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Decoherence in models for hard-core bosons coupled to optical phonons
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Understanding coherent dynamics of excitons, spins, or hard-core bosons (HCBs) has tremendous scientific
and technological implications for quantum computation. Here, we study decay of excited-state population and
decoherence in two models for HCBs, namely, a two-site HCB model with site-dependent strong potentials
and subject to non-Markovian dynamics and an infinite-range HCB model governed by Markovian dynamics.
Both models are investigated in the regimes of antiadiabaticity and strong HCB-phonon coupling with each
site providing a different local optical phonon environment; furthermore, the HCB systems in both models are
taken to be initially uncorrelated with the environment in the polaronic frame of reference. In the case of the
two-site HCB model, we show clearly that the degree of decoherence and decay of excited state are enhanced
by the proximity of the site-energy difference to the eigenenergy of phonons and are most pronounced when the
site-energy difference is at resonance with twice the polaronic energy; additionally, the decoherence and the decay
effects are reduced when the strength of HCB-phonon coupling is increased. For the infinite-range model, when
the site energies are the same, we derive an effective many-body Hamiltonian that commutes with the long-range
system Hamiltonian and thus has the same set of eigenstates; consequently, a quantum-master-equation approach
shows that the quantum states of the system do not decohere.
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I. INTRODUCTION

Quantum information processing heavily relies on a pre-
cious and fragile resource, namely, quantum entanglement [1].
The fragility of entanglement is due to the coupling between
a quantum system and its environment; such a coupling leads
to decoherence, the process by which information is degraded.
Decoherence is the fundamental mechanism by which fragile
superposition of states is destroyed, thereby producing a
quantum to classical transition [2,3]. Since coupling of a
quantum system to the environment and the concomitant
entanglement fragility are ubiquitous [1,2], it is imperative
that progress be made in minimizing decoherence.

Modeling and controlling the environment of a solid-
state quantum bit is a major challenge in quantum com-
putation. Fairly long coherence times have been achieved
in semiconductor-based double-quantum-dot (DQD) systems
where the qubit information is encoded in the singlet-triplet
states of two spins with total Sz equal to zero [4]. Recently,
an oxide-based DQD system [with one electron or hard-core
boson (HCB) tunneling between the two identical dots] was
proposed as a qubit [5]. This DQD system has the following
advantages: (a) similar to semiconductor DQDs [4], oxide-
based DQDs permit fast electrical control of the exchange
interaction; (b) the extent of the electronic wave function
in oxides is an order of magnitude smaller than that in
semiconductors and thus oxides are better suited for miniatur-
ization; and (c) the decoherence due to the environment (i.e.,
optical phonons) in oxide dots is significantly smaller than the
decoherence due to the bath of nuclear spins in semiconductor
dots.

In general, a many-qubit (i.e., many-particle) system can
have distance-dependent interaction. The two limiting cases
for interaction are particle (HCB) hopping strength that is
independent of distance and a system with nearest-neighbor
hopping only. In a quantum computer architecture involving
many qubits, it is highly desirable to be able to perform

gate operations between any (i.e., nearby or distant) pair of
qubits. In this work, we consider an extreme model involving
distance-independent interaction of HCBs which can be
mapped onto the following spin model:

∑
i,j>i[−J⊥(Sx

i Sx
j +

S
y

i S
y

j ) + J‖Sz
i S

z
j ]. Such a model has relevance to many realistic

physical systems of interest.
First, the well-studied Lipkin-Meshkov-Glick (LMG)

model [6] HLMG= − 2h(
∑

j Sz
j )−2λ[(

∑
j Sx

j )2+γ (
∑

j S
y

j )2]/
N (for h = 0 and γ = 1) is a special case of the above-
mentioned long-range model (for J‖ = 0 and J⊥ = λ); while,
for h = 0 and γ = 0, LMG model is a special case of the model
for J⊥ = 0 and J‖ = −λ. Long-range interactions between
spins or qubits can be produced in cavity quantum electro-
dynamics as shown by experiments using a quantized cavity
mode [7,8]. Using such experiments as inspiration, by varying
the external model parameters, it has been proposed that
positive and negative values of λ with γ = 1 can be achieved
[9,10]. Furthermore, it has been pointed out in Refs. [8,11] that
having the same site energy for the spins and qubits makes
the qubit-qubit interaction effective as it conserves energy
in the spin flip-flop process; here, the qubit-qubit interaction
is mediated by exchange of virtual photons. Second, fully
connected network (FCN) is a well-studied model in the
context of highly efficient coherent energy transfer processes
in light-harvesting complexes [12–14]. FCN is characterized
by uniform hopping strength between any pair of sites and is
an extreme limit of long-range interaction model for excitons,
spins, or HCBs. Moreover, the phonon fluctuations at various
sites are uncorrelated to each other [14], i.e., local phonon
effects are significant in such complexes. Third, it has been
shown by Ezawa that the long-range ferromagnetic Heisenberg
model describes well a zigzag graphene nanodisk [15]. Lastly,
a two-spin system and a four-spin system (with spins at the
corners of a regular tetrahedron) can be physically realized
(for instance from a Hubbard model) as exact special cases of
the long-range model; it is conceivable that slightly larger
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clusters of particles (for instance, clusters containing six
or eight particles) can be physically realized as reasonable
approximations of such a model.

In this work, in the regimes of strong HCB-phonon
interaction and antiadiabaticity, we consider two HCB models
which are generalizations of a two-spin system studied earlier
[5]. It was shown in Ref. [5] that a pair of interacting spins,
coupled to an optical phonon environment, undergoes small
decoherence when both the spins have the same site energies.
Here, in the first model, we analyze the case where just one
HCB is hopping between two sites with different site energies
and the HCB-phonon coupling is local. Using non-Markovian
second-order quantum master equation, we find that deco-
herence as well as decay of the population of the excited
state are sizable if the site-energy difference is sufficiently
close to the phonon eigenenergies; these features are mani-
fested for both single-mode and multimode optical phonons.
The non-Markovian dynamics became relevant because,
when the site-energy difference approaches a phonon eigenen-
ergy, the largest effective interaction energy for HCB system
is not much smaller than the optical phonon frequency;
consequently, the time scale over which the state of the
HCB system changes appreciably is not much larger than the
correlation time for the environmental fluctuations.

As regards our second HCB model, without specifically
modeling cavity QED systems or photosynthetic complexes,
we draw inspiration from these systems and identify important
features that will produce coherent transport of HCBs in
artificial infinite-range, many-site systems. We analyze the
nature of decoherence and decay of excited-state population
in an infinite-range interaction model for HCBs that are
coupled to local optical phonons. In this many-site model,
for simplicity, all the sites are taken to be at the same energy;
then, the HCB-HCB interaction can be made effective/sizeable
using a single cavity mode [8,11]. We show that the effective
Hamiltonian in second-order perturbation theory retains the
same eigenstates as the infinite-range system Hamiltonian.
Our dynamical analysis shows that the system, when Markov
processes are considered, neither decoheres nor allows decay
of excited states. Such a Markovian approximation is valid for
sufficiently small values of the small parameter; such small
values are attainable at large electron-phonon couplings and
strong antiadiabaticities.

Although a weak interaction permits a Migdal type of
perturbative treatment, a strong HCB-phonon interaction re-
quires a nonperturbative approach (involving a phonon vacuum
instability) [16]. We study the above-mentioned two HCB
models in the polaronic frame of reference where initially the
system and the environment constitute a simply separable state.
Preparation of such a simply separable initial state has been
explicitly described in Sec. VIII of Ref. [5]. In the transformed
polaronic frame, the interaction term is weak and enables
use of perturbation theory; furthermore, both preparation and
measurement can be done in the dressed (polaronic) basis
[5,17].

In related studies involving evolution of a charge carrier in
the Holstein model that is initially excited and uncoupled to
the lattice in the original laboratory frame [18,19], analysis has
been carried at weak and strong electron-phonon couplings
and in the adiabatic and antiadiabatic regimes. At large

antiadiabaticity and for both weak and strong electron-phonon
couplings, it was found that there is negligible energy transfer
between electron and phonons and that dynamics is governed
by coherent oscillations with the frequency of oscillations
being the phonon frequency. In the adiabatic regime and at
weak coupling, the electron dissipates its energy and enters
the stationary regime without fluctuations [18]. As regards
the system at strong coupling and strong adiabaticity, initial
coherent oscillations are quickly dephased, resulting in a state
with excited polarons coexisting with metastable delocalized
states [19].

The rest of the paper is organized as follows. In Sec. II,
we study decoherence and decay of excited state using a
non-Markovian analysis for a system of two sites (each with
a different site energy) and single-mode optical phonons. In
Sec. III, we introduce the infinite-range HCB Hamiltonian
strongly coupled to local optical phonons and derive the
effective Hamiltonian. Next, using the master-equation ap-
proach, we study decoherence under Markovian dynamics.
Finally, in Sec. IV, we give our conclusions and make some
general remarks regarding the wider context of our results.
The paper also has two Appendixes: the first Appendix deals
with multimode phonons for the two-site case involving
different site energies; the second Appendix analyzes the small
parameter for the two-site system.

II. A SINGLE-MODE, TWO-SITE CASE WITH DIFFERENT
SITE ENERGIES

Here, we consider the case where one HCB is hopping
between two sites whose site-energy difference is comparable
to the phonon eigenenergies; this is in contrast to the case of
equal site energies (considered in Ref. [5]) which resulted in
negligible decoherence and decay of excited state. We assume
that each site has its local phonon environment. Initially, for
simplicity, we consider the baths and the interaction terms
to involve only a single mode and ignore the wave-number
dependence (for an analysis of the multimode case, see
Appendix A). The model Hamiltonian is given by

H = ε1

(
n1 − 1

2

)
+ ε2

(
n2 − 1

2

)
− J⊥

2
(b†1b2 + b

†
2b1)

+ J‖

(
n1 − 1

2

)(
n2 − 1

2

)
+gω

∑
i=1,2

(
ni − 1

2

)
(ai + a

†
i )

+ω
∑
i=1,2

a
†
i ai, (1)

where ε1 and ε2 are the site energies, J⊥
2 (>0) is the hopping,

and J‖(>0) is the repulsion strength between HCBs on the
adjacent sites. HCB creation and destruction operators are
defined as b

†
i and bi with the commutation relations given by

[bi,bj ] = [bi,b
†
j ] = 0 for i �= j,

(2)
{bi,b

†
i } = 1,

and ni ≡ b
†
i bi . Furthermore, aj and a

†
j are the destruction and

creation operators of phonons at the j th site, respectively, g

is the HCB-phonon coupling constant, and ω is the phonon
frequency for the simple harmonic oscillators.
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In the regime of strong electron-phonon coupling, we
perform the well-known Lang-Firsov (LF) transformation
[16,20]

HL ≡ eSHe−S = HL
s + HL

I + HL
B , (3)

where S = −∑
i g(ni − 1

2 )(ai − a
†
i ); the operators bj and aj

transform like fermions and bosons, respectively. The LF
transformation produces composite HCBs (involving HCBs
clothed with phonons) and displaces the simple harmonic
oscillators. We make our analysis in the polaronic frame
of reference where the system Hamiltonian HL

s , interaction
Hamiltonian HL

I , and the displaced-phonon Hamiltonian HL
B

are given by

HL
s = ε1

(
n1 − 1

2

)
+ ε2

(
n2 − 1

2

)
− J⊥e−g2

2
(b†1b2 + b

†
2b1)

+ J‖

(
n1 − 1

2

)(
n2 − 1

2

)
, (4)

HL
I = −1

2
[J+

⊥ b
†
1b2 + J−

⊥ b
†
2b1], (5)

and

HL
env = ω

∑
i=1,2

a
†
i ai, (6)

respectively. In the above equations

J±
⊥ = J⊥e±g[(a2−a

†
2)−(a1−a

†
1)] − J⊥e−g2

(7)

and

J⊥e−g2 = ph〈0|J⊥e±g[(a2−a
†
2)−(a1−a

†
1)]|0〉ph. (8)

Additionally, J±
⊥ /J⊥ is the deviation of the local phonon

field from its ground-state expectation value, and thus the
ground-state average of this vanishes. The system Hamiltonian
HL

s represents HCB coupled to the mean-phonon field and
1
2J⊥e−g2

is the resulting renormalized hopping amplitude.
In the subspace involving only one HCB and two sites, the
two eigenstates of HL

s are given by 1√
1+χ2

1

(χ1|10〉 + |01〉)
and 1√

1+χ2
2

(χ2|10〉 + |01〉) with corresponding eigenenergies

−J‖−2
√

�ε2+J 2
⊥e−2g2

4 and −J‖+2
√

�ε2+J 2
⊥e−2g2

4 , respectively; here,

χ1 = −�ε−
√

�ε2+J 2
⊥e−2g2

J⊥e−g2 and χ2 = −�ε+
√

�ε2+J 2
⊥e−2g2

J⊥e−g2 with
site-energy difference �ε = ε1 − ε2. The interaction Hamilto-
nian HL

I represents the HCBs coupled to fluctuations of local
phonons around their mean-phonon field. Here, in the strong
HCB-phonon coupling regime, we want to maintain quantum
coherence in the dressed (polaronic) basis; the local-phonon
fluctuation, involving large number of uncontrolled degrees of
freedom, is the source of noise to the coherent dynamics of the
polarons. As the interaction in the polaronic frame of reference
is weak (compared to that in the original frame of reference),
one can treat HL

I as a perturbation.
When the site-energy difference approaches the

eigenenergy of phonons, the small parameter value becomes
sizable, the time scale for the HCB system to change
appreciably becomes comparable to the correlation time of
the bath fluctuations, and non-Markovian dynamics becomes

relevant. In Appendix B, we will discuss the validity of our
perturbation theory and the nature of dynamics for the case of
unequal site energies.

A. Non-Markovian dynamics of the model

The dynamics of the system, described by the reduced
density matrix ρs(t) at time t , is obtained from the total
system-environment density matrix ρT (t) by taking the partial
trace over the degrees of freedom of the environment:

ρs(t) = TrR[ρT (t)]. (9)

To analyze the non-Markovian dynamics of the model, in
the polaronic frame of reference, we start with the simply
separable initial state ρT (0) = ρs(0) ⊗ R0 where ρs(0) need
not correspond to only the ground state and R0 is the phonon
density matrix at thermal equilibrium and is given by R0 =∑

n1,n2
|n1,n2〉ph ph〈n1,n2|e−βωn1 ,n2 /Z. Here, n1 and n2 are the

phonon occupation numbers at sites 1 and 2, respectively;
in this section, we will use the notation |n〉ph ≡ |n1,n2〉ph

and ωn ≡ ωn1,n2 = ω(n1 + n2). The preparation of such an
initially factorized state was demonstrated in detail (by using
a significantly small value of J⊥/ω) for a realistic system,
i.e., an oxide-based double quantum dot (DQD), in Ref. [5];
the effect of fluctuations (given by HL

I ) was shown to be
negligible. There, upon realizing the desired initially separable
state, the desired value of the tunneling J⊥ could be obtained
by changing the gate voltage much faster than the electron
can tunnel. Once J⊥ is sizable, fluctuations become relevant
and lead to decoherence. Here too, the same procedure can
be adopted to obtain the simply separable initial state in
a DQD; subsequently, the desired values of detuning (�ε)
and tunneling (J⊥) can be achieved by adjusting the relevant
voltages much faster than the electron can tunnel across.

Now, although the initial state is simply separable in the
polaronic frame, it is given by e−Sρs(0) ⊗ R0e

S in the original
frame of reference and is thus an entangled state. Furthermore,
as pointed out in Sec. VIII of Ref. [5], the readout can be
obtained (noninvasively) in the polaronic frame. Thus, since
the states can be prepared and measured in the dressed
(polaronic) basis, we study decoherence as well as decay of
the population of the excited state in the polaronic frame and
demonstrate below that they are both small when the initial
state is simply separable and when the site-energy difference
is sufficiently different from the phonon eigenenergies.

Now, we start with the second-order, time-convolutionless
(TCL), non-Markovian, quantum-master equation [i.e., Red-
field equation (see Ref. [21])]

dρ̃s(t)

dt
= −

∫ t

0
dτ TrR

[
H̃L

I (t),
[
H̃L

I (τ ),ρ̃s(t) ⊗ R0
]]

, (10)

where H̃L
I (t) = eiHL

0 tHL
I e−iHL

0 t and ρ̃s(t) = eiHL
0 t ρs(t)e−iHL

0 t

are the interaction Hamiltonian and the reduced density
matrix operators (respectively) expressed in the interaction
picture; HL

0 = HL
s + HL

env is the unperturbed Hamiltonian.
Furthermore, in the above Eq. (10), it has been assumed
that TrR[H̃L

I (t),ρs(0) ⊗ R0] = 0 which is certainly valid at
temperature 0 K. Next, at zero temperature, Eq. (10) can be
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rewritten as

dρ̃s(t)

dt
= −

∑
m

∫ t

0
dτ

[
ph

〈0|H̃L
I (t)|m〉ph ph〈m|H̃L

I (τ )|0〉phρ̃s(t) − ph〈m|H̃L
I (t)|0〉phρ̃s(t)ph〈0|H̃L

I (τ )|m〉ph

− ph〈m|H̃L
I (τ )|0〉phρ̃s(t)ph〈0|H̃L

I (t)|m〉ph + ρ̃s(t)ph〈0|H̃L
I (τ )|m〉ph ph〈m|H̃L

I (t)|0〉ph

]
. (11)

We choose the basis {|10〉,|01〉} for our analysis and obtain the following useful expressions:

e−iHL
s t |10〉 = [p(t)∗|10〉 − iκq(t)|01〉]ei

J‖
4 t (12)

and

e−iHL
s t |01〉 = [p(t)|01〉 − iκq(t)|10〉]ei

J‖
4 t , (13)

where p(t) = cos(t
√

�ε2

4 + κ2) + i �ε
2

sin(t
√

�ε2
4 +κ2)√

�ε2
4 +κ2

, q(t) = sin(t
√

�ε2
4 +κ2)√

�ε2
4 +κ2

, and κ = − J⊥e−g2

2 . In addition, we also evaluate the

matrix element

ph〈0|HL
I |n〉ph = κ(−1)n1

√
Cn(b†1b2 + (−1)n1+n2b

†
2b1), (14)

where Cn = g2(n1+n2)

n1!n2! . Taking the matrix elements, with respect to |10〉 and |01〉, on both sides of Eq. (11) and by using Eqs. (12)–
(14), we calculate the matrix elements of the four terms on the right-hand side of Eq. (11) (with details being shown in the
Supplemental Material [22]). For the case when |�ε| � |κ|, |10〉 and |01〉 are the approximate eigenstates of HL

s . In this regime
of parameter values, we ignore the ratio |κ|

|�ε| compared to 1 and finally obtain the simple form of the master equation for
〈10|ρ̃s(t)|01〉:

d〈10|ρ̃s(t)|01〉
dt

= −iκ2
∑

n

′
Cn

[
〈10|ρ̃s(t)|01〉

(
e−i(ωn−�ε−iη)t

ωn − �ε
− ei(ωn+�ε+iη)t

ωn + �ε
− 2�ε

ω2
n − �ε2

)

+〈01|ρ̃s(t)|10〉(−1)n1+n2ei(2�ε+iη)t

(
ei(ωn−�ε)t

ωn − �ε
− e−i(ωn+�ε)t

ωn + �ε
− 2�ε

ω2
n − �ε2

)]
, (15)

and its complex-conjugate equation for 〈01|ρ̃s(t)|10〉. In the above equation,
∑′

n ≡ ∑′
n1,n2

excludes the case where n1 and n2

are simultaneously zero. Similarly, for the diagonal element 〈10|ρ̃s(t)|10〉, the differential equation can be written as

d〈10|ρ̃s(t)|10〉
dt

= −2κ2
∑

n

′
Cne

−ηt

[
〈10|ρ̃s(t)|10〉

(
sin(ωn + �ε)t

ωn + �ε
+ sin(ωn − �ε)t

ωn − �ε

)
− sin(ωn + �ε)t

ωn + �ε

]
. (16)

In Eqs. (15) and (16), we multiplied the oscillatory terms with
a decay term e−ηt (where η → +0) to obtain the behavior of
the matrix elements of ρ̃s(t) at long times, i.e., at times much
larger than the largest time scale in the process �/J⊥e−g2

.
To understand decoherence and the decay of the excited

state (|10〉), we define two quantities: the coherence factor
C(t) = |〈10|ρs (t)|01〉|

|〈10|ρs (0)|01〉| and the population of the excited state
P(t) = 〈10|ρs(t)|10〉. We numerically solve the coupled differ-
ential equations given by Eq. (15) and its complex-conjugate
equation and plot the dynamical behavior of C(t) in Figs. 2,
5(a), and 6. We also depict the time dependence of P(t) in
Figs. 4, 5(b), and 7. We analyze below Figs. 2–7 and show
that the period of oscillation and the amplitude of oscillation
of both C(t) and P(t) increase as the site energy difference
�ε approaches a harmonic ωn; also, the closer the �ε is to
ωn, the smaller are the equilibrium values of C(t) and P(t).
Furthermore, the closer ωn is to 2g2ω (i.e., twice the polaronic
energy), the more prominent are the period and amplitude of
oscillations. Interestingly too, we find that the stronger the
coupling g, the weaker is the decoherence and the decay of the
excited-state population.

In Figs. 2 and 4, we study three cases of proximity of �ε

to ωn: �ε
ω

= 2.5,7.5, and 14.5; �ε
ω

= 2.9,7.9, and 14.9; and
�ε
ω

= 3.0,8.0, and 15.0. One can see from Eq. (15) that, for
values of �ε close to ωn (i.e., for �ε

ω
= 2.9,7.9, and 14.9),

the dominant terms have arguments of the periodic functions
being given by (ωn − �ε)t = 0.1ωt ; consequently, there is a
large period of oscillation (=20π/ω) in Fig. 2(b). Also, the
amplitude of oscillation is dominated by the term sin[(ωn −
�ε)t]/(ωn − �ε) and hence the amplitude increases with
decreasing values of (ωn − �ε). Furthermore, the coherence
factor also depends on the number of degenerate phonon states
with eigenenergy ωn; the contribution of this degeneracy [as
seen from Eq. (15)] is determined by the term

CN = κ2

ω2

∑
n1,n2;(n1+n2)=N

Cn = κ2

ω2

(2g2)
N

N!
, (17)

where
∑

n1,n2;(n1+n2)=N adds up all Cn with (n1 + n2) = N. The

closeness of �ε to ωn and the value of CN together determine
the strength of decoherence. The value of CN increases with
increasing N = n1 + n2 up to some limit as depicted in Fig. 1.
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FIG. 1. (Color online) CN as a function of N for different values
of coupling g and for J⊥

ω
= 0.5.

One can also see that the maximum of CN occurs at phonon
eigenenergy ωn close to 2g2ω. In other words, for a particular
g, when �ε is close to twice the polaronic energy g2ω,
decoherence is maximum with ωn closest to 2g2ω making
the dominant contribution. For a further understanding of the
maximum value of CN, see the explanation of Fig. 14 in
Appendix B.

The above observations that the period of oscillation
being inversely proportional to �ε − ωn and that the values
of 1/(�ε − ωn) and CN together determine the strength
of decoherence are also exemplified for the cases when
�ε = ωn [through Fig. 2(c) when �ε

ω
= 3.0,8.0, and 15.0]

and when |�ε − ωn| = ω/2 [through Fig. 2(a) when �ε
ω

=
2.5,7.5, and 14.5]. In Fig. 2(c) [2(a)], the period of oscillation
is infinity (4π/ω) and the decoherence is stronger (weaker)
than in Fig. 2(b). It should be clear that recoherence occurs in
Fig. 2 because we are dealing with single-mode phonons; the
closer that �ε approaches ωn, the later does the recoherence
occur (i.e., recoherence time is inversely proportional to
�ε − ωn).

Similar to the above analysis of Eq. (15), one can analyze
Eq. (16) to gain an understanding of P(t). For comparatively
large initial values 〈10|ρs(0)|10〉, the time dependence of
〈10|ρs(t)|10〉 is mainly determined by the homogeneous part
in Eq. (16). The role of the inhomogeneous term can be
understood from Fig. 3 by taking P(0) = 0 in the solution of
Eq. (16). One can see a very small variation of the excited-state
population and the peak values of oscillations in Fig. 3 are less
than the order of |κ|

|�ε| [i.e., ∼O(10−2)]; we have neglected |κ|
|�ε|

compared to 1 in our calculations. So [when P(0) = 0], we can
say that the system stays in the ground state for all practical
purposes. Next, in Eq. (16), we see that the homogeneous part
is dominated by the oscillatory terms with period of oscillation
being inversely proportional to �ε − ωn; here too the values
of 1/(�ε − ωn) and CN together determine the strength of
decay of P(t) as can be seen from Figs. 4(a)–4(c).
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FIG. 2. (Color online) Time dependence of C(t) for J⊥
ω

= 0.5,
g = 2.0, and when (a) �ε

ω
= 2.5, 7.5, and 14.5; (b) �ε

ω
= 2.9, 7.9,

and 14.9; and (c) �ε

ω
= 3.0,8.0 and 15.0.

To understand the dependence of C(t) and P(t) on the
strength of coupling, we study the variation of CN on g in
Fig. 1. The peak value of CN decreases with increasing g,
i.e., the maximum decoherence/decay (which occurs when
�ε = 2g2ω) decreases as the coupling becomes stronger. In
Figs. 5(a) and 5(b), respectively, C(t) and P(t) are plotted for
different values of g with �ε

ω
taking integer values closest to

2g2.
Now, using Eqs. (15) and (16), we will determine the values

of C(t) and P(t) at long times, i.e., at times much larger than the
largest time scale in the process �/J⊥e−g2

. We plot C(t) and
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FIG. 3. (Color online) Time dependence of P(t) for �ε

ω
= 2.5

when J⊥
ω

= 0.5, P(0) = 0, and g = 2.0.
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FIG. 4. (Color online) Time dependence of P(t) for J⊥
ω

= 0.5,
P(0) = 0.8, g = 2.0, and when (a) �ε

ω
= 2.5, 7.5, and 14.5;

(b) �ε

ω
= 2.9, 7.9, and 14.9; and (c) �ε

ω
= 3.0, 8.0, and 15.0.

P(t) in Figs. 6 and 7, respectively, for values of η/ω = 0.01
and 0.02. For both the values of η, C(t) [as well as P(t)] attains
the same equilibrium value. Here, we should mention that (for
the chosen values of η/ω = 0.01 and 0.02) although the decay
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FIG. 5. (Color online) Time dependence of (a) C(t) and (b) P(t)
[with P(0) = 0.8] for different values of coupling g and J⊥

ω
= 0.5

when �ε/ω takes integer values closest to 2g2.
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FIG. 6. (Color online) Time dependence of C(t) for J⊥
ω

= 0.5,
g = 2.0, and when (a) �ε

ω
= 7.9 and (b) �ε

ω
= 7.5.

term e−ηt does diminish over the period of oscillation of C(t)
and P(t), we got the same equilibrium values for much smaller
values of η as well.

Lastly, we would like to compare the case of nonzero �ε

with the case of �ε = 0 using the plots in Figs. 8 and 9.
To analyze decoherence using C(t) and decay of P(t), for
each case, we use the corresponding eigenstate basis, i.e.,
{|10〉,|01〉} for �ε �= 0 and { |10〉−|01〉√

2
,
|10〉+|01〉√

2
} for �ε = 0; we

note that |10〉−|01〉√
2

is the excited state for the case of �ε = 0.
We see that the periodicity of the cases with nonzero site
energy [depicted in Figs. 2, 4, 8(a), and 9(a)] is determined by
the closeness of �ε to ωn whereas the periodicity of the case
with �ε = 0 is determined by ω. For the case of �ε = 0, in
the strong coupling regime, since the system excitation energy
J⊥e−g2

is much smaller than ω, there is no possibility of energy
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FIG. 7. (Color online) Time dependence of P(t) for J⊥
ω

= 0.5,
P(0) = 0.8, g = 2.0, and when (a) �ε

ω
= 7.9 and (b) �ε

ω
= 7.5.
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FIG. 8. (Color online) Time dependence of C(t) for J⊥
ω

= 0.5,
g = 1.5, and 2.0, and when (a) �ε

ω
= 2.5 and (b) �ε

ω
= 0.

exchange between the system and phonons. This results in
smaller equilibrium values of C(t) and P(t) for the case with
finite �ε compared to the case with �ε = 0 as shown in
Table I. Also, the oscillations of C(t) and P(t) are smaller for
the case �ε = 0 compared to the case of finite �ε as can be
seen by comparing Figs. 8(b) and 9(b) with Figs. 8(a) and
9(a); here we chose �ε/ω = 2.5 so that �ε is far away from
the nearest eigenenergies ωn = 2ω and 3ω. Furthermore, in
Fig. 8(b) [Fig. 9(b)] the ωt regions between two consecutive
integer multiples of 2π (π ) become flatter as the coupling g

increases; as g increases, more number of excited states for
phonons (with energy ωn) contribute and produce destructive
interference of phases resulting in the flat region (see Ref. [5]
for details) [23]. On the other hand, in Figs. 8(a) and 9(a), only
those states with ωn close to �ε have a dominant contribution.
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FIG. 9. (Color online) Time dependence of P(t) for J⊥
ω

= 0.5,
P(0) = 0.8, g = 1.5 and 2.0, and when (a) �ε

ω
= 2.5 and (b) �ε

ω
= 0.

TABLE I. Equilibrium values of C(t) and P(t) [with P(0) = 0.8]
for J⊥/ω = 0.5 and various values of g when �ε/ω = 0,2.5 and 2.9.

�����g
�ε/ω 0 2.5 2.9

C(∞) P(∞) C(∞) P(∞) C(∞) P(∞)

1.5 0.970 0.794 0.916 0.683 0.343 0.096
2.0 0.993 0.799 0.984 0.778 0.830 0.555

Thus, to minimize decoherence and dissipation, it is
desirable to set the site-energy difference to be much smaller
than the phonon frequency.

In principle, the model (dealt with in this section) can be
extended to a many-site, many-body HCB system. However,
with increasing system size, the growing Hilbert space of the
system makes the analytical treatment more cumbersome and
difficult; we still expect a low degree of decoherence unless
the site-energy difference between any two sites does match
with the phonon eigenenergy. In the future, we would like to
carry out the above analysis for a smaller system of three (or
four) sites.

III. INFINITE-RANGE HCB MODEL WITH HCBs
COUPLED TO LOCAL OPTICAL PHONONS

In this section, we analyze an extreme long-range many-
body HCB model with equal site energies. Having equal site
energies not only makes the model analytically tractable, but
can also be helpful to attain long-range interactions; in a
cavity QED, multiqubit architecture has been proposed and
it was shown that one can get sizable qubit-qubit interaction
over large distances when both the qubits have the same
energy [8,11]. Moreover, we have shown that decoherence
and dissipation are quite small when site-energy difference is
negligible compared to the phonon frequency (see previous
section and Ref. [5]). We begin by introducing the infinite-
range HCB model whose decoherence will be studied when
the system is coupled to local phonons. The Hamiltonian for
that is defined as

HHCB =
∑
i,j>i

[−J⊥
2

(b†i bj + H.c.) + J‖

(
ni − 1

2

)(
nj − 1

2

)]
.

(18)

It is understood that J⊥ = J �
⊥/(N − 1) and J‖ = J �

‖ /(N − 1)
(where J �

⊥ and J �
‖ are finite quantities) so that the energy per

site remains finite as N → ∞. The total Hamiltonian is defined
by

HT =
∑
i,j>i

[−J⊥
2

(b†i bj + H.c.) + J‖

(
ni − 1

2

)(
nj − 1

2

)]

+ω
∑

j

a
†
j aj + gω

∑
j

(
nj − 1

2

)
(aj + a

†
j ). (19)

Subsequently, we perform the LF transformation

HL
T ≡ eSHT e−S = HL

0 + HL
I , (20)
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where again S = −g
∑

i(ni − 1
2 )(ai − a

†
i ). Next, the unper-

turbed Hamiltonian HL
0 is expressed as

HL
0 = HL

s + HL
env, (21)

where we identify HL
s as the system Hamiltonian

HL
s =

∑
i,j>i

[−J⊥
2

e−g2
(b†i bj + H.c.)

+ J‖

(
ni − 1

2

)(
nj − 1

2

)]
, (22)

and HL
env as the Hamiltonian of the environment

HL
env = ω

∑
j

a
†
j aj . (23)

On the other hand, the interaction HL
I (which we will treat as

perturbation) is given by

HL
I = −1

2

∑
i,j>i

[J+
ij b

†
i bj + H.c.], (24)

where J±
ij /J⊥ = e±g[(aj −a

†
j )−(ai−a

†
i )] − e−g2

is the local phonon
fluctuation (at sites i and j ) about the mean phonon field
e−g2

. In the transformed frame, the system Hamiltonian
HL

s depicts that all the HCBs are coupled to the same
phononic mean field. Thus, the unperturbed Hamiltonian
HL

0 comprises of the system Hamiltonian HL
s representing

HCBs with the same reduced hopping term 1
2J⊥e−g2

and
the environment Hamiltonian HL

env involving displaced bath
oscillators corresponding to local distortions. Here, it should
be pointed out that the mean-field term HL

s involves controlled
degrees of freedom. Thus, no irreversibility is involved under
evolution due to HL

0 . On the other hand, perturbation HL
I

pertains to the interaction of HCBs with local deviations
from the phononic mean field; the interaction term HL

I

represents numerous or uncontrolled environmental degrees of
freedom and thus has the potential for producing decoherence.
Furthermore, it is of interest to note that the interaction term
is weak in the transformed frame unlike the interaction in
the original frame; thus, one can perform perturbation theory
with the interaction term. We represent the eigenstates of
the unperturbed Hamiltonian HL

0 as |n,m〉 ≡ |n〉s ⊗ |m〉ph

with the corresponding eigenenergies E(0)
n,m = Es

n + E
ph
m ; |n〉s

is the eigenstate of the system with eigenenergy Es
n, while

|m〉ph is the eigenstate for the environment with eigenenergy
E

ph
m . Henceforth, for brevity, we will use ωm ≡ E

ph
m . Next,

we observe that 〈n,0|HL
I |n,0〉 = 0 because ph〈0|J±

ij |0〉ph = 0.

Then, corresponding to the unperturbed eigenenergy E
(0)
n,0, the

next relevant second-order perturbation term E
(2)
n,0 is given as

follows (see Appendix A of Ref. [24]):

E
(2)
n,0 =

∑
l,m

〈n,0|HL
I |l,m〉〈l,m|HL

I |n,0〉
E

(0)
n,0 − E

(0)
l,m

≈
∑
m

〈n,0|HL
I |m〉ph ph〈m|HL

I |n,0〉
ω0 − ωm

, (25)

where use has been made of the fact that |Es
n − Es

l | � J �
⊥e−g2

(as shown in the next section) and that J �
⊥e−g2 � ω as follows

from the conditions of strong coupling (i.e., g2 � 1) [25]
and nonadiabaticity (i.e., J �

⊥/ω � 1) [26] assumed in this
paper; we also noted that ωm − ω0 = ωm is a positive integral
multiple of ω. Using Schrieffer-Wolff (SW) transformation
(as elaborated in Appendix A of Refs. [24,27]), we get the
following second-order term H (2) (see Ref. [28]):

H (2) = −
∑
m

ph〈0|HL
I |m〉ph ph〈m|HL

I |0〉ph

ωm

=
∑
i,j>i

[(
1

2
J

(2)
⊥ b

†
i bj + H.c.

)

− 1

2
J

(2)
‖ {ni(1 − nj ) + nj (1 − ni)}

]
, (26)

where

J
(2)
⊥ ≡ −(N − 2)f1(g)

J 2
⊥e−2g2

2ω
∼ −(N − 2)

J 2
⊥e−g2

2g2ω
, (27)

J
(2)
‖ ≡ [2f1(g) + f2(g)]

J 2
⊥e−2g2

2ω
∼ J 2

⊥
4g2ω

, (28)

with f1(g)≡∑∞
l=1 g2l/(l!l) and f2(g)≡∑∞

j=1

∑∞
l=1 g2(j+l)/

[j !l!(j + l)]. The effective Hamiltonian HL
s + H (2) is a low-

energy Hamiltonian obtained by the canonical SW trans-
formation [29,30] decoupling the low- and the high-energy
subspaces; this decoupling is a consequence of J �

⊥e−g2 � ω.
We now make the important observation that the effective
Hamiltonian HL

s + H (2) has the same set of eigenstates
as those of HL

s and HHCB because
∑

i,j>i(ni − 1
2 )(nj − 1

2 )
commutes with both HL

s and HHCB. Actually, we have shown
that even in higher-order perturbation theory (higher than
second order) the eigenstates of the effective Hamiltonian
do not change [31]. The small parameter of our perturbation
theory, for a small-N system, is J⊥

2gω
(see Ref. [32] for details);

whereas for a large N , the small parameter is J �
⊥

g2ω
(see Ref. [33]

for an explanation). It is the long range of the model that
enables the eigenstates of the system to remain unchanged.
While the fact that the eigenstates of the effective Hamiltonian
remain the same as those of HHCB may be suggestive of the
robustness of the states of this long-range model, to establish
that the states of the system are actually decoherence free, it
is necessary to show that the off-diagonal matrix elements of
the system’s reduced density matrix do not diminish. Next,
we study decoherence in a dynamical context and gain more
insight into how the states of our HHCB can be decoherence
free.

A. Dynamical evolution of the system

In this section, we will study decoherence in the system
from the dynamical perspective. Although the eigenstates of
the effective Hamiltonian and HHCB are the same, the system-
environment interaction may lead to certain correlations such
that the resulting state of the system may no longer be
represented in terms of unitary Hamiltonian dynamics.
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We begin by observing that, to understand decoherence in
the original frame of reference where the HCB-phonon cou-
pling is strong, it is convenient to use the LF transformed frame
of reference. The relevant Hamiltonian (for our decoherence
analysis) is the following LF transformed Hamiltonian:

H L
T = HL

0 + HL
I , (29)

where HL
0 is the system-environment Hamiltonian given

by Eq. (21) and HL
I represents the interaction Hamiltonian

given by Eq. (24). As before, here too the initial state
of the total system is taken to be a factorized (or simply
separable) state given by ρT (0) = ρs(0) ⊗ R0 where R0 =∑

n |n〉ph ph〈n|e−βωn/Z; also, here too ρs(0) need not represent
only the ground state. Such a factorized state can be prepared,
as in the case of oxide-based DQD, by using small values of

J⊥/ω (i.e., �10−3). Once a separable state is prepared, one
can rapidly alter the interaction J⊥ to the desired value before
any HCB hops.

Next, we will study the Markovian dynamics of the system.
The Markov approximation is valid when the correlation time
scale τc for the environmental fluctuations is negligibly small
compared to the relaxation time scale τs for the system, i.e.,
τc � τs . Furthermore, it has been shown that the Markov
approximation becomes more valid for stronger coupling g and
enhanced nonadiabaticity, i.e., for smaller values of the small
parameter (see Ref. [5] and Appendix B); this result follows
because τc/τs can be approximated by the square of the small
parameter. The Markov approximation (with τc � τs) allows
us to use the second-order time-convolutionless Markovian
master equation (see Ref. [21] for further details)

dρ̃s(t)

dt
= −i TrR

[
H̃L

I (t),ρs(0) ⊗ R0
] −

∫ ∞

0
dτ TrR

[
H̃L

I (t),
[
H̃L

I (t − τ ),ρ̃s(t) ⊗ R0
]]

. (30)

Now, by defining {|m〉ph} as the basis set for phonons and observing that, at 0 K temperature TrR[H̃L
I (t),ρs(0) ⊗ R0] = 0, we

can write the master equation at zero temperature as

dρ̃s(t)

dt
= −

∑
m

∫ ∞

0
dτ

[
ph

〈0|H̃L
I (t)|m〉ph ph〈m|H̃L

I (t − τ )|0〉phρ̃s(t) −ph〈m|H̃L
I (t)|0〉phρ̃s(t)ph〈0|H̃L

I (t − τ )|m〉ph

− ph〈m|H̃L
I (t − τ )|0〉phρ̃s(t)ph〈0|H̃L

I (t)|m〉ph + ρ̃s(t)ph〈0|H̃L
I (t − τ )|m〉ph ph〈m|H̃L

I (t)|0〉ph

]
. (31)

In order to simplify the above master equation (31), we need to evaluate the various terms occurring on its right-hand side;
considering the first term yields
∑
m

ph〈0|H̃L
I (t)|m〉ph ph〈m|H̃L

I (t − τ )|0〉phρ̃s(t) =
∑
m

eiHL
s t

ph〈0|HL
I |m〉phe

−iHL
s t eiHL

s (t−τ )
ph〈m|HL

I |0〉phe
−iHL

s (t−τ )ρ̃s(t)e
−iωmτ .

(32)

We connect the HCBs in real space with those in momentum space as b
†
j = 1√

N

∑
k1

eik1rj b
†
k1

; henceforth, in momentum space,

the creation and destruction operators of HCBs shall be denoted, respectively, as b
†
kn

and bkn
with n = 1,2,3, . . . . Then, it is

important to note that the hopping term in the system Hamiltonian can be written as (see Refs. [28,34])

1

2
J⊥e−g2

∑
i,j>i

(b†i bj + H.c.) = 1

2
J⊥e−g2

⎡
⎣∑

i,j

b
†
i bj −

∑
i

b
†
i bi

⎤
⎦ = 1

2
J⊥e−g2

[Nn̂0 − N̂p] =
∑
k1

εk1b
†
k1

bk1 , (33)

where J⊥ = J �
⊥/(N − 1), N̂p ≡ ∑

k1
b
†
k1

bk1 , and n̂0 ≡ b
†
0b0 (i.e., the particle number in momentum k1 = 0 state). Thus, the

single-particle energy (obtained from hopping) is given by

εk1 = 1

2
J �

⊥
N

N − 1
e−g2

δk1,0 − 1

2
J⊥e−g2

. (34)

We take the total number of HCBs to be conserved; then, only the hopping term in HL
s will contribute to the change in the

system energy [see Eq. (22)]. Thus, in Eq. (25), the largest value of the change in system energy in the denominator is given by
the following maximum change in the single-particle energy:

∣∣Es
n − Es

l

∣∣ = 1

2
J �

⊥
N

N − 1
e−g2

, (35)

which is N times the hopping term (1/2)J⊥e−g2
in HL

s . Let {|q〉s} denote the complete set of energy eigenstates (with eigenenergies
Es

q) of the system Hamiltonian HL
s ; then we can write

e
iHL

s t

ph 〈n|HL
I |m〉phe

−iHL
s t =

∑
q,q ′

|q〉s s〈q|ph〈n|HL
I |m〉ph|q ′〉s s〈q ′|ei(Es

q−Es
q′ )t , (36)
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where |Es
q − Es

q ′ | � 1
2J �

⊥( N
N−1 )e−g2

[based on Eq. (35)]. Substituting Eq. (36) in Eq. (32), we get
∑
m

ph〈0|H̃L
I (t)|m〉ph ph〈m|H̃L

I (t − τ )|0〉phρ̃s(t)

=
∑
m

∑
q,q ′,q ′′

[|q〉s s〈q|ph〈0|HL
I |m〉ph|q ′〉s s〈q ′|ph〈m|HL

I |0〉ph|q ′′〉s s〈q ′′|ei[(Es
q−Es

q′ )t+(Es
q′ −Es

q′′ )(t−τ )]]
ρ̃s(t)e

−iωmτ . (37)

Since J �
⊥e−g2 � ω and since the maximum value of |Es

q ′ − Es
q ′′ | � J �

⊥e−g2
as well as the maximum value of |Es

q − Es
q ′ | � J �

⊥e−g2
,

the following are valid approximations:

e
i(t−τ )[ωm+(Es

q′−Es
q′′ )] ≈ ei(t−τ )ωm (38)

and

e
it[−ωm+(Es

q−Es
q′ )] ≈ e−itωm, (39)

where ωm is a positive integral multiple of ω. The above approximations imply that we do not get terms producing decay. Then,
on using the approximations given by Eqs. (38) and (39), Eq. (37) simplifies to be∑

m

ph〈0|H̃L
I (t)|m〉ph ph〈m|H̃L

I (t − τ )|0〉phρ̃s(t) =
∑
m

ph〈0|HL
I |m〉ph ph〈m|HL

I |0〉phρ̃s(t)e
−iωmτ . (40)

Carrying out the same analysis on the remaining (i.e., second, third, and fourth) terms in the master equation, we write Eq. (31)
as

dρ̃s(t)

dt
= −

∑
n

[ ∫ ∞

0
dτ e−i(ωn−iη)τ |ph〈0|HL

I |n〉ph|2ρ̃s(t) +
∫ ∞

0
dτ ei(ωn+iη)τ ρ̃s(t)|ph〈0|HL

I |n〉ph|2

−
∫ ∞

−∞
dτ e

iωnτ
ph 〈n|HL

I |0〉phρ̃s(t)ph〈0|HL
I |n〉ph

]
, (41)

where η → +0. Now, we know that
∫ ∞
−∞ dτ eiωnτ ∝ δ(ωn). Therefore, on using this relation and the fact that ph〈0|HL

I |0〉ph = 0,
the third term in Eq. (41) vanishes; hence, we get

dρ̃s(t)

dt
= i

∑
n

⎡
⎣

∣∣
ph

〈0|HL
I |n〉ph

∣∣2

ωn

ρ̃s(t) − ρ̃s(t)

∣∣
ph

〈0|HL
I |n〉ph

∣∣2

ωn

⎤
⎦. (42)

Here, it should be pointed out that the above simplified form
for the master equation was possible due to the Markovian
approximation made. Based on Eq. (26), we identify the term

−∑
n [ |ph〈0|HL

I |n〉ph|2
ωn

] in the above equation to be the term

H (2) obtained in second-order perturbation which together
with HL

s makes up the effective Hamiltonian (in second-order
perturbation). On noting that ρ̃s(t) = eiHL

s tρs(t)e−iHL
s t and that

H (2) commutes with HL
s (see Sec. III), it follows from Eq. (42)

that
dρs(t)

dt
= −i

[
HL

s + H (2),ρs(t)
]
. (43)

The above Eq. (43) shows that the effective Hamiltonian
(HL

s + H (2)) governs the unitary evolution of the reduced den-
sity matrix ρs(t) with ρs(t) = e−i(HL

s +H (2))t ρs(0)ei(HL
s +H (2))t .

Let |n〉s be the simultaneous eigenstate for H (2) and HL
s with

eigenvalues E(2)
n and Es

n, respectively. Then, from the above
Eq. (43) we get

s〈n|ρs(t)|m〉s = e−i(En−Em)t
s 〈n|ρs(0)|m〉s , (44)

where En = Es
n + E(2)

n . Thus, we see from the above equation
that there is only a phase shift but no decoherence! Thus, up to
second order in perturbation, the assumption J �

⊥e−g2 � ω, the
long range of the model, the condition of equal site energies,

and the Markov approximation together have ensured that the
system, with a fixed

∑
i ni , does not decohere; furthermore,

the population s〈n|ρs(t)|n〉s does not change with time.

IV. DISCUSSION AND CONCLUSIONS

In this work, we considered two models of HCB that
are characterized by strong HCB-phonon coupling and an-
tiadiabaticity; the initial state of both the models contains
no correlation between the system and the optical-phonon
environment in the polaronic frame of reference (where
the interaction term is weak). These two models are a
generalization of the system studied in Ref. [5]. The case
where site-energy differences can be comparable to the phonon
eigenenergies needs to be analyzed using non-Markovian
dynamics because the dominant interaction energy (resulting
from second-order perturbation) need not be small compared
to the phonon frequency. On the other hand, when the site
energies are taken to be equal (as in cavity QED so as to
produce sizable long-range interaction), one can restrict the
largest interaction energy (by tuning the hopping term) to
be significantly smaller than the phonon frequency, thereby
ensuring Markovian dynamics.

First, for an amenable two-site system, we analyze the case
where the site-energy difference is non-negligible compared
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to the phonon energy. When the site-energy difference is (not)
close to a phonon eigenenergy, the amount of decoherence
and decay of excited state are (not) sizable. The extension of
the model to a many-site case involves much more analytical
complication and will be dealt with in the future. However,
the analysis in Sec. II indicates a small decoherence as long
as the site-energy difference between any two sites remains
sufficiently away from the phonon eigenenergies.

Second, when the site energies are all equal, we have
shown that an infinite-range HCB model subject to Markovian
dynamics does not show decoherence or decay of excited-state
population. It is the long-range nature of the Hamiltonian,
the equal values for the site energies, and the negligible
renormalized hopping (compared to the phonon frequency)
that preserve the eigenstates of the system; in addition, when
the small parameter is sufficiently small, Markov process can
be assumed and then the dynamics is decoherence free.

We should mention that the approximate results obtained
in Sec. II (by neglecting |κ|

|�ε| compared to 1) are very close
to the results obtained without any approximation (i.e., using
the full expressions given in the Supplemental Material [22]).
Moreover, for the numerical results, we used fourth-order
Runge-Kutta for solving differential equations and Gaussian
quadrature for numerical integrations.

In the paper, we mainly dealt with the regime of strong
coupling (g2 � 1) and nonadiabaticity ( J⊥

ω
� 1); however, our

results are valid even in the adiabatic regime J⊥
ω

> 1 as long

as the coupling g satisfies the condition g2 � ( J⊥
ω

)
2
.

We will now make a few general remarks regarding the
range of hopping in a multisite case. In contrast to our
long-range model involving distance-independent hopping
of HCBs, if we were to consider a chain with nearest-
neighbor (NN) hopping [of the type

∑
i{−J⊥

2 (b†i bi+1 + H.c.) +
J‖(ni − 1

2 )(ni+1 − 1
2 )} (with J‖ = 0) ] and strongly couple the

HCBs to local phonons [by introducing the additional terms
gω

∑
i(ni − 1

2 )(a†
i + ai) + ω

∑
i a

†
i ai], we get decoherence

for the case of half-filling. The NN-hopping system transits
from a superfluid, with large values of the off-diagonal density
matrix terms [i.e., 〈b†i

∑
j �=i bj 〉 = Bose-Einstein condensate

occupation number n0 ∝ √
N (see Ref. [24])], to a charge-

density-wave state with significantly diminished off-diagonal
density matrix terms (〈b†i

∑
j �=i bj 〉). The above analysis can

be mapped (through a HCB-to-spin transformation and then a
Wigner-Jordan transformation) on to the analysis in Ref. [16]
dealing with the transition from a Luttinger liquid to a charge-
density wave. Furthermore, the eigenstates of the effective
Hamiltonian are not the same as the original NN-hopping
model (for the J‖ = 0 case); the effective Hamiltonian contains
additional next-nearest-neighbor hopping terms b

†
i+1bi−1 and

additional NN repulsion terms ni+1ni that are not present in
the original Hamiltonian [see Eqs. (4) and (5) in Ref. [16]]. It
is important to note that the infinite-range HCB model gives
decoherence-free behavior, whereas the NN HCB model does
not; thus, the range of interaction determines the decoherence
of the system even when J �e−g2 � ω.

Although the analysis in this paper is valid for optical
phonons, it can also accommodate acoustic phonons in small
systems because the smallest wave vector, for a system with

fixed boundaries, is inversely proportional to the system size;
hence, for a small system �ε can be different from the
eigenenergies of acoustic phonons. Lastly, the above analysis
is valid in the regime kBT /ω � 1; the finite-temperature case
kBT /ω � 1 needs additional extensive considerations and will
be dealt with elsewhere.

In the two-site case, the dynamics of population as well
as the coherence are important for understanding physical
systems such as a double quantum dot (DQD) acting as a qubit
for quantum computation [5]. An oxide- (i.e., manganite-)
based DQD [5], with negligible detuning, can serve as a
charge qubit as it has very small decoherence compared to
a semiconductor DQD; furthermore, it can also meet the
demands of miniaturization as its size can also be much smaller
than a semiconductor DQD [4]. Minimizing the decoherence
in an interacting long-range, many-qubit system coupled to the
environment is quite useful for developing quantum computer
architecture; our analysis of an infinite-range, many-body
HCB model with Markovian dynamics is a step to meet this
end.
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APPENDIX A: MULTIMODE CASE

Here, we deal with a more realistic case, i.e., we consider
a continuous distribution of phonon frequencies and, for
simplicity, allow a small window characterized by upper and
lower limits. The generalized Hamiltonian for multimode
phonons in the laboratory frame of reference is written as

H = ε1

(
n1 − 1

2

)
+ ε2

(
n2 − 1

2

)
− J⊥

2
(b†1b2 + b

†
2b1)

+ J‖

(
n1 − 1

2

)(
n2 − 1

2

)
+

∑
i,k

ωka
†
i,kai,k

+ 1√
N

∑
i,k

gkωk

(
ni − 1

2

)
(ai,k + a

†
i,k), (A1)

where ai,k destroys a phonon with momentum k at site i and N

is the number of phonon modes. To perform perturbation the-
ory with ease, we perform Lang-Firsov transformation HL =
eSHe−S = HL

s + HL
env + HL

I where S = − 1√
N

∑
i,k gk(ni −

1
2 )(ai,k − a

†
i,k). Then, the components of HL (i.e., the system

part HL
s , the environment part HL

env, and the interaction part
HL

I ) are expressed as

HL
s = ε1

(
n1− 1

2

)
+ ε2

(
n2− 1

2

)
+ J‖

(
n1− 1

2

)(
n2− 1

2

)

− J⊥e− 1
N

∑
k g2

k

2
(b†1b2 + b

†
2b1), (A2)

HL
env =

∑
i,k

ωka
†
i,kai,k, (A3)
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and

HL
I = −1

2
[J+

⊥ b
†
1b2 + J−

⊥ b
†
2b1], (A4)

where

J±
⊥ = J⊥e

± 1√
N

∑
k gk[(a2,k−a

†
2,k )−(a1,k−a

†
1,k )] − J⊥e− 1

N

∑
k g2

k . (A5)

Now, we use the non-Markovian master equation (11) to study the dynamics of the reduced density matrix. We calculate below
the matrix element ph〈{0k

1},{0k
2}|HL

I |{mk
1},{mk

2}〉ph with mk
1 and mk

2 being the occupation numbers of the kth-mode phonons at site
1 and site 2, respectively,

ph

〈{
0k

1

}
,
{
0k

2

}∣∣HL
I

∣∣{mk
1

}
,
{
mk

2

}〉ph = −J⊥
2

e− 1
N

∑
k g2

k

⎛
⎝∏

k

(
gk√
N

)(mk
1+mk

2)

√
mk

1!mk
2!

⎞
⎠(−1)

∑
k mk

1
[
b
†
1b2 + (−1)

∑
k(mk

1−mk
2)b

†
2b1

]
. (A6)

Using the above result and Eqs. (12) and (13) (with κ replaced by κ̄ ≡ − J⊥e
− 1

N

∑
k g2

k

2 ), we calculate the four terms in the master

equation (11); in the regime where �ε � J⊥e− 1
N

∑
k g2

k , we can write the differential equation for 〈10|ρ̃s(t)|01〉 to be

d〈10|ρ̃s(t)|01〉
dt

= −iκ̄2
∑

{nk
1},{nk

2}

′
C̄n

[
〈10|ρ̃s(t)|01〉

(
e−i(ω̄n−�ε)t

ω̄n − �ε
− ei(ω̄n+�ε)t

ω̄n + �ε
− 2�ε

ω̄2
n − �ε2

)

+〈01|ρ̃s(t)|10〉(−1)
∑

k(nk
1−nk

2)e2i�εt

(
ei(ω̄n−�ε)t

ω̄n − �ε
− e−i(ω̄n+�ε)t

ω̄n + �ε
− 2�ε

ω̄2
n − �ε2

)]
. (A7)

The corresponding complex-conjugate equation would describe the dynamics for 〈01|ρ̃s(t)|10〉. Here, we have defined ω̄n ≡∑
k ωk(nk

1 + nk
2), C̄n ≡ ∏

k

( gk√
N

)2(nk
1+nk

2)

nk
1!nk

2!
, T ≡ t − τ , and

∑′
{nk

1},{nk
2} as the sum over all combinations of {nk

1} and {nk
2} excluding the

case when {nk
1} = {0k

1} and {nk
2} = {0k

2}. Similarly, one can obtain the following differential equation for 〈10|ρ̃s(t)|10〉:
d〈10|ρ̃s(t)|10〉

dt
= −2κ̄2

∑
{nk

1},{nk
2}

′
C̄n

[
〈10|ρ̃s(t)|10〉

(
sin(ω̄n + �ε)t

ω̄n + �ε
+ sin(ω̄n − �ε)t

ω̄n − �ε

)
− sin(ω̄n + �ε)t

ω̄n + �ε

]
. (A8)

Now, to get a closed form of Eqs. (A7) and (A8), we write

∑
{nk

1},{nk
2}

′
C̄ne

±iω̄nT =
∏
k

⎛
⎝∑

nk
1

( g2
k

N

)nk
1

nk
1!

e±iωkn
k
1T

∑
nk

2

( g2
k

N

)nk
2

nk
2!

e±iωkn
k
2T

⎞
⎠ − 1 = exp

[
2

Nπ

∫ ∞

0
dω

J (ω)

ω2
e±iωT

]
− 1, (A9)

where the spectral function of the phonon bath J (ω) = π
∑

k g2
kω

2
kδ(ω − ωk) characterizes the HCB-phonon coupling for different

phonon-frequency modes. Using the above expression, we can write the differential equations (A7) and (A8) as

d〈10|ρ̃s(t)|01〉
dt

= −2κ̄2
∫ t

0
dτ

{
〈10|ρ̃s(t)|01〉ei�εT

[
exp

(
2

Nπ

∫ ∞

0
dω

J (ω)

ω2
cos(ωT )

)
cos

(
2

Nπ

∫ ∞

0
dω

J (ω)

ω2
sin(ωT )

)
− 1

]

−〈01|ρ̃s(t)|10〉ei�ε(t+τ )

[
exp

(
− 2

Nπ

∫ ∞

0
dω

J (ω)

ω2
cos(ωT )

)
cos

(
2

Nπ

∫ ∞

0
dω

J (ω)

ω2
sin(ωT )

)
− 1

]}

(A10)

and

d〈10|ρ̃s(t)|10〉
dt

= −2κ̄2
∫ t

0
dτ

{
2〈10|ρ̃s(t)|10〉cos(�εT )

[
exp

(
2

Nπ

∫ ∞

0
dω

J (ω)

ω2
cos(ωT )

)
cos

(
2

Nπ

∫ ∞

0
dω

J (ω)

ω2
sin(ωT )

)
− 1

]

−
[

exp

(
2

Nπ

∫ ∞

0
dω

J (ω)

ω2
cos(ωT )

)
cos

(
�εT + 2

Nπ

∫ ∞

0
dω

J (ω)

ω2
sin(ωT )

)
− cos(�εT )

]}
. (A11)

The first-order nonhomogeneous differential Eq. (A11) can be solved analytically.
In principle, J (ω) can assume a variety of forms based on the nature of the phonon bath; however, for simplicity, we use a

continuous uniform distribution of phonon frequencies within a small frequency window characterized by an upper cutoff ωu

and a lower cutoff ωl . The density of states for Einstein phonons is described by D(ωk) = Nδ(ωk − ω0) where ω0 is a fixed
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frequency. Moreover, we consider a weak k dependence of the coupling strength gk and write

D(ωk)g2
k = Nδ(ωk − ω0)g2. (A12)

Here, we should mention that in systems such as the manganites (where the carriers are coupled predominantly only to optical
phonons), the weak k dependence of gk is quite valid. Following Eq. (A12), we make a simple generalization of the Einstein
model and replace the Dirac delta function by a box function of width (ωu − ωl) and height 1

(ωu−ωl )
:

D(ωk)g2
k = g2 N

ωu − ωl

�(ωk − ωl)�(ωu − ωk), (A13)

where �(ω) is the unit step function. With the above form for the density of states, we calculate the following:

1

Nπ

∫ ∞

0

J (ω)

ω2
dω = 1

N

∫ ∞

0
dωkD(ωk)g2

k = g2, (A14)

1

Nπ

∫ ∞

0

J (ω)

ω2
cos ωT dω = 1

N

∫ ∞

0
dωkD(ωk)g2

k cos ωkT = 2g2

(ωu − ωl)T
cos

[
(ωu + ωl)T

2

]
sin

[
(ωu − ωl)T

2

]
, (A15)

and

1

Nπ

∫ ∞

0

J (ω)

ω2
sin ωT dω = 1

N

∫ ∞

0
dωkD(ωk)g2

k sin ωkT = 2g2

(ωu − ωl)T
sin

[
(ωu + ωl)T

2

]
sin

[
(ωu − ωl)T

2

]
. (A16)

Using the above integrals, we solve the differential
Eq. (A10) numerically and plot the coherence factor C(t)
in Fig. 10. Here, unlike the single-mode case, we have a
continuum of phonon frequencies due to which the various
harmonics in Eq. (A7) do not all rephase at the same time
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FIG. 10. (Color online) Time dependence of C(t) for J⊥
ωu

= 0.5,
ωl

ωu
= 0.9, g = 2.0, and different values of �ε

ωu
leading to different

scenarios.

leading to destructive interference, i.e., an irreversible decay
of C(t). It is of interest to note that the structures of Eqs. (15)
and (A7) are very similar; hence, the explanations that were
offered in the single-mode case, for the period and amplitude of
oscillations of C(t), hold also for the multimode case. For the
circumstance in Fig. 10(b), the contribution from the phonon
state ωu dominates because it is the frequency that is closest
to �ε and �ε − ωu (�ωu) is comparable to the width of
the allowed-frequency window ωu − ωl . Then, the period of
oscillation in Eq. (A7) can be obtained approximately from the
case |(ω̄n − �ε)t | = |(ωu − �ε)t | = 0.1ωut ; thus, the period
is approximately 20π/ωu. Furthermore, since �ε is close
to ω̄n, only a few frequencies contribute to the destructive
interference leading to a gradual decay of the amplitude of
oscillation in Fig. 10(b). For the situation where �ε equals
any of the phonon eigenenergies ω̄n [such as in Fig. 10(c)],
there is a complete decay of coherence due to resonance. When
�ε is away from ω̄n [which is the case in Fig. 10(a)], there
are a number of dominant phonon states having comparable
contributions and these states interfere destructively, resulting
in a quick decay of amplitude. Next, we study the population
P(t) of the excited state |10〉 and depict its variation in Fig. 11.
When the excited state is initially largely populated [such as
in Fig. 11 where 〈10|ρs(0)|10〉 = 0.8], the behavior of P(t)
is mainly dictated by the homogeneous part of the solution
obtained from Eq. (A8). Since the structures of Eqs. (16)
and (A8) are very similar, we expect that the single-mode
and multimode cases will have similar justifications for the
period and amplitude of oscillations of P(t). The cases of �ε

considered in Fig. 11 are the same as those studied in Fig. 10;
furthermore, the same explanations hold for the period and
decay of oscillations in these two figures.

Lastly, we elucidate through Fig. 12 the multimode cases
[of �ε being an integer multiple of ωavg ≡ 1

N

∑
k ωk =

(ωu + ωl)/2 ] when the coherence C(t) and the excited-state
population P(t) undergo complete decay. Similar to the single-
mode case [depicted in Figs. 2(c) and 4(c)], here too the
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FIG. 11. (Color online) Time dependence of P(t) for J⊥
ωu

= 0.5,

P(0) = 0.8, ωl

ωu
= 0.9, g = 2.0, and different values of �ε

ωu
.

maximum decay of both C(t) and P(t) occurs when �ε is
equal to twice the polaron energy 1

N

∑
k g2

kωk (i.e., 2g2ωavg

for our density of states).
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FIG. 12. (Color online) Depiction of complete decay of (a) C(t)
and (b) P(t) [with P(0) = 0.8] at different integer values of �ε

ωavg

when J⊥
ωu

= 0.5 and g = 2.0. The maximum decay occurs when
�ε = 2g2ωavg.

APPENDIX B

We will begin the small-parameter analysis, for a two-site
system, by first analyzing the case of zero detuning (i.e., �ε =
0); this is to build a foundation for understanding the more
complicated situation pertaining to nonvanishing �ε being
comparable to the phonon eigenenergies ωn. For �ε = 0, as
pointed out in Ref. [5], second-order perturbation contribution
for a two-site system is given by the following [obtained by
taking N = 2 in Eq. (26) of the main text]:

H (2) = −
∑
m

ph〈0|HI |m〉ph ph〈m|HI |0〉ph

ωm

= −1

2
J

(2)
‖ {n1(1 − n2) + n2(1 − n1)}, (B1)

where

J
(2)
‖ ≡ κ2

ω

∑
n1,n2

′ Cn

(n1 + n2)

= [2f1(g) + f2(g)]
J 2

⊥e−2g2

2ω
∼ J 2

⊥
4g2ω

, (B2)

with Cn ≡ g2(n1+n2)

n1!n2! , f1(g) ≡ ∑∞
l=1 g2l/(l!l), and f2(g) ≡∑∞

j=1

∑∞
l=1 g2(j+l)/[j !l!(j + l)]. Then, the square of the small

parameter γ is given by the ratio of the second-order
perturbation J

(2)
‖ /2 and the phonon frequency ω in H0; i.e.,
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FIG. 13. (Color online) � is plotted with varying �ε/ω for J⊥
ω

=
0.5 when (a) g = 1.5, (b) g = 2.0, and (c) g = 2.5; square of small
parameter γ 2 = |�|.
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2 2ω

ε1

g ω2g2

ε1 ε1

ε2 ε2 ε2

2g2ω

1 1 1

2 22

Initial  State Relevant  Intermediate  State Final  State

Δε Δε Δε

FIG. 14. (Color online) Schematic representation of the site energies and hopping process leading to minimum coherence C(t) and maximum
decay of excited state P(t); the intermediate state gives the dominant contribution. Here, location of the HCB is given by the filled circle.
Parabolic curve at site 1 depicts full distortion of the lattice environment at that site with corresponding energy −g2ω (+g2ω) if the HCB is
present (absent) at that site.

γ ∼ J⊥/(2gω). The above expression for J
(2)
‖ /2 can also be

deduced physically as follows (with details given in Ref. [32]).
The hopping process where HCB at a site i hops to its
neighboring site j and back, but with the lattice having
no time to distort (relax) locally at site j (site i), yields
the second-order perturbation J 2

⊥/(4 × 2g2ω) where 2g2ω

is the difference between the energies of the initial state
and the intermediate state. Then, the physical estimate of
the square of the small parameter (γ 2) is given by the ratio
of J 2

⊥/(8g2ω) and the phonon frequency ω; consequently,
γ ∼ J⊥/(2gω). Actually, in Ref. [32], the small-parameter
value J⊥/(2gω) was deduced based on taking the ratio of the
dominant terms in fourth-order perturbation and second-order
perturbation. It is also interesting to note that, for �ε = 0,
the square of the small parameter can be deduced to be given
by γ 2 = κ2

ω2

∑′
n1,n2

Cn

(n1+n2) from the dominant amplitude of the
oscillatory terms on the right-hand side of Eqs. (15) and (16)
in the main text.

Based on the above results for �ε = 0, we now infer the
square of the small parameter for �ε �= 0 from the dominant
amplitude of the oscillatory terms on the right-hand side of
Eqs. (15) and (16); γ 2 = |�| where

� ≡ κ2

ω2

∑
n1,n2

′ Cn

[(n1 + n2) − �ε/ω]
=

∑
N

′ CN

[N − �ε/ω]
.

(B3)

The smallness of the perturbation holds true as long as
γ is sufficiently small compared to 1. When �ε �= 0, our
perturbation theory still holds except for the cases when the
detuning is very close to meeting the resonance condition
�ε = ωn. In Fig. 13, we see that the small parameter has
reasonably small values (i.e., values below 0.25) even when it
is slightly away from the divergences produced by resonance.
One can also see that the divergence at �ε = ωn = 2g2ω

is the strongest as the term CN = κ2

ω2

∑
n1,n2;(n1+n2)=N Cn in

the expression of γ 2 is maximum at N = 2g2 (see Fig. 1
in the main text). Actually, as regards the hopping process
in the second-order perturbation, the time scale of hopping
varies depending on the lattice distortion in the intermediate
state. The quickest and the most dominant hopping process
would be the case when the HCB at a fully distorted site hops
to the neighboring site and comes back without any change
in relaxation/distortion at either of the sites; this hopping
process is schematically shown in Fig. 14. The initial state
is described by the occupied site with polaronic energy (lattice
distortion potential) −g2ω, whereas the intermediate state
for perturbation theory corresponds to the occupied second
site being without distortion and the unoccupied first site
having distortion energy +g2ω [see Fig. 14 and Fig. 2(a) in
Ref. [27]]. Consequently, the corresponding denominator in
Eq. (B3) is given by (ε1 − g2ω) − (ε2 + g2ω) = �ε − 2g2ω

(which is the energy difference between the initial and the
intermediate states). Other divergence points, given by �ε =
ωn �= 2g2ω, correspond to slower hopping processes where
lattice distorts/relaxes by some amount during hopping. Then,
the hopping amplitudes for such cases are smaller, leading
to smaller prefactors of 1

ωn−�ε
in the expression of γ 2, i.e.,

weaker divergences.
Now, when the time scale τs over which the system

changes appreciably is much larger than the environmental
correlation time τc, we have a Markov process. Thus, the
Markov process corresponds to the dominant interaction
energy κ2

ω

∑′
n1,n2

Cn

[(n1+n2)−�ε/ω] being much smaller than the
phonon frequency ω. Consequently, we have non-Markovian
dynamics when �ε is close to phononic eigenenergies ωn, i.e.,
when the system is close to resonance situation. For �ε = 0, at
strong coupling g and for large nonadiabaticity (i.e., J⊥

ω
� 1),

it has been shown that the non-Markovian result approaches
the Markovian result (see Sec. IX and Appendix A of
Ref. [5]).
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