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Ultraviolet Raman spectroscopy revealed the existence of an unusual large-frequency shift occurring to a
nonsoft mode of E(TO4) when BaTiO3 is strained to a SrTiO3 substrate [D. Tenne et al., Science 313, 1614
(2006)]. It raised two interesting questions: (i) whether there are other nonsoft modes that possess similar or even
larger strain-induced frequency shifts and (ii) how the mode sequence is altered by these shifts in frequency.
Note that mode sequence is also pivotal in correctly indexing and assigning the spectroscopy peaks observed in
all Raman experiments. By mapping out the evolutions of individual phonon modes as a function of strain using
first-principles density functional perturbation calculations, we determine the mode sequence and strain-induced
phonon frequency shifts in prototypical BaTiO3. Our study reveals that the mode sequence is drastically different
when BaTiO3 is strained to SrTiO3 compared to that in the unstrained structure, caused by multiple mode
crossings. Furthermore, we predict that three other nonsoft modes, A1(TO2), E(LO4), and A1(TO3), display
even larger strain-induced frequency shifts than E(TO4). The strain responses of individual modes are found
to be highly mode specific, and a mechanism that regulates the magnitude of the frequency shift is provided.
As another key outcome of this study, we tackle a long-standing problem of LO-TO splitting in ferroelectrics.
A rigorous definition for the LO-TO splitting is formulated, which allows this critical quantity to be calculated
quantitatively. The definition immediately reveals a new finding; that is, a large LO-TO splitting not only exists
for E(LO4), which is previously known and originates from a soft mode, it also occurs for a nonsoft A1(LO3)
mode. The LO-TO splitting is shown to decrease drastically with compressive strain, and this decrease cannot be
explained by the Born effective charges and high-frequency dielectric constants.
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I. INTRODUCTION

A breakthrough was made in probing the lattice dynamics
in nanoscale ferroelectrics (FE) [1–3] by using ultraviolet
(UV) Raman spectroscopy rather than conventional Raman
spectroscopy. Conventional Raman spectroscopy uses visible
light as the probing source [4] and works poorly for FE thin
films since visible light, with its energy being much smaller
than the band gaps of FE oxides, is weakly absorbed by thin
films and will penetrate deeply into substrates, leading to large
unwanted signals from substrates and thus a low resolution.
In fact, the signal of visible-light Raman spectroscopy largely
comes from the vibrations of the substrate, not from FE thin
films. In contrast, the UV Raman, utilizing UV light with an
energy larger than the band gaps of oxides, can be absorbed
strongly by the FE thin films and thus can reveal the phonon
structure of thin films with high resolution. Indeed, using
UV Raman, multiple sharp peaks were clearly observed in
BaTiO3/SrTiO3 superlattices epitaxially grown on a SrTiO3

substrate [1,2].
Furthermore, interesting phonon physics was revealed [1].

For instance, a new and pronounced Raman peak was observed
at frequency 540 cm−1 and was assigned as the transverse
TO4 mode originating from the strained BaTiO3 [1]. However,
in bulk BaTiO3, the frequency of the TO4 mode is merely
486 cm−1 (Ref. [5]). Although it is known that strain may cause
a large-frequency shift in the soft mode, note that TO4 is not
a soft mode, however. A very large strain-induced frequency
shift that occurs in a nonsoft mode is interesting itself. It further
raises other intriguing questions: (i) What is the origin of the
drastic frequency shift? (ii) Are there other nonsoft modes

that may also exhibit large-frequency shifts that have not been
detected in experiments?

Previously, there were many important works on the lattice
dynamics in ferroelectrics, yielding critical understanding of
the structural instability [6,7], the characteristic difference in
phonon dispersion among different materials [8], phonons
in composition-modulated FE superlattices [9], and finite
electric-field-induced phonon hardening in incipient ferro-
electrics [10,11]. Most of these studies paid attention to the
behaviors of soft modes in the high-symmetry nonpolar phase,
namely, the phase before ferroelectric transition occurs. In
contrast, relatively less attention is given to the polar phase
[12] and to the nonsoft phonon modes.

The experimental advance [1–3] also brings up another
issue of broad interest, namely, how the sequence of phonon
modes is altered by external conditions. Sequencing of phonon
modes, namely, the ordering of vibration modes according
to frequencies, is of fundamental relevance for unveiling the
interatomic interaction in solids [13] because the sequence is
determined by the microscopic nuclei-nuclei, nuclei-electron,
and electron-electron interactions. In contrast to a single mode,
the mode sequencing reflects collectively the behaviors of
a group of modes. Since different modes respond to the
external conditions (such as pressure, strain, and electric field)
in different manners, it is nontrivial to determine how the
mode sequence alters with external conditions. Determination
of mode sequencing is also of practical importance since in
infrared or Raman experiments this sequence is much needed
in order to correctly assign phonon modes to individual peaks
and to determine the origin of these peaks [4]. This knowledge
is particularly relevant when the mode sequence under the

1098-0121/2015/92(9)/094303(10) 094303-1 ©2015 American Physical Society

http://dx.doi.org/10.1126/science.1130306
http://dx.doi.org/10.1126/science.1130306
http://dx.doi.org/10.1126/science.1130306
http://dx.doi.org/10.1126/science.1130306
http://dx.doi.org/10.1103/PhysRevB.92.094303


ALDO RAELIARIJAONA AND HUAXIANG FU PHYSICAL REVIEW B 92, 094303 (2015)

ambient condition is, after the external condition has changed,
no longer valid.

Owing to the facts that (i) ferroelectric properties are
sensitive to lattice dynamics [6–9,14] and (ii) ferroelectrics
possess a myriad of technological applications in dielectric ca-
pacitors [15,16], field-effect transistors [17], electrical-caloric
energy conversion [18], piezoelectric devices and transducers
[19–23], and nonvolatile ferroelectric random access memory
[24], studying phonon properties in ferroelectrics is thus
very important. Interest in ferroelectrics also arises from the
fundamental concepts these materials can bring attention to,
such as the origin of ferroelectricity [25,26], the modern
theory of polarization [27,28], the theory of phase transitions
[29,30], etc.

Another subject of profound interest in FEs is the LO-TO
splitting. Transverse-optic (TO) modes interact with light,
which is a key process that determines optical properties
[13]. On the other hand, longitudinal-optic (LO) modes
interplay with electric fields, determining the dielectric re-
sponses of solids [13]. The LO and TO modes are thus
of key importance in both optical and dielectric proper-
ties. Further, the LO and TO modes are also critical in
testing the fundamental 2n − 1 sum rule [31]. Moreover,
the LO-TO splitting arises from the long-range Coulomb
interaction, manifesting the influence of this interaction on the
lattice dynamics and the origin of anomalous Born effective
charge [32,33].

A long-standing problem inhibits the quantitative study of
the LO-TO splitting, however. That is, the splitting has not
been fundamentally well defined. As have been realized by
Zhong et al. in a seminal work [32], it is generally not possible
to find a one-to-one correspondence between a LO mode and a
TO mode. In fact, when lattice vibrations interact with electric
fields via the long-range Coulomb interaction, more than one
TO mode may contribute simultaneously, and all of them
significantly, to form a single LO mode as a result of the strong
mode mixing caused by the Coulomb interaction. Here we
give a concrete example to illustrate this spread mode mixing.
We consider BaTiO3 at a compressive strain of −2.5%. By
quantitative mode projection, our first-principles calculations
show that the E(LO4) mode at frequency ω = 735 cm−1

has contributions from five TO modes with the contribution
weights at 7%, 23%, 21%, 8%, and 40%, revealing that the
contributions are indeed widespread and there is no dominant
one. This mode mixing is fundamental and cannot be avoided.
As a consequence, an attempt to define the LO-TO splitting
as the frequency difference between one LO mode and one
TO mode cannot be justified. The lack of quantitative study
of the LO-TO splitting hampers efforts to obtain insightful
knowledge about this important quantity. It also prevents us
from investigating how the splitting may be quantitatively
tuned by external conditions such as epitaxial strain and
electric field.

The purposes of this paper are fourfold: (i) to explain
the origin of the large-frequency shift of the nonsoft TO4

mode observed in the UV Raman experiments and, one step
further, to determine which modes are susceptible and which
modes react less to the epitaxial strain, (ii) to reveal how the
sequencing of phonon modes can be significantly changed by
strain and thus why the mode sequence at ambient conditions

should not be used to assign the peaks observed in strained FEs,
(iii) to show that the LO-TO splitting can be rigorously defined,
which paves the way to quantitatively study this important
quantity, and (iv) to determine whether there are any other
modes that exhibit large LO-TO splittings besides the soft TO
mode.

This paper is organized as follow. In Sec. II we describe the
calculation methods and theories pertinent to the vibrations in
solids, and then in Sec. III we present the calculation results
along with some key theoretical formulations for analysis. A
summary in Sec. IV concludes the paper. Other useful results
on the phonon displacements and infrared (IR) intensities are
given in the Appendix.

II. THEORETICAL METHODS

Structural optimization. We consider tetragonal BaTiO3

with P 4mm symmetry. Total energy, atomic forces, and struc-
tural optimization are determined using the density functional
theory (DFT) within the local-density approximation [34]
(LDA) via QUANTUM ESPRESSO [35,36]. Troullier-Martins
pseudopotentials [37] are used to mimic the interaction
between valence electrons and inert core electrons. Ti 3s

and 3p semicore states are treated as valence states [38].
The energy cutoff for wave-function expansions is 95 Ry.
Both cell parameters and atomic positions are optimized for
a given in-plane strain, with the force threshold set below
10−5 Ry/bohr. The biaxial η strain is enforced by changing
the in-plane lattice constant a as η = a−a0

a0
, where a0 is the

in-plane lattice constant of BaTiO3 at equilibrium. A negative
η means that the strain is compressive. We find for unstrained
BaTiO3a0 = 3.93 Å and c/a = 1.007, which are close to the
values in other calculations (for instance, a0 = 3.945 Å and
c/a = 1.009 in Ref. [39]).

Phonon structure. Phonon frequencies and eigenvectors
are determined by the density functional perturbation the-
ory (DFPT) [40–42]. Vibration of atoms leads to the
deformation potential �V (r) = ∑

l,i[V (r − Rl − ti − ui) −
V (r − Rl − ti)], where ti and ui are the equilibrium ionic
position and atomic displacement of atom i, respectively; Rl is
the lattice vector for cell l. By treating �V as perturbation, the
response of electron density �n(r) = 4Re

∑N/2
n ψ∗

n (r)�ψn(r)
is determined by solving the Sternheimer equation
[40],

(Hscf − εn)|�ψn〉 = −(�Vscf − �εn)|ψn〉 , (1)

where Hscf is the Kohn-Sham Hamiltonian, εn is the
single-particle eigenvalue of Hscf , and �Vscf (r) = �V (r) +
e
∫

�n(r′)
|r−r′| dr′ + dvxc(n)

dn
|
n=n(r)

�n(r) is the self-consistent pertur-
bation potential.

With �n and �ψ , other important quantities such as the
change in the electric polarization �P, the Born effective
charges Z∗, and the dielectric tensor ε can be calculated,
respectively, as �P = ∑

i zieui − e
V

∫
V

r�n(r) dr, (Z∗
i )αβ =

	
e

∂Pα

∂u
β

i (q=0)
|
E=0

, and ε∞
αβ = δαβ + 4π ∂Pα

∂Eβ
|
ui (q=0)

, where α and β

are the direction indices and 	 is the unit-cell volume.
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TABLE I. Born effective charges and high-frequency dielectric
constants for unstrained BaTiO3. O2 is the apical oxygen atom
beneath Ti along the tetragonal c axis.

Quantity Present work Other work [44]

Z∗
xx(Ba) 2.77 2.73

Z∗
zz(Ba) 2.81 2.81

Z∗
xx(Ti) 7.11 7.04

Z∗
zz(Ti) 6.54 5.97

Z∗
xx(O1) −5.56 −5.60

Z∗
zz(O1) −2.05 −2.15

Z∗
xx(O2) −2.09 −2.02

Z∗
zz(O2) −5.07 −4.84

ε∞
xx 6.54 6.48

ε∞
zz 6.07 5.84

Nonanalytic contribution at q = 0. When dealing with the
long-wavelength phonons with wave vector q at the zone
center, the interatomic force constant (IFC) matrix can be
divided into analytic and nonanalytic contributions C

αβ

ij =
C

a,αβ

ij + C
na,αβ

ij , where i and j are atomic indices. The nonana-

lytic part takes the form [43] C
na,αβ

ij = 4π
	

e2 (q·Z∗
i )α (q·Z∗

j )β
q·ε∞·q . Note

that Cna is not diagonal and will often cause strong mixing
among different modes. At q = 0, the nonanalytic contribution
can be calculated by allowing q to approach the Brillouin zone
center from a chosen direction. This nonanalytic contribution
leads to the difference in frequency between the LO phonon
(u‖q) and the TO phonon (u⊥q) due to the strong interaction
between ions and displacement-induced electric field [4,13].

III. RESULTS AND DISCUSSION

Before we present our main results for strained BaTiO3, it is
important to examine the dielectric and phonon properties at
zero strain since they are used as reference for the strained
cases. The Born effective charges Z∗ and high-frequency
dielectric constant ε∞ are given in Table I, and the phonon
frequencies of the zone-center modes are in Table II. We
see that Z∗ and ε∞ obtained in our calculations are in good
agreement with others [44], and so are the phonon frequencies
[5,45]. The slight difference between our results and those
of Ref. [44] in Table I is because the authors of Ref. [44]
performed their calculations using the experimental value of
the lattice constant.

The normal modes in tetragonal BaTiO3 are
5E

⊕
4A1

⊕
B1, labeled according to the irreducible

representations of the crystallographic space group P 4mm.
E modes are doubly degenerate; these modes vibrate along
the ab plane on which the biaxial strain is applied. A1 and
B1 modes are singly degenerate and vibrate along the c axis
perpendicular to the directions of applied biaxial strain. Since
the tetragonal phase is not the most stable phase for BaTiO3

(the rhombohedral phase is), obviously, there is one soft mode,
E(TO1), in Table II, as it should be. The atomic vibration
directions and amplitudes are shown in the Appendix for each
mode.

According to their vibration patterns in the Appendix, the
modes can be categorized as (i) Slater modes, in which Ti and O

TABLE II. Frequencies of the phonon modes at the zone center
in zero-strained BaTiO3.

ω (cm−1) Present work Other theory [45] Experiments [5]

E(TO1) −78 −79 36
A1(TO1) 178 190 170
E(LO1) 180 188 180
E(TO2) 183 192 180
A1(LO1) 186 195 185
A1(TO2) 211 237 270
B1 296 301 305
E(LO2) 300 302 305
E(TO3) 300 302 305
E(LO3) 462 462 463
A1(LO2) 465 465 475
E(TO4) 480 487 486
A1(TO3) 497 507 520
E(LO4) 678 701 715
A1(LO3) 697 721 720

atoms vibrate opposite each other without significantly involv-
ing Ba, such as E(TO1), E(LO4), A1(TO2), and A1(LO3), (ii)
Last modes, where Ti and O vibrate in the same direction but
opposite Ba, such as E(TO2), E(LO1), A1(TO1), and A1(LO1),
(iii) the Axe mode, where the O atoms on one plane (not
necessarily the base plane) vibrate opposite that of the O atom
out of the plane, e.g., E(TO4) and A1(TO3), (iv) the Axe +
Ti mode, whose vibration pattern resembles the Axe mode but
involving Ti, e.g., E(LO3) and A1(LO2), and (v) the O-plane
distortion mode, where the O atoms on one plane move in
opposite directions, e.g., E(TO3), E(LO2), and B1.

A. Mode sequence in strained BaTiO3

Phonon frequencies at � in BaTiO3 under six different
in-plane strains are shown in the inset of Fig. 1. Note that
only discrete symbols such as those in the inset of Fig. 1
are the results directly obtained from calculations. With these
discrete symbols alone, it is hard to figure out which mode at
η = −2.5% corresponds to which mode at η = 0 since strain
often gives rise to frequency crossings due to strong mixing
between different modes. Furthermore, in the inset of Fig. 1,
many modes have nearly the same frequency, and keeping track
of the strain-induced evolution for these modes is nontrivial.
As a consequence, the important knowledge of how individual
phonon modes evolve with strain and how the mode sequence
changes with strain is unclear.

To solve this problem and to obtain valuable insight into
the phonon evolution with strain, we use an approach based
on mode projection. Let |εiα

n (η)〉 be the phonon eigenvector
of the nth mode at strain η; |εiα

n (η)〉 is related to the phonon
displacement |uiα

n (η)〉 by |εiα
n (η)〉 = √

Mi |uiα
n (η)〉, where i is

the atom index, α is the direction index, and Mi is the mass of
atom i. The eigenvectors satisfy the orthonormality condition∑

iα〈εiα
m (η)|εiα

n (η)〉 = δm n. Using the vibration eigenvectors at
η1 as bases, one can expand the eigenvectors at η2 as

εiα
n (η2) =

∑
m

pmn εiα
m (η1) , (2)
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FIG. 1. (Color online) Phonon frequencies at � as a function of
epitaxial strain. The acoustic phonons at � are trivial and hence
are omitted from this plot. The nonanalytic Cna matrix is calculated
with q approaching the zone center along the [001] direction for
A1(LO) modes and along the [100] direction for E(LO) modes. The
inset shows the mode frequencies directly obtained from the DFPT
calculations before applying the mode projection.

where pmn = ∑
iα〈εiα

m (η1)|εiα
n (η2)〉 describes the degree of

correlation between mode m at strain η1 and mode n at strain
η2. We expect

∑
m |pmn|2 = 1, which is indeed confirmed by

our numerical calculations. From the quantity pmn, one can
identify the correspondences and evolutions between modes
at different strains. The correspondences are depicted by the
connecting lines in Fig. 1. Furthermore, pmn is also very useful
in examining the strain-induced intermode mixing when it does
occur.

Figure 1 reveals that the mode sequence in strained BaTiO3

drastically differs from the unstrained case. This drastic
difference occurs even for a moderate strain at η = −2.5%.
The key distinctions between mode sequences at η = −2.5%
and at η = 0 are as follows: (i) At η = −2.5%, the frequency
of A1(TO2) is notably above those of E(TO3), E(LO2), and
B1. This clearly is not the case at η = 0%, where the former
mode is well below the latter three modes. (ii) A1(LO3) and
E(LO4) undergo a crossover in frequency as strain varies. At
η = 0, A1(LO3) is the mode with the highest frequency. How-

ever, at η = −2.5%, E(LO4) exhibits the highest frequency.
(iii) Interestingly, E(TO3), E(LO2), and B1 modes are very
close in frequency at η = 0, but they are well separated in
sequence at η = −2.5%. (iv) Obviously, the hardening of the
soft mode E(TO1), which crosses with A1(TO1), E(TO2),
E(LO1), and A1(LO1), also contributes substantially to the
change in mode sequence. Furthermore, as pointed out by
Choudhury et al., the zone-center phonons in unstrained
perovskites exhibit interesting frequency gaps [46]. These
phonon gaps may have innovative applications in sound
and heat revolutions [47]. The phonon-frequency gaps are
confirmed by the η = 0 calculations in Fig. 1 in the frequency
ranges of 200–300, 300–450, and 500–670 cm−1. These
phonon gaps largely disappear or are significantly reduced
at strain η = −3.3%, however.

The theoretical results have important implication for
experiments. They reveal that, in Raman and/or infrared
experiments, using the mode sequence of unstrained BaTiO3 to
index the spectroscopy peaks observed in epitaxially strained
BaTiO3 may lead to significant errors. Specifically, when
BaTiO3 is strained to the SrTiO3 substrate (with about 2.5%
compressive strain), the mode sequence is very different from
that in unstrained BaTiO3, as shown in Fig. 1. We instead need
to use the correct mode sequence (e.g., the one in Fig. 1) to
assign experimentally measured peaks.

B. Strain-induced large-frequency shifts for nonsoft modes

Strain-dependent frequency shift, defined as �ωn(η) =
ωn(η) − ωn(η = 0) for a given mode n, is depicted in Fig. 2.
Note that determination of �ωn(η) is possible only after the
correspondences between modes at different strains have been
mapped out. According to the magnitude and sign of �ω, the
frequency responses in Fig. 2 can be categorized into three
groups: large increase (�ω > 50 cm−1), moderate increase
(0 < �ω < 50 cm−1), and frequency decrease �ω < 0 when
η varies in the considered strain range from 0% to −3.3%.

Interestingly, A1(TO2), E(LO4), A1(TO3), and E(TO4)
in Fig. 2 all display a large strain-induced frequency shift,
with �ω > 50 cm−1 at η = −3.3%. Particularly, A1(TO2)
increases its frequency by more than 140 cm−1 at η = −3.3%
with respect to η = 0, which is rather phenomenal. Note that
none of the above modes are soft modes. Also, notably, unlike
most other modes, B1 shows an unusual frequency decrease in
Fig. 2.

Results in Fig. 2 defy the common wisdom. According to
symmetry, vibrations in perovskites of tetragonal structure can
be either along the in-plane directions (e.g., the E modes), with
frequency denoted as ω‖, or along the out-of-plane direction
(e.g., the A1 modes), with frequency denoted as ω⊥. When a
compressive strain is applied, one would think that ω‖ would
increase since along the in-plane directions atomic interaction
is strengthened by the strain. Meanwhile, along the out-
of-plane direction, interatomic interaction is weakened, and
hence a decrease in ω⊥ is expected. However, the calculation
results in Fig. 2 reveal different conclusions. In fact, upon the
impose of strain, A1(TO2), A1(TO3), and A1(LO3) in Fig. 2
all increase their ω⊥ frequencies very substantially, in sharp
contrast to the common belief. Furthermore, note the subtle
decrease in the ω‖ frequency for E(LO3), which also deviates
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from the above common thinking. The direct first-principles
calculations suggest a different mechanism that dictates the
mode’s frequency response.

Our calculations are consistent with and provide an ex-
planation for experimental observations. In the UV Raman
experiments, when a (BaTiO3)5/(SrTiO3)4 × 25 superlattice
is epitaxially strained to a SrTiO3 substrate, the nonsoft
TO4 mode of BaTiO3 is shifted from 486 cm−1 in bulk
to 540 cm−1 in the strained superlattice [1]. According to
Fig. 2, when BaTiO3 is strained to SrTiO3 at η = −2.5%,
the E(TO4) frequency increases by 45 cm−1. This is in good
agreement with the experiment, where a shift of 54 cm−1 was
observed [1]. Moreover, our theory predicts that there are other
nonsoft modes such as A1(TO2), E(LO4), and A1(TO3) that
are subjected to even larger shifts (see Fig. 2).

The physical origin underlying the mode behaviors in Fig. 2
is rather simple and can be explained by the relative motion
between Ti and O along the direction of vibration. When Ti
and O vibrate oppositely or when Ti does not vibrate but O
vibrates toward Ti, the frequency increases with strain, which is
indeed the case for the Slater modes A1(TO2) and E(LO4) and
for the Axe modes A1(TO3) and E(TO4) (the displacement
patterns of these modes are given in the Appendix). On the
other hand, for modes in which Ti and O atoms vibrate in

FIG. 2. (Color online) Frequency shift �ω as a function of strain.
In the inset, the frequency shift for soft mode E(TO1) is shown.

the same direction, the frequencies moderately change, such
as the Last modes E(TO2) and E(LO1). For the B1 mode,
the vibration largely weakens the atomic interaction along the
out-of-plane direction, leading to a frequency decrease.

Another interesting observation in Fig. 2 is that �ω is
nonlinear as a function of strain for A1(TO2), A1(TO3),
and A1(LO3), while for other modes it is fairly linear. The
nonlinearity has important consequences for the strain-mode
coupling. To see this, we start with a simple model and
write the energy as E = 1

2mω2(η)Q2, where Q is the normal
mode and ω(η) is strain dependent. Consider the strain depen-
dence of ω as ω(η) = ω0 + α1η + α2η

2. It is straightforward
to prove that, if ω depends linearly on η, i.e., α2 = 0, the
strain-coupling terms include only ηQ2 and η2Q2. But when
the nonlinear effect is important, i.e., α2 cannot be neglected,
the strain-mode coupling should also include the η3Q2 term.

Furthermore we analyze how the polarization vector (i.e.,
mode eigenvector |εiα

n 〉) changes with strain η, where n

is the mode index, i is the atom index, and α is the
vibration-direction index. We find that some modes do
not change their polarization vectors appreciably, such as
E(LO1). The E(LO1) mode vibrates along the x direction,
and we only need to give the nonzero x components of
polarization vector. |εBa,x

n ,εTi,x
n ,εO1,x

n ,εO2,x
n ,εO3,x

n 〉 of E(LO1)
is found to be (0.627,−0.675,−0.183,−0.243,−0.243) at η =
0, (0.627,−0.676,−0.216,−0.206,−0.246) at η = −1.8%,
and (0.625,−0.679,−0.241,−0.166,−0.250) at η = −3.3%,
showing only small changes. On the other hand, some modes
[e.g., A1(TO2), E(TO4), and A1(TO3)] have quite large
changes in the polarization vector, and the polarization vectors
of these modes are given in Table III, showing that the O
(and/or Ti) components vary significantly with strain. We
further find that the large change in the polarization vector
correlates well with and is responsible for the nonlinear strain
dependence of �ω. For instance, the eigenvector (particularly,
the Ti component) of A1(TO3) changes substantially with
strain, which leads to the strong nonlinearity in �ω.

C. LO-TO splitting

We begin by rigorously defining the LO-TO splitting, which
will serve as the foundation for the present study of this impor-
tant quantity. Let {|ε′n〉, ω′n(q → 0)} be the mode eigenvectors
and eigenvalues obtained from the diagonalization of the
total dynamic matrix D = Da(q = 0) + Dna(q → 0), where
D

αβ

ij = 1√
MiMj

C
αβ

ij includes both the analytic and nonanalytic

contributions, thereby taking into account the effects caused by
the displacement-induced electric field. Let {|εn〉, ωn(q = 0)}
be the eigenvectors and eigenvalues obtained from only the
analytic Da(q = 0), and therefore the displacement-induced
electric field and the LO-TO splitting are not accounted for.

It should be emphasized that knowing the frequencies
{ω′n(q → 0)} and {ωn(q = 0)} of individual modes does
not mean knowing the LO/TO splitting. As we previously
described in the Introduction, one cannot naively define
the LO-TO splitting as the simple difference between one
frequency ω′i(q → 0) and another frequency ωj (q = 0). This
naive approach is fundamentally incorrect because one LO
mode often comes from multiple TO modes and all of these
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TABLE III. Evolution of selected phonon eigenvectors with the
η strain in tetragonal BaTiO3. The selected modes possess noticeable
change in the individual components at higher strains. The vibration
direction is indicated in the first column by an italic letter inside
parentheses below the mode name. O2 is the apical oxygen atom
beneath Ti along the tetragonal c axis.

Eigenvector components

Modes Atoms η = 0 η = −1.8% η = −3.3%

E(TO1) Ba 0.020 0.081 −0.078
(y) Ti 0.677 0.611 0.694

O1 −0.358 −0.584 −0.661
O2 −0.308 −0.244 −0.040
O3 −0.564 −0.468 −0.271

A1(TO2) Ba −0.190 −0.089 −0.085
(z) Ti 0.835 0.766 0.715

O1 −0.270 −0.422 −0.491
O2 −0.348 −0.223 −0.007
O3 −0.270 −0.422 −0.491

E(TO4) Ba −0.011 −0.002 0.001
(y) Ti 0.142 0.025 −0.091

O1 −0.478 −0.456 −0.431
O2 −0.467 −0.384 −0.269
O3 0.730 0.803 0.856

A1(TO3) Ba −0.009 −0.002 0.008
(z) Ti 0.052 −0.115 −0.288

O1 −0.429 −0.335 −0.216
O2 0.794 0.874 0.908
O3 −0.429 −0.335 −0.216

TO modes have nearly equal contributions due to the inevitable
strong intermode mixing caused by the long-range Coulomb
interaction. Further, it is also worth pointing out that in the
Lyddane-Sachs-Teller (LST) relation and optical sum rules,
it is the frequencies {ω′n(q → 0)} and {ωn(q = 0)}, not the
LO-TO splittings, that enter the formulas [48]. In fact, the
LO-TO splitting has not been rigorously defined, to the best
of our knowledge.

We now describe our scheme. Since {|εm〉} form a complete
basis for any mode at q = 0, it is hence always possible to
write |ε′n〉 = ∑

m αmn|εm〉. Due to the strong mixing among
different modes caused by the displacement-induced electric
field, there is more than one dominant contribution in the
above summation over m. In other words, αmn are often large
and significant for multiple m modes. One can define new
frequencies as

ω̃2
n =

∑
m

| αmn |2 ω2
m , (3)

bearing in mind that the dynamic eigenstate equation is
D|εm〉 = ω2

m|εm〉, not D|εm〉 = ωm|εm〉. ω̃n in Eq. (3) properly
accounts for the mode mixing when multiple TO modes con-
tribute to form a LO phonon, and meanwhile, all frequencies
in this equation are without LO-TO splittings. The LO-TO
splitting �ωLT

n is then defined as

�ωLT
n = ω′n(q → 0) − ω̃n(q = 0) , (4)

by which one can calculate �ωLT
n for arbitrary mode |ε′n〉.

FIG. 3. The LO-TO splittings �ωLT as a function of strain for
modes with sizable splittings.

Equations (3) and (4) provide an approach to determine and
quantitatively study LO-TO splittings. The advantages of this
approach are as follows: (i) It properly accounts for the electric-
field-induced strong mode mixing. (ii) With this formula, the
LO-TO splitting can now be quantitatively calculated for any
|ε′n〉 mode. (iii) It allows us to find whether there are LO modes
other than E(LO4) that may display a large LO-TO splitting.
(iv) By using the approach, we can find out how the LO-TO
splitting quantitatively changes with strain, which should work
for a wide class of ferroelectric materials.

Using the above approach and formulas, we numerically
find that �ωLT

n is significant only for the LO modes, as it
should be. To give us more insight, Fig. 3 depicts the LO-
TO splittings for the LO modes with significant �ωLT . In
Fig. 3, q approaches the zone center along the [001] direction
for A(LO) modes and along the [100] direction for E(LO)
modes.

While soft modes in ferroelectrics, such as E(TO1) in
BaTiO3, are known to interact strongly with the displacement-
induced electric field and to generate a giant LO-TO splitting
in forming the E(LO4) mode, the quantitative understanding
of LO-TO splitting for other modes is virtually unknown.
Interestingly, Fig. 3 reveals that E(LO4) is not the only mode
that displays a large LO/TO splitting. Rather remarkably,
�ωLT

n of A1(LO3) is nearly as large as that of E(LO4). This is
phenomenal since, unlike E(LO4), A1(LO3) does not originate
from a soft mode.

Furthermore, Fig. 3 shows quantitatively that the LO/TO
splittings in ferroelectric BaTiO3 change in an approximately
linear manner with the strain. More specifically, with the
increase of compressive strain, �ωLT

n decreases sharply for
E(LO4) and A1(LO3) modes.
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FIG. 4. Changes of the following quantities as a function of strain in BaTiO3: (a) the Z∗
xx component of the Born effective charge, (b) the

Z∗
zz component of the Born effective charge, (c) the high-frequency dielectric constants ε∞

xx and ε∞
zz , and (d) the average ωavg for E(LO4) and

A1(LO3) modes.

The dramatic decrease of the LO-TO splitting with strain for
E(LO4) and A1(LO3) cannot be naively explained by the Born
effective charge Z∗ and the dielectric constant ε∞; the latter
two quantities are shown in Figs. 4(a)–4(c). Take E(LO4) as an
example. The E(LO4) modes vibrate along the in-plane direc-
tions. However, the in-plane component Z∗

xx almost does not
change for all atoms [Fig. 4(a)], and ε∞

xx does not change much
either [Fig. 4(c)]. Consequently, the nonanalytic D

αβ,na

ij contri-
bution is nearly a constant independent of strain for the E(LO4)
mode, which cannot explain the drastic decrease of the LO-TO
splitting for this mode. We find that the declining �ωLT is due
to the increase of the average frequency, defined as

ωavg
n = ω′n(q → 0) + ω̃n(q = 0)

2
. (5)

Using ω
avg
n , the LO-TO splitting can be written as

�ωLT
n = 1

2ω
avg
n

∑
i

4π
	Mi

e2 (q·Z∗
i )(q·Z∗

i )
q·ε∞·q ; that is, �ωLT

n is inversely

proportional to ω
avg
n . Figure 4(d) shows the average frequency

ω
avg
n for E(LO4) and A1(LO3). We see that, when η varies from

0% to −3.3%, ω
avg
n increases considerably for both modes,

leading to the significant decrease of the LO-TO splitting.
Therefore it is ω

avg
n that governs the strain dependence of the

LO-TO splitting in perovskite ferroelectrics.

IV. SUMMARY

Mode sequence is of key relevance in properly assigning
spectroscopic peaks. In this study, several interesting changes

in mode sequence were determined and revealed in strained
BaTiO3 by density functional perturbation calculations; these
changes are caused by the intrinsic strain-induced mode
crossing and intermode mixing. Furthermore, the frequency
shifts of individual zero-center phonons were mapped out
and compared to experiments, with particular attention given
to those nonsoft modes. A group of nonsoft modes with a
sensitive strain-dependent frequency were identified. More-
over, the LO-TO splitting is rigorously defined, which allows
this important physical quantity to be quantitatively studied.
We further revealed which mode other than E(LO4) displays
strong LO-TO splitting and how the splitting depends on the
epitaxial strain. Our specific findings are summarized in the
following.

(i) The mode sequence is widely different at η = −2.5%
than at zero strain. The changes in mode sequence stem from
multiple mode crossings. At η = −2.5%, the highest mode
is E(LO4), not A1(LO3). Also, unlike the unstrained BaTiO3

in which A1(TO2) is well below E(TO3), E(LO2), and B1,
at high strain A1(TO2) surpasses all of them. Furthermore,
the characteristic phonon gaps at zero strain largely disappear
at high strains. Our calculations quantitatively predict the
magnitude of strain at which one mode crosses the others
(see Fig. 1).

(ii) Large strain-induced frequency shifts were shown
to occur, even for nonsoft phonons. As shown in Fig. 2,
these nonsoft modes include A1(TO2), E(LO4), A1(TO3), and
E(TO4). Indeed, large shift has been observed in experiments
using the new UV Raman spectroscopy [1]. At η = −2.5%, the
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E(TO )1 E(TO )2 E(TO )3 E(TO )4

E(LO )1 E(LO )2 E(LO )3 E(LO )4

O3

O1

O2

Ti
b

ac
q

FIG. 5. (Color online) Top view (i.e., from the -c axis) of phonon displacements of the E modes in unstrained BaTiO3. The axes in the
bottom-right corner refer to the crystallographic axes {a, b, c}, coinciding with the Cartesian {x, y, z} directions, respectively. q approaches
the zone center along the [100] direction for E(LO) modes. The green, light blue, and red spheres represent Ba, Ti, and O atoms, respectively.
Atoms are labeled at the bottom of the figure. The arrows on atoms represent the magnitude of displacement; the dark blue arrow is for Ti atom
to differentiate its displacement from that of the O2 atom along the same line of view.

A (TO )1 1 A (TO )1 2 A (TO )1 3
B1

A (LO )1 1 A (LO )1 2
A (LO )1 3

b a

c

q

FIG. 6. (Color online) Side view (i.e., from the b axis) of phonon displacements of A1 and B1 modes in unstrained BaTiO3. The axes in
the lower-right corner refer to the crystallographic axes. q approaches the zone center along the [001] direction for A1(LO) modes.
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theoretical shift of 45 cm−1 for E(TO4) is in good agreement
with the measured value of 54 cm−1 in experiment. Note that
our theory predicts that E(TO4) is only one of the nonsoft
modes displaying large strain-induced frequency change; the
frequency shifts of other three nonsoft modes are even larger
(see Fig. 2).

Our calculations in Fig. 2 further reveal that, while
frequency shift �ω linearly depends on strain for most modes,
there are interesting exceptions; that is, strong nonlinear
dependency is found for modes A1(TO3) and A1(LO3),
caused by considerable changes in the phonon eigenstates.
This nonlinear dependence implies that the η3Q2 term
cannot be neglected in the formulation of the strain-mode
coupling.

(iii) The rigorous definition of the LO-TO splitting enables
the discovery of new physics. A markedly large LO-TO
splitting is found for the A1(LO3) mode, in addition to the
well-known E(LO4). We further showed that the LO-TO
splittings of A1(LO3) and E(LO4) decrease sharply with
the increasing compressive strain, showing a rather linear
dependence. The decline of the LO-TO splitting cannot be
explained by the effective charge and high-frequency dielectric
constant and is instead due to the large change in the average
frequency ω

avg
n .

Considering that ultraviolet Raman spectroscopy is now
available in experiments [1–3] and considering that nonsoft
modes may play a pivotal role in determining the structure
properties in ferroelectrics as demonstrated in Ref. [49], we
hope that our study will stimulate further theoretical and
experimental interest in mode sequence, the behaviors of
nonsoft modes, and the quantitative understanding of LO-TO
splitting.
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APPENDIX

This Appendix provides additional results that include the
vibration displacements and IR intensities of the zone-center
modes. Vibration displacements are of key relevance in terms
of understanding the behaviors of individual modes and are
given in Fig. 5 for all E modes and in Fig. 6 for all A1 modes
in unstrained BaTiO3. We choose the top view (i.e., the view
from the -c axis) for the E modes since they vibrate on the
ab plane. Meanwhile, we choose the side view (i.e., the view
from the b axis) for the A1 modes since these modes vibrate
along the c axis.

IR spectroscopy is an important technique that probes the
change in the dipole moment due to lattice vibration, namely,

the infrared intensity I ∝ | ∂P
∂Q |2, where Q is the normal mode

amplitude. This results in [50]

I =
∑

α

∣∣∣∣∣∣
∑
sβ

Z∗
s
αβ

uβ
s

∣∣∣∣∣∣

2

, (A1)

FIG. 7. (Color online) Changes in infrared intensity as a function
of strain for modes that display noticeable intensity variation.

where u
β
s is the displacement of atom s in the β direction. When

normal modes alter with strain, the change in IR intensity may
also be detected.

From the group-theory analysis, all modes except B1

in BaTiO3 of P 4mm symmetry are {IR + R} active, while
the B1 mode is only Raman active. The change in IR
intensity, �In(η) = In(η) − In(η = 0), is depicted in Fig. 7
for different modes as a function of strain. Intensities of
E(TO1) and A1(TO2) decrease with strain, while those
of A1(LO3), A1(LO1), and E(TO4) increase. The behaviors
of the IR intensities in Fig. 7 can be largely explained by
the strain dependence of the effective charges [Figs. 4(a) and
4(b)] and displacements (Table III) according to Eq. (A1).
For A1(TO2), which vibrates along the c axis, |Z∗

zz| decreases
for both Ti and O2 [Fig. 4(b)], and displacements of these
two atoms also decrease, leading to the declining IR intensity.
For E(TO) modes, since Z∗

xx does not change much upon the
strain [Fig. 4(a)], the change in IR intensity is mainly due to
the displacement change. For instance, for the E(TO4) mode,
the increase in its IR intensity comes largely from the increase
in the O3 displacement (Table III).
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