector with the
static and dynamic flexocoupling constants:

Qij (k,ω) = 2iSmi ′ (k,ω)[(fmnpikpkn − Mmiω
2)kj ′qi ′j ′kj

− (fi ′j ′pj kpkj ′ − Mi ′jω
2)knqmnik]P (s)

k . (7)

Here the static and dynamic flexocoupling appeared in a
universal combination (fmnpikpkn − Mmiω

2). The term is
absent in a paraelectric phase, since there P

(s)
k = 0.

Note that the Green tensor χ̃ij (k,ω) is independent
of any source of the fluctuations by definition. However,
polarization variation δP̃j (k,ω) and displacement variation
δŨk(k,ω), which are the solutions of the linearized equations
(5), are proportional to both sources, the external electric
field variation δẼext

i and the concentration disorder δC̃ij ,
but the proportionality coefficients are different in nature.
In particular the relation δP̃j (k,ω) ∼ δẼext

i χ̃ij (k,ω) is
conventional and means that the polarization fluctuation is
proportional to the dielectric susceptibility, but it is partly
proportional to another source δP̃j (k,ω) ∼ ikj ′Smi ′ (k,ω)
(2iknqmnijP

(s)
j + fmnliklkn − Mmiω

2)χ̃ij (k,ω)δC̃i ′j ′ , which
looks nontrivial due to the presence of additional
electrostrictive and static and dynamic flexocoupling
contributions (2iknqmnijP

(s)
j + fmnliklkn − Mmiω

2).

The order parameter correlation function is related to the
generalized susceptibility via the Callen-Welton fluctuation-
dissipation theorem [47] and the corresponding correla-
tion radius can be determined from the direct matrix
χ̃ij (k,ω). Following the Cochren paper [38], the dynam-
ical structural factor of neutron scattering is proportional
to the dynamic susceptibility spectrum χ̃(k,ω). The in-
tegrated intensity of the scattering is proportional to the
static spectrum (dσ/d�) ∼ χ̃ (k,0). In the next section we
discuss the influence of the flexocoupling on the static
spectrum of the dielectric susceptibility in a ferroelectric
phase.

III. FLEXOCOUPLING IMPACT ON THE DYNAMIC
GENERALIZED SUSCEPTIBILITY IN

A FERROELECTRIC PHASE

In the general case analytical expressions for χ̃ij (k,ω) are
rather cumbersome. In order to analyze analytically concrete
cases, below we consider a uniaxial ferroelectric with a
spontaneous polarization directed along the z axis, P(s) =
(0,0,PS) and other tensorial properties (elastic, electrostrictive,
and flexoelectric) in the cubic symmetry approximation.
Analytical results were derived for the basic orientations
of the wave vector k = (0,0,kz) and k = (kx,0,0) [or k =
(0,ky,0)]. Calculation details are listed in Appendix B of the
Supplemental Material [45]. All numerical calculations in this
and the next sections are performed for PbZr0.4Ti0.6O3 (PZT)
in its cubic paraelectric and tetragonal ferroelectric phases.

A. Orientation I of the wave vector k = (0,0,kz):
Ferroelectric phase

For the case, when a wave vector k = (0,0,kz) is parallel
to the spontaneous polarization direction PS = (0,0,PS), the
corresponding nonzero components of the susceptibility are
[45]

χ̃11(k,ω) = χ̃22(k,ω) = 1

α∗
11 − μω2 + g∗

44k
2
z

, (8a)

χ̃33(k,ω) =
(

α∗
33 − μω2 + g∗

11k
2
z + k2

z

εbε0
(
k2
z + R−2

d

)
)−1

.

(8b)

Hereinafter the Voigt notations are used. The spontaneous
polarization contributes to the spectrum of χ̃ij (k,ω) via
the renormalization of the dielectric stiffness coefficient
α as α∗

11(k,ω) = 2α + P 2
S (β∗

12 − q2
44k

2
z

c44k2−ρω2 ) + 2α112P
4
S and

α∗
33(k,ω) = 2α + P 2

S (β∗
11 − 4q2

11k
2
z

c11k2
z −ρω2 ) + 30α111P

4
S . The non-

linear stiffness αijkl is renormalized by electrostriction
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FIG. 1. (Color online) Spatial spectrum of the generalized sus-
ceptibility nonzero components χ̃ij (ω = 0,kx) calculated for the
different directions of fluctuation of the wave vector k with respect
to the spontaneous polarization PS = (0,0,PS). (a) �k↑↑ �PS and
transverse (b) �k⊥ �PS . a is the lattice constant; temperature T = 300 K
corresponds to the ferroelectric phase (legend “FE”). (c),(d) are
calculated in the paraelectric phase (legend “PE”) at temperatures
T = 750 K (c) and T = 900 K (d). Dashed curves are calculated with
flexoelectric effect (legend “fij �= 0”) and solid curves are without
it (legend “fij = 0”). The curves are calculated for PZT parameters
from Table I.

coupling as β∗
11 = 12α11 − 2(q11+2q12)2

3(c11+2c12) − 2q2
44

3c44
and β∗

12 =
2α12 − 2(q11+2q12)2

3(c11+2c12) + q2
44

3c44
.Thus the contribution of spontaneous

polarization via the ferroelectric nonlinearity (∼β∗
12P

2
S ) and

electrostriction (∼qij qkjP
2
S ) mechanisms can lead to either

increase or decrease of the coefficients α∗
ij depending on the

signs of the material constants.
Flexocoupling changes the gradient coefficients as

g∗
11(k,ω) = g11 −

(
f11k

2
z − M11ω

2
)2

k2
z

(
c11k2

z − ρω2
) ,

(9)

g∗
44(k,ω) = g44 −

(
f44k

2
z − M11ω

2
)2

k2
z

(
c44k2

z − ρω2
) .

The term (εbε0)−1k2
z /(k

2
z + R−2

d ) in χ̃33 originates from the
depolarization electric field.

The static k-spectra of χ̃ij (k,0) calculated in the ferroelec-
tric phase with and without the flexocoupling contribution are
shown in Fig. 1(a). The component χ̃33 is much smaller than
the ones due to the depolarization effect. As one can see from
the figure, the flexoelectric effect essentially broadens the k
spectrum of all susceptibility components and the broadening
increases with increase of k. Both spectra coincide at the
point k = 0 as anticipated. The dynamic flexoeffect does
not contribute to the spectra in the static case (ω = 0). The
contribution of spontaneous polarization via the ferroelectric
nonlinearity and electrostriction mechanisms can lead to both
broadening and narrowing of the different components of the
susceptibility k spectra.

B. Orientation II of the wave vector k = (kx,0,0):
Ferroelectric phase

For the case when a fluctuation wave vector k = (kx,0,0)
is normal to the spontaneous polarization direction PS =
(0,0,PS), the corresponding nonzero components of the
generalized susceptibility are [45]

χ̃11(k,ω) = α∗
11 − μω2 + g∗

44k
2
x

�22(k,ω)
, χ̃22(k,ω) = 1

α∗
22 − μω2 + g∗

44k
2
x

, (10a)

χ̃33(k,ω) =
(

α∗
33 − μω2 + g∗

11k
2
x + k2

x

εbε0
(
k2
x + R−2

d

)
)

1

�22(k,ω)
, (10b)

χ̃13(k,ω) = −χ̃31(k,ω) = −2iPSkx

�22(k,ω)

(
q12

(
f11k

2
x − M11ω

2
)

c11k2
x − ρω2

− q44
(
f44k

2
x − M11ω

2
)

2
(
c44k2

x − ρω2
)

)
. (10c)

The spontaneous polarization contributes to the components by the renormalization of the linear dielectric stiff-

ness coefficients α∗
11(k,ω) = 2α + (β∗

11 − 4q12
2k2

x

c11k2
x−ρω2 )P 2

S + 30α111P
4
S , α∗

22(k,ω) = 2α + β∗
12P

2
S + 2α112P

4
S , and α∗

33(k,ω) = 2α +
(β∗

12 − q2
44k

2
x

c44k2
x−ρω2 )P 2

S + 2α112P
4
S .The forms of the gradient functions g∗

11(k,ω) and g∗
44(k,ω) used in Eqs. (10) are the same as

those in Eq.(9) with the only substitution kz → kx . Note that the nonzero nondiagonal element χ̃13(k,ω) is proportional to the
product of the spontaneous polarization value and the flexocoupling constants. The denominator �22(k,ω) is expressed in terms
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of inverse matrix elements, �22(k,ω) = χ̃−1
11 (k,ω)χ̃−1

33 (k,ω) − χ̃−1
13 (k,ω)χ̃−1

31 (k,ω). The evident expression for �22(k,ω) is

�22(k,ω) = s − 4k2
xP

2
S

(
q12

(
f11k

2
x − M11ω

2
)

c11k2
x − ρω2

− q44
(
f44k

2
x − M11ω

2
)

2
(
c44k2

x − ρω2
)

)2

.

+(
α∗

11 − μω2 + g∗
44k

2
x

)(
α∗

33 − μω2 + g∗
11k

2
x + k2

x

εbε0
(
k2
x + R−2

d

)
)

(11)

The flexocoupling induces several major changes in the
susceptibilities, in particular to the terms directly proportional
to the product of spontaneous polarization and flexocoupling
constants originating from χ̃13(k,ω), as well as changes related
to the gradient functions g∗

ii(k,ω). The physical interpretation
of the nondiagonal components of the susceptibility given by
Eq. (10c) seems very important for us, because it can stimulate
experimental verification of the theoretical prediction. The
appearance of χ̃13(k,ω) = −χ̃31(k,ω) in a ferroelectric with
noticeable flexocoupling means that the application of a
spatially inhomogeneous probing electric field in direction
3 (or 1) should induce a polarization change in direction 1
(or 3), and that the frequency spectrum is proportional to
the product of the spontaneous polarization value PS and
factors proportional to the static and dynamic flexocoupling
constants. We may suggest performing experiments aimed at
studying the changes of the nondiagonal components of the
dielectric permittivity tensor induced by spatially modulated
electromagnetic waves (such as induced optical gyration) or
by an electric field gradient in the ferroelectric phase of those
ferroics whose dielectric response to a homogeneous electric
field does not contain any nondiagonal contributions.

The static k-spectra of χ̃ij (k,0) calculated in the ferroelec-
tric phase with and without flexocoupling contributions are
shown in the Fig. 1(b). The strict inequalities χ̃11 
 χ̃33 
 χ̃22
and |χ̃13| 
 χ̃33 are valid due to the depolarization effect,
because the denominator �22(k,0) includes the depolarization
factor (εbε0)−1k2/(k2 + R−2

d ) and thus strongly decreases χ̃11,
χ̃13, and χ̃33 in comparison with the component χ̃22, which
is not affected by depolarizing at all, as should be expected
for transverse fluctuations of the polarization z component in
the direction 1. Since χ̃33 contains the depolarization factor in
the numerator, it becomes much higher than the components
χ̃11 and χ̃13. As one can see from Fig. 1(b) the flexoelectric
effect induces the nondiagonal component χ̃13, which is odd
with respect to k, and essentially broadens the k spectrum of
the diagonal components of the susceptibility. The broadening
increases with increase of k.

C. Paraelectric phase

Finally, let us compare the susceptibility spectrum in
the ferroelectric and paraelectric phases. Corresponding ex-
pressions in the paraelectric phase can be derived from
Eqs. (8)–(11) at PS = 0. Since the determinant �22(k,ω) =
(α∗

11 − μω2 + g∗
44k

2
x)(α∗

33 − μω2 + g∗
11k

2
x + k2

x

εbε0(k2
x+R−2

d )
) and

the susceptibility component χ̃13(k,ω) = −χ̃31(k,ω) = 0 in
the paraelectric phase, the mathematical forms of the expres-
sions obtained coincide with Eqs. (8). Thus three diagonal
components are nonzero in the paraelectric phase, but only

two of them are different. The static k spectra of χ̃ij (k,0)
calculated in the paraelectric phase with and without the
flexocoupling contribution are shown in Figs. 1(c) and 1(d)
for two different temperatures T = 750 K (c) and 900 K (d).
Both paraelectric spectra look similar to the ferroelectric
one calculated for the case �k↑↑ �PS and shown in Fig. 1(a).
When the temperature approaches the phase transition at
T = 691K the maximum height strongly increases for some of
the susceptibility components, namely, χ̃11(0,kz) = χ̃22(0,kz)
increases for the case k = (0,0,kz) and χ̃22(0,kx) = χ̃33(0,kx)
increases for the case k = (kx,0,0), as anticipated [compare
the vertical scales in Figs. 1(c) and 1(d)].

The condition for the onset of the homogeneous distribution
instability follows from the analysis of the determinant
det[χ̃−1

ij (k,ω)] = 0. In the static limit (ω = 0) and in the
paraelectric phase the condition reduces to the following
equations:

2αc44 + k2
(
c44g44 − f 4

44

) = 0,(
2α + k2

εbε0
(
k2 + R−2

d

)
)

c11 + k2(c11g11 − f 4
11

) = 0.

(12a)

The derivation details of Eq. (12a) are listed in Appendix
C of the Supplemental Material [45]. Since the coefficient
α is not negative in a paraelectric phase and the factor
1/εbε0(k2

x + R−2
d ) is positive, Eqs. (12a) give sufficient condi-

tions for homogeneous distribution stability:

f11
2 < g11c11, f44

2 < g44c44. (12b)

Note that the condition f44
2 < g44c44 coincides with the

one derived in Refs. [9,48]. If one of the inequalities (12b)
becomes invalid, one can expect the onset and evolution of the
modulated phases.

The tensor Rij of correlation radii is proportional to the
second derivative of the generalized susceptibility, R2

ij =
− 1

2χ̃ij

(
∂2χ̃ij (k,0)

∂k2 )
2
|k→0,where k is either kz or kx. The depen-

dences of the correlation radii of Rij on the flexoelectric
coefficients f11 and f44 are shown in Figs. 2(a) and 2(b),
respectively. The correlation radii either monotonically de-
crease with increase of the flexoelectric coupling constants fij

or remained independent of some fij . In particular R13 always
decreases with increase of fij , because χ̃13 is proportional to
fij . The situation with other Rij depends on the orientation of
the vector k with respect to the spontaneous polarization PS .
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FIG. 2. (Color online) Dependence of correlation radii Rij on
the flexoelectric coefficient f11 (a) and f44 (b). Dashed curves are
calculated for �k↑↑ �PS and solid curves correspond to �k⊥ �PS . The
curves are calculated for PZT parameters from Table I. Temperature
T = 300 K.

IV. THE IMPACT OF FLEXOCOUPLING ON SOFT
PHONON SPECTRA

Starting from the classic Shirane et al. papers [41–43],
soft phonon dispersion has been studied experimentally for
several incipient and actual ferroelectrics. Below we study the
impact of the flexocoupling on the soft phonon dispersion in
the ferroelectric phase and compare the results with those in a
paraelectric phase.

Dispersion relations for longitudinal and transverse optical
(LO and TO) and acoustic (LA and TA) modes can be
obtained from analyses of the determinant det[χ̃−1

ij (k,ω)] = 0.
Dispersion relations for the direction of the fluctuation wave
vector k = (0,0,kz) were derived for the cases k↑↑δP and
k⊥δP , respectively. They acquire the forms⎛

⎝2α − μω2 + g11k
2
z − (f11k

2
z −M11ω

2)2

c11k2
z −ρω2 + k2

z

εbε0(k2
z +R−2

d )
+P 2

S

(
β∗

11 − 4q2
11k

2
z

c11k2
z −ρω2

)
+ 30α111P

4
S

⎞
⎠ = 0,

(13a)

2α − μω2 + g44k
2
z −

(
f44k

2
z − M11ω

2
)2

c44k2
z − ρω2

+P 2
S

(
β∗

12 − q2
44k

2
z

c44k2
z − ρω2

)
+ 2α112P

4
S = 0. (13b)

The dispersion relation for the direction of the fluctuation
wave vector k = (kx,0,0) has the form[

2α − μω2 + g∗
44(k,ω)k2

x + P 2
S β∗

12

]
�22(k,ω) = 0. (13c)

The terms originating from the static and dynamic flex-
ocoupling appeared in the combinations (f11k

2
z − M11ω

2)
and (f44k

2
z − M11ω

2) in the equations. The spontaneous
polarization PS , via the ferroelectric nonlinearity and elec-
trostriction mechanisms, generates the terms proportional to
β∗

ijP
2
S , αijklP

4
S , and qij qkjP

2
S in the equations. Due to the k

dependence of the terms ∼P 2
S an analytical solution of Eqs.

(13) is absent in the ferroelectric phase.
The features of the soft phonon k spectra were calculated

with static (fij �= 0 and Mij = 0) and dynamic (fij �= 0 and
Mij �= 0) flexocoupling and without it (fij = 0 and Mij = 0).
Spectra calculated in the paraelectric and ferroelectric phases

FIG. 3. (Color online) Soft phonon frequency dispersion. The
wave vector k is reduced in π/a units; a is the lattice constant.
(a) corresponds to the paraelectric phase (legend “PE”) of PZT at
temperature T = 700 K; (b) and (c) are calculated in the ferroelectric
phase (legend “FE”) at temperature T = 680 K for longitudinal
�k↑↑ �PS (b) and transverse �k⊥ �PS (c),(d) fluctuation of the wave vector
direction with respect to the spontaneous polarization PS = (0,0,PS).
Solid curves are calculated without flexoelectric coupling (legend
“fij = 0,Mij = 0”); dashed curves are calculated with the static
but without the dynamic coupling (legend “fij �=0,Mij �= 0”); dotted
curves are calculated with the dynamic and static flexoelectric
couplings included (legend “fij �= 0,Mij �= 0”). (d) Zoom of the plot
(c) inside the circle. The curves are calculated for PZT parameters
from Table I.

for the cases �k↑↑ �PS and �k⊥ �PS are compared in Figs. 3(a),
3(b), and 3(c), respectively. Parameters corresponding to PZT
are listed in Table I.

Equations (13) have relatively simple analytical solutions
in a paraelectric phase (P 2

S = 0), namely, two acoustic
(LA and TA) and two optical (LO and TO) modes [see
Fig. 3(a)]. Equation (13a) has an analytical solution in a
ferroelectric phase also, and it contains one acoustic mode
LA3 and a very high longitudinal optical mode (LO) with
frequency at about 150 × 1012 s−1, which is maximal in
the dielectric limit (R−2

d → 0). The LO mode is weakly
dependent on temperature due to the depolarization factor
k2
z /εbε0(k2

z + R−2
d ), which becomes extremely large in the

dielectric limit. Both paraelectric and ferroelectric spectra
contain rather high-frequency longitudinal optical modes (LO)
due to the strong depolarization field, which is maximal in the
dielectric limit and is almost independent of the flexocouplings
and temperature. Therefore the LO modes are not shown in
Fig. 3. The longitudinal soft mode LA3 is insensitive to the
flexocoupling, because its dispersion is strongly affected by
the depolarization.
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TABLE I. Material parameters for bulk ferroelectric.

Coefficient PbZr0.4Ti0.6O3 (from [49,50]) PbTiO3 (from [51])

εb 5 [44] 5
αiT (105C−2 mJ/K) 2.12 3.765
TC(K) 691 752
α

(σ )
ij (108C−4m5 J) a11 = 0.3614, a12 = 3.233 a11 = −0.725, a12 = 7.50

αijk(108J m9C−6) a111 = 1.859, a112 = 8.503, a123 = −40.63 a111 = 2.606, a112 = 6.10, a123 = −36.60
qij (109V m/C) q11 = 8.91, q12 = −0.787, q44 = 3.18 q11 = 11, q44 = 7
cij (1010Pa) c11 = 17.0, c12 = 8.2, c44 = 4.7 c11 = 18, c12 = 7.9, c44 = 11
gij (10−10C−2 m3 J) g11 = 2.0, g44 = 1.0a g11 = 1.5, g44 = 0.5
fij (V) f11 = 5, f12 = −1, f44 = +1b f11 = −8, f44 = −1.9
M11(Vs2/m2) 6 × 10−8 [35] −2 × 10−8

ρ(103kg/m3) 8.087c 7.986
μ (10−18s2mJ) 1.413 [41] 1.59
Rd (m) From 20 nm to infinity Infinity

aEstimated from domain wall width.
bEstimated from [27,30,31,32].
cAt normal conditions.

Due to the k dependence of the terms ∼P 2
S an analytical

solution of Eqs. (13b) is absent in a ferroelectric phase.
The corresponding numerical solution has four degenerate
transverse soft phonon branches, namely, two optical (TO1 =
TO2) and two acoustic (TA1 = TA2) modes [see Fig. 3(b)].
All the transverse soft modes are relatively sensitive to both
dynamic and static flexocoupling constants, especially at
kza/π � 0.03, where a is the lattice constant [compare the
solid, dotted, and dashed curves for TO modes in Figs. 3(a)
and 3(b)]. Since the calculated phonon spectrum in the
paraelectric phase has two acoustic (LA and TA) and two
optical (LO and TO) modes, we can conclude that the
appearance of spontaneous polarization does not lead to
qualitative changes in the spectra for the case of wave vector
direction �k↑↑ �PS .

Without flexocoupling the numerical solution of Eq. (13c)
has six different phonon branches in the ferroelectric phase for
the case �k⊥ �PS , namely, three optical (LO, TO2, and TO3) and
three acoustic (LA1, TA2, and TA3) modes; the frequencies of
the modes TA2 and TA3 are almost the same at kax/π < 0.3
[see the solid curves in Fig. 3(c)]. With the flexocoupling
included, the solution in the ferroelectric phase has also six
different soft phonon branches, three optical (LO, TO2, and
TO3 ) and three acoustic (LA1, TA2, and TA3) modes; in this
case the frequencies of the modes TA2 and TA3 are noticeably
different at kax/π < 0.3 [see the dashed and dotted curves
in Fig. 3(c)]. Since the phonon spectra in the paraelectric
phase have two optical (LO and TO) and two acoustic (LA
and TA) modes [see Fig. 3(a)], we can conclude that the
appearance of spontaneous polarization leads to the removal
of the degeneracy of the acoustic and optical modes TA and
TO for the case �k⊥ �PS and consequently to the appearance of
different transverse acoustic and optical modes TA2 and TA3,
TO2 and TO3. The transverse TO2,3 and TA2,3 modes are
relatively sensitive to both the static and dynamic flexoelectric
coupling strength for the case �k⊥ �PS and kxa/π � 0.1 for
acoustic modes and for small k for optical modes; meanwhile
the longitudinal LA1 mode becomes sensitive to the coupling
at kxa/π � 0.15 [compare the solid, dotted, and dashed curves

in Fig. 3(c)]. The flexoelectric coupling significantly increases
the splitting of the TA2 and TA3 modes. Moreover, the
TO3 and LA1 modes are “pushed away” by the static and
dynamic flexocoupling in the ferroelectric phase at small k
(kxa/π � 0.15) and start to approach each other at kxa/π �
0.15 [compare the solid and dashed curves in Fig. 3(d)]. The
effects give us the opportunity to define the static and dynamic
flexocoupling constants (e.g., f11, f44, and M11) from soft
phonon spectra with the assumption of other known material
parameters.

Finally, let us answer the question of how important the
flexocoupling is for a quantitative description of the observed
phonon spectra. In Fig. 4 we compare the paraelectric and
ferroelectric soft phonon spectra of PbTiO3 calculated by us
with the spectra experimentally observed by Shirane et al. [41].
Parameters corresponding to the best fitting of PbTiO3 spectra

FIG. 4. (Color online) Soft phonon branch frequency vs k calcu-
lated in PbTiO3. (a) corresponds to the paraelectric (PE) phase at T =
510 C, and (b) is calculated in the ferroelectric (FE) phase (T = 22 C)
for the case �k↑↑ �PS . Symbols are experimental data from Ref. [41].
Dotted curves are calculated without flexoelectric coupling (legend
“fij = 0,Mij = 0”); dashed curves are calculated with the static but
without the dynamic effect (legend “fij �= 0,Mij = 0”); and solid
curves are calculated with the dynamic and static flexoelectric effects
included (legend “fij �= 0,Mij �= 0”). Parameters corresponding to
the best fitting of PbTiO3 spectra are listed in the last row of Table I.
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are listed in the last column of Table I. It is clear from the figure
that only the solid curves calculated for both nonzero static and
dynamic flexocoupling constants (f11 = −8 V, f44 = −1.9 V,
and M11 = −2 × 10−8 V s2/m2) describe quantitatively the
observed paraelectric and ferroelectric soft phonon spectra
of PbTiO3 at small k (compare the dotted, dashed, and
solid curves in Fig. 4). Therefore it is hardly possibly to fit
the experimental results without inclusion of nonzero static
and dynamic flexocoupling constants. Hence we conclude
that both these contributions are critically important in a
quantitativedescription of the available experimental data even
at small k.

V. SUMMARY

Within the Landau-Ginzburg-Devonshire approach we es-
tablished the impact of the static and dynamic flexocoupling
on the correlation function of the long-range order parameter
fluctuations in the ferroelectric phase of ferroics with local
disordering sources and obtained analytical expressions for
the generalized susceptibility and phonon dispersion rela-
tions for ferroelectrics with arbitrary symmetry and elastic
and electrostrictive anisotropy. Relatively simple analytical
expressions for the susceptibility components and soft phonon
dispersion law were derived in the cubic approximation for the
elastic and electrostrictive properties of ferroelectrics. Using
the expressions, we studied the physical manifestations of the
flexocoupling and came to the following conclusions:

(a) The joint action of the static and dynamic flexoelectric
effects induces nondiagonal components of the generalized
susceptibility, whose amplitudes are proportional to the convo-
lution of the spontaneous polarization with the flexocoupling
constants.

(b) The flexocoupling essentially broadens the k spectrum
of the generalized susceptibility and so decreases the correla-
tion radii.

(c) The contribution of spontaneous polarization via ferro-
electric nonlinearity and electrostriction mechanisms can lead
to both broadening and narrowing of the k spectrum of the
susceptibility.

(d) The appearance of spontaneous polarization leads to
the removal of the modes’ degeneracy and consequently to the
appearance of different transverse acoustic and optical modes.
The flexoelectric coupling significantly increases the splitting
of the acoustic modes, as well as leading to the additional
pushing away of the optical and acoustic soft mode phonon
branches.

(e) It appeared hardly possible to fit adequately the
experimentally observed phonon spectra of lead zirconate

titanate for zero static and dynamic flexocoupling constants
even at small k. Hence we conclude that both the static
and dynamic contributions are critically important to describe
quantitatively the available experimental data.

Also we would like to underline that we did not aim to
reach a quantitative agreement between the calculated and
experimentally observed soft phonon spectra in the first Bril-
louin zone. Consideration of the problem for higher k values
requires including the anharmonicity and higher gradient terms
to modify the harmonic approach we used. However, our
results prove the evident importance of the static and dynamic
flexocouplings for the adequate description of the generalized
susceptibilities and soft phonon spectra near the center of
the Brillouin zone. Since modern and classic experimental
methods readily capture the small-k region, further study of
the flexocouplings’ impact on the susceptibility spectra for
all crystallographic symmetries seems important. Note that
our model does not contain any damping, but the energy
dissipation (e.g., sound attenuation or optical phonon damping
[52]) could also be analyzed with account of flexocoupling
on the basis of the Landau-Khalatnikov theory. The results
obtained can be extremely important for theoretical analyses
of the broad spectrum of experimental data including neutron
and Brillouin scattering, which collects unique information
from the structural factors and phonon dispersion.
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