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Learning scheme to predict atomic forces and accelerate materials simulations
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The behavior of an atom in a molecule, liquid, or solid is governed by the force it experiences. If the dependence
of this vectorial force on the atomic chemical environment can be learned efficiently with high fidelity from
benchmark reference results—using “big-data” techniques, i.e., without resorting to actual functional forms—then
this capability can be harnessed to enormously speed up in silico materials simulations. The present contribution
provides several examples of how such a force field for Al can be used to go far beyond the length-scale
and time-scale regimes presently accessible using quantum-mechanical methods. It is argued that pathways are
available to systematically and continuously improve the predictive capability of such a learned force field in an
adaptive manner, and that this concept can be generalized to include multiple elements.
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The dynamic behavior of an atom in a molecule, liquid, or
solid is directly determined by the local force it experiences.
Nevertheless, as already pointed out by Feynman [1], forces
are generally viewed as secondary computed quantities and are
obtained through the agency of the total potential energy—a
global property of the entire system. In practice, forces on
atoms are obtained either as byproducts during a potential-
energy evaluation or from the first derivative of the potential
energy with respect to the atomic positions. Direct and rapid
access to atomic forces, given just the atomic configuration
of a system (molecule, liquid, or solid), immediately makes
it possible to perform efficient geometry optimizations and
molecular dynamics (MD) simulations, provided, of course,
the predicted force is formally conservative, i.e., it is consistent
with an underlying potential-energy surface. If the capability
to predict conservative forces preserves the fidelity of high-
level quantum-mechanics-based methods, but comes at a
minuscule fraction of the cost, and if this capability can be
extended systematically and progressively to potentially all
configurational and chemical environments that an atom may
experience, we will have a powerful and adaptive materials
simulation scheme.

The present contribution lays the groundwork and takes
initial steps towards the above vision. A scheme is presented
that systematically learns in an interpolative manner to
predict atomic forces in environments encountered during the
dynamical evolution of materials from a set of high-level
calculations performed on reference atomic configurations
with modest system sizes. This concept is resonant with
emerging data-driven (or “big-data” [2–6]) approaches aimed
at materials discovery in general [7,8], as well as at accel-
erating materials simulations [9–13]. Machine-learning (ML)
methods using neural networks [9,10] and Gaussian processes
[11,12] have been successful in the development of interatomic
potentials, wherein the potential-energy surface is learned from
a set of higher-level (quantum-mechanics-based) reference
calculations.
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The distinctive aspect of the present contribution, namely,
learning to predict atomic forces directly from past data, has
been suggested only recently [12,13] (to accelerate ab initio
MD simulations on the fly). Here, we propose the creation
of a stand-alone, purely data-driven, force prediction recipe
(devoid of any explicit functional form) that can also provide
the underlying potential-energy surface (through integration).
Both the forces and the potential energy can be predicted with
a high level of accuracy at speeds several orders of magnitude
faster than the reference quantum-mechanics-based calcula-
tions. Moreover, this force field is adaptive (i.e., new config-
urational environments can be systematically incorporated as
required) and generalizable (i.e., the scheme can be extended
to any collection of elements for which reliable reference cal-
culations can be performed). A practical scheme that exploits
the rapid high-fidelity force prediction capability within a ma-
terials simulation framework is presented, and demonstrated
for Al in several configurational environments and dynamical
situations that go well beyond the reaches of conventional
first-principles simulations. Pathways to extend this concept
to handle multielemental systems are also proposed.

Central to this development is a robust scheme to nu-
merically and simply represent, or fingerprint, the atomic
environments. Such a fingerprint should differentiate dissim-
ilar configurations with adequate accuracy and be invariant
to transformations of the environment such as translation,
rotation, and permutation of like elements. While several
such prescriptions have been proposed in the past [12–18],
the present objective, namely, mapping the vectorial force
experienced by an atom to its configurational environment,
places stringent constraints on the nature of the fingerprint.
We argue that the following fingerprint function, V k

i (η), may
be used to accurately represent the kth component of the force
on atom i [12]:

V k
i (η) =

∑
j �=i

rk
ij

rij

· e
−(

rij

η
)
2

· f (rij ). (1)

Here, rij is the distance between atoms i and j , while rk
ij

is a scalar projection of this distance along component k.
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FIG. 1. (Color online) Comparison of the forces predicted using the ML force field with reference DFT results, for (a) the trained model
(light blue) and the validation data set (dark blue), (b) a test unit cell containing over 800 Al atoms in the fcc phase, and (c) a test unit cell
containing over 160 atoms in a hypothetical bcc phase. In (b) and (c), atoms were randomly perturbed from their equilibrium positions. Insets
show the distribution of the prediction errors (defined as the difference between the predicted and reference DFT forces) leading to respectable
mean absolute errors (MAEs).

To determine the force on an atom, we require three such
components along nonparallel directions. The parameter η

governs the extent of coordination around atom i that needs
to be captured. The fingerprint is essentially a spectrum of V k

i

values corresponding to predetermined choices of η values,
i.e., V k

i is defined in an η grid. The diminishing influence of
faraway atoms is handled by a damping function, f (rij ) =
0.5[cos(πrij

Rc
) + 1]. The summation in Eq. (1) runs over all

neighboring atoms within an arbitrarily large cutoff distance
Rc (8 Å, in the present work). By construction, the fingerprint
is symmetry adapted. For instance, due to the first term in the
summation of Eq. (1), an atom in a centrosymmetric position
will lead to a fingerprint with all zero values (to be mapped to
a zero force), and an atom displaced from a centrosymmetric
position will lead to fingerprints with nonzero components
whose values will depend on the magnitude and direction of
the off-center displacement.

The next step is to map the fingerprints to appropriate
force components. Here, we have adopted the kernel ridge
regression (KRR) method, capable of handling complex
nonlinear relationships [12,17,18]. The KRR method works on
the principle of similarity. By comparing an atom’s fingerprint,
V k

i (η), with a set of reference cases, an interpolative prediction
of the kth component of the force (Fk

i ) can be made, and is
given by

Fk
i =

∑
t

αt · exp

[
−||V k

i (η) − V k
t (η)||2

2σ 2

]
. (2)

Here, t labels each reference atomic environment and V k
t (η)

is its corresponding fingerprint. ||V k
i (η) − V k

t (η)|| is the
Euclidean distance between the two atomic fingerprints,
though other distance metrics can be used. αts and σ are the
weight coefficients and length-scale parameter, respectively.
The optimal values for αt ’s and σ are determined during the
training phase, with the help of cross-validation and regu-
larization methods [12,17,19,20]. Further details concerning
the fingerprint construction and the learning algorithm can be
found elsewhere [12].

Using the above-prescribed fingerprinting method along
with the learning framework (as implemented in mlpy [21]),
a ML force field for Al has been developed. A plethora of
reference atomic environments, for training purposes, were
accumulated from density functional theory (DFT)-based
MD runs at various temperatures using the Vienna ab initio
simulation package (VASP) [22–25] (other means may also
be used to generate the reference data, as long as they
satisfy prescribed demands on accuracy of the atomic forces).
To ensure a diverse set of reference cases, Al in different
geometric arrangements were considered (but each one with
just a few tens of atoms per repeating unit cell), including
defect-free bulk in the face-centered-cubic (fcc) phase, bulk fcc
phase with vacancy, clean (111) surface, and the (111) surface
with adatom, resulting in over 100 000 atomic environments
[12]. Interestingly, a random set of 1000 atomic environments
drawn from the accumulated environments proved sufficient
to construct an accurate interpolative force prediction model.
Figure 1(a) compares the predicted forces with the DFT
forces (including the error distribution in the inset) for all
accumulated configurations, i.e., those used in the training
phase and the remaining configurations whose results were
used for validation. The mean absolute error (MAE) of
the prediction model was 0.03 eV/Å, of the order of the
expected chemical and numerical accuracy of the reference
DFT calculations. Furthermore, this procedure to predict
atomic forces is also extremely expedient; it scales linearly
with system size and can be well over eight orders of magnitude
faster than a typical DFT calculation.

An immediate (and straightforward) application of this fast
high-fidelity capability to predict atomic forces is geometry
optimization, including the prediction of potential-energy
minima and saddle points. Simulations involving hundreds
of thousands of atoms (i.e., cases that are beyond the reaches
of present-day DFT computations) can be handled, provided
the chemical environments encountered during the course of
such optimizations are included in the force field. In order to
understand the limits of the constructed ML force field for Al
within the context of such simulations, a few tests were per-
formed using the atomic simulation environment package [26].
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The first one involved a large unit cell containing over 800
Al atoms in the fcc phase along with Al vacancies. Atoms
were randomly perturbed and the ML force field was used
to optimize this perturbed structure. The correct equilibrium
geometry was recovered, as ascertained by a separate DFT
calculation starting with the same perturbed system. A video
of this optimization is included in the Supplemental Material
[27]. Figure 1(b) compares the predicted forces with the
DFT forces for the initial perturbed geometry. Although we
restrict ourselves to modest sizes in this discussion (as we
are constrained by the inability of DFT to provide validation
for truly large unit cells), this example demonstrates that the
force field is transferrable to much larger systems, thus going
significantly beyond previous efforts [12,13].

As a second geometry optimization example, a 160-atom
unit cell of Al in a hypothetical body-centered-cubic (bcc)
phase was considered. Once again, the atoms were perturbed
randomly, followed by geometry optimization. Figure 1(c)
captures the performance of the force field for the starting
geometry. Given that the bcc phase was never used in the
training phase during the force-field creation, we would expect
that forces on atoms in such an environment will be difficult
to predict. Surprisingly, going by the rather small force error
distribution (comparable to the 800-atom fcc example), we
conclude that the current choice of fingerprints allows us
to effectively capture diverse chemical environments in a
versatile manner.

Next, we consider nonzero temperature dynamical situa-
tions. For the force prescription to correctly capture dynamic
processes with high fidelity, ergodicity has to be preserved.
In other words, the average behavior and time scales of
elementary steps or processes should be correctly represented
during a MD simulation using the force field. As a first
example, we consider the diffusion of an Al vacancy in bulk
Al, using a unit cell containing 32 Al sites and an Al vacancy.
MD simulations were performed at nine temperatures in the
500–900 K range for times up to 5 ns, with a time step of

0.5 fs. By observing the dynamics of the vacancy, the average
rate constant (k) for the migration process at each temperature
was determined. k is given as 1/thop, where thop is the average
time taken for a vacancy to migrate to a neighboring site. To
ensure that sufficient statistics are collected, k was averaged
over 50 such hop events at each temperature. Figure 2(a)
shows an Arrhenius plot of k versus the reciprocal temperature,
whose slope yields the activation energy (Ea) for Al vacancy
migration to be 0.49 eV. The corresponding DFT value for
a similar, but static migration process was determined to
be 0.59 eV [cf. Fig. 2(c)]. Barrier “softening” is expected
under dynamical conditions, relative to the results of static
calculations in which entropic effects are neglected [28,29].

Another elementary process we considered was the self-
diffusion of an Al adatom on the Al (111) surface, using
a 6 × 6 Å surface unit cell containing a four-layer-thick Al
slab. Similar to the Al vacancy example, by monitoring
the dynamics of the adatom across a temperature range of
50–300 K, an Ea of 0.03 eV was predicted, as shown in
Fig. 2(b), while a static DFT calculation yielded an Ea of
0.04 eV. A video of the adatom migration MD simulation is
included in the Supplemental Material [27].

Both of the dynamical diffusion scenarios considered
lead to the correct Arrhenius behavior, indicating that the
underlying physics is properly captured in the ML force-
field-based MD simulations. Moreover, although the force
field is aimed at directly predicting atomic forces, potential-
energy differences for elementary steps may be obtained by
integrating the forces along a suitable reaction coordinate.
Figure 2(c), for instance, portrays the DFT energy profile
along the Al vacancy migration pathway in bulk Al, as well
as the corresponding energy determined by integrating the
forces predicted by the ML force field. The close agreement
between the two energies is self-evident, indicating that
energies corresponding to critical parts of a trajectory may
indeed be obtained from the forces through integration. More
importantly, this demonstration places the force prediction

FIG. 2. (Color online) Arrhenius plots for (a) vacancy migration in bulk Al and (b) adatom diffusion on the Al (111) surface. For each
temperature, the MD simulation time was extended so as to allow at least 50 hopping events (thus allowing estimation of an average hop rate,
and the indicated error bar). A linear fit (solid red line) was used to determine the dynamic activation energy (Ea) and is compared with the
static DFT activation energy (indicated in brackets as “Ref”). (c) For the vacancy migration in bulk Al, the DFT potential energy along the
migration trajectory (symbols and dashed line) and the corresponding energy obtained via an integration of the ML forces along the reaction
coordinate (solid line).

094306-3



V. BOTU AND R. RAMPRASAD PHYSICAL REVIEW B 92, 094306 (2015)

FIG. 3. (Color online) (a) Phonon band structure, (b) phonon
density of states (DOS), and (c) Helmholtz free energy and constant
volume heat capacity computed using the ML force field (solid lines)
and DFT (dashed lines). The phonon band structure and DOS were
computed using the finite atomic displacement method. Also included
in (b) are the DOS results obtained from the Fourier transform of the
velocity autocorrelation function (solid cyan, hatched fill).

scheme in a formally solid framework, as the predicted ML
forces are shown to be consistent with the underlying potential
energy.

Lastly, we evaluate the prospect of how well thermal
behavior of materials can be simulated using the force-based
framework. In particular, we focus on the vibrational (or
phonon) density of states (DOS), which has to be properly
captured to allow for accurate calculations of thermody-
namic quantities, thermal expansion, thermal conductivity, etc.
Figure 3(a) shows the phonon band structure as determined
using the ML force field and using DFT, and, in both cases, the
finite-displacement method was used [30]. Figure 3(b) shows
the corresponding DOS, as well as the DOS computed using
the Fourier transform of the velocity autocorrelation obtained
from a MD simulation [31,32]. This latter approach implicitly
includes anharmonicity to all orders (the first method, in
contrast, includes just the harmonic part). The MD simulation
involved a 864-atom unit cell, and a simulation time of 5 ps at
700 K. Excellent agreement of the ML force-field result with
the reference DFT calculations can be seen. The deviations
of the DOS computed using MD simulations relative to that
obtained using the finite-displacement scheme (especially at
high frequencies) may be attributed to nonzero anharmonic
effects. The DOS can be utilized to determine thermodynamic
properties such as the Helmholtz free energy and the constant

volume heat capacity. These properties, as a function of
temperature, are compared with the corresponding DFT results
in Fig. 3(c). The ML force-field and DFT results are nearly
indistinguishable, indicating that even under the stringent test
of small atomic perturbations encountered in these situations
(as opposed to the larger length-scale vacancy or adatom
hops discussed earlier), the fidelity of the force prediction
is preserved.

A natural question that arises at this point is how this
force-field paradigm may be extended to include multiple
elements. In a multielemental system, the fingerprint of an
atom of a given element type may be constructed to have
as many parts as the number of elements in the system.
Each part would represent the arrangement of atoms of a
particular elemental type around the reference atom. While this
scheme requires further optimization, preliminary work shows
significant promise. For two binary systems, i.e., α-Al2O3

and monoclinic HfO2, the force prediction based on the
concatenated multicomponent fingerprint prescription rivals
that for the elemental Al in quality. A parity plot comparing the
predicted force with the corresponding reference DFT result
for each element type is shown in the Supplemental Material
[27]. Given such accuracies, extension of the proposed concept
to multielemental systems appears feasible.

The discussion thus far has provided an exposé of materials
simulation examples that can benefit enormously from a
capability to directly and rapidly predict atomic forces with
demonstrable verisimilitude. This capability learns from past
reference quantum-mechanical calculations of modest system
sizes, but can access length scales and time scales that are
significantly beyond the reaches of the reference calculations
(while preserving accuracy). Examples of phenomena that can
potentially be studied include transport (thermal and mass),
phase transformations and chemical reactions, mechanical
behavior, materials degradation and failure, etc., all within
the framework of reality-mimicking nonzero-temperature dy-
namical simulations. Widespread use of the proposed class
of learning-based force fields will require attending to a few
critical matters. These include (i) creation of an initial compact
training set of reference atomic environments appropriate for
a particular materials application, and (ii) development of a
capability to recognize a truly new atomic environment when
such is encountered during the course of a simulation. The
latter aspect is critical to evaluating when the force field is
expected to fail, and, as importantly, to supplement the initial
training set so as to make the force prediction scheme adapt,
evolve, and continuously improve with time. Nevertheless,
these hurdles have been encountered, and addressed, in
the past in many big-data situations [2–6]. Hence, there
is reason for (cautious) optimism in the present context
of high-fidelity, adaptive, and generalizable atomic force
fields.
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