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Force and heat current formulas for many-body potentials in molecular dynamics simulations
with applications to thermal conductivity calculations
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We derive expressions of interatomic force and heat current for many-body potentials such as the Tersoff, the
Brenner, and the Stillinger-Weber potential used extensively in molecular dynamics simulations of covalently
bonded materials. Although these potentials have a many-body nature, a pairwise force expression that follows
Newton’s third law can be found without referring to any partition of the potential. Based on this force formula,
a stress applicable for periodic systems can be unambiguously defined. The force formula can then be used to
derive the heat current formulas using a natural potential partitioning. Our heat current formulation is found to
be equivalent to most of the seemingly different heat current formulas used in the literature, but to deviate from
the stress-based formula derived from two-body potential. We validate our formulation numerically on various
systems described by the Tersoff potential, namely three-dimensional silicon and diamond, two-dimensional
graphene, and quasi-one-dimensional carbon nanotube. The effects of cell size and production time used in the
simulation are examined.
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I. INTRODUCTION

Molecular dynamics (MD) simulation has been used ex-
tensively to study thermal transport properties of materials.
There are mainly two methods for computing lattice thermal
conductivity in the level of classical MD simulations: the direct
method [1,2] [also called the nonequilibrium MD (NEMD)
method] based on the Fourier’s law and the Green-Kubo [3–5]
method (also called the equilibrium MD method) based on the
Green-Kubo formula. Cross-checking of these two methods
has also been the subject of several works [6–8]. In the
direct method, the thermal conductivity is usually computed
by measuring the steady-state temperature gradient at a fixed
external heat current, analogous to the experimental situation.
In contrast, in the Green-Kubo method, the thermal conductiv-
ity is computed by integrating the heat current autocorrelation
function (HCACF) using the Green-Kubo formula. While the
heat current in the direct method is created by scaling the
velocities in the source and sink regions of the simulated
system, which does not depend on the underlying interatomic
potential, the heat current in the Green-Kubo method is the
summation of the microscopic heat currents of the individual
atoms in the simulated system, which generally depends on
the specific interatomic potential used.
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For a two-body potential, where a pairwise force can
be directly defined, the heat current expression used in the
Green-Kubo formula is well established. It is currently imple-
mented in Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS) [9] in terms of the per-atom stress and
works well for systems described by two-body potentials such
as Lennard-Jones argon. However, it is not widely recognized
that the heat current expression based on the per-atom stress is
only applicable to two-body potentials, and is not guaranteed to
produce correct results for systems described by a many-body
potential, such as the widely used Tersoff potential [10],
Brenner potential [11], and Stillinger-Weber potential [12]. In
the literature, there have been quite a few formulations [13–17]
of the heat current for the Tersoff/Brenner potential, which
seem to be inequivalent to each other [18,19].

In this work, we present detailed derivations of the heat
current expressions for these many-body potentials. We show
that many of the seemingly different formulations of the heat
current are equivalent, except for some marginal differences
resulting from a different decomposition of the total potential
into site (per-atom) potentials. Our derivation is facilitated by
establishing the existence of a pairwise force respecting New-
ton’s third law, which is not widely recognized so far. Based
on the pairwise force, a well-defined expression for the virial
tensor can also be obtained. The derived force expression is
equivalent to other alternatives which do not respect Newton’s
third law explicitly, but it has an advantage of allowing for an
efficient implementation on graphics processing units (GPUs),
which attains a speedup factor of two orders of magnitude
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(compared to the LAMMPS implementation running on a
single CPU core) for large simulation cell sizes.

Using the efficient GPU code, we perform a comprehensive
validation of our formulations by calculating lattice thermal
conductivities of various kinds of material described by the
Tersoff potential, including three-dimensional (3D) silicon
and diamond, two-dimensional (2D) graphene, and quasi-
one-dimensional (Q1D) carbon nanotube (CNT). For each
material, we examine the convergence of the calculated
thermal conductivity with respect to the total simulation
time, the correlation time, and the finite-size effects, before
comparing our results with previous ones. Last, we present
explicit numerical evidence that the stress-based heat current
expression is inequivalent to our formulation for the Tersoff
potential.

II. THEORY

A. Green-Kubo method for thermal conductivity calculations

The Green-Kubo formula for the running thermal conduc-
tivity (RTC) tensor κμν(t) (μ,ν = x,y,z) at a given correlation
time t can be expressed as [3–5]

κμν(t) = 1

kBT 2V

∫ t

0
dt ′Cμν(t ′), (1)

where kB is Boltzmann’s constant, T is the absolute tempera-
ture, and V is the volume of the simulation cell. The HCACF
Cμν(t) is defined as

Cμν(t) = 〈Jμ(t = 0)Jν(t)〉, (2)

where 〈〉 denotes the average over different time origins. The
simulation time required for achieving high statistical accuracy
of the computed thermal conductivity in the Green-Kubo
method is usually quite challenging, as we show later. The
Green-Kubo method is capable of calculating the full conduc-
tivity tensor, but the following cases are sufficient to verify
our formulations: (1) isotropic 3D systems, such as diamond,
where we define the conductivity scalar as (κxx + κyy +
κzz)/3, (2) isotropic 2D systems, such as graphene, where
we define the in-plane conductivity as (κxx + κyy)/2, and
(3) Q1D systems, such as CNT, where only the conductivity
along the tube is needed. Periodic boundary conditions are
needed in all the transport directions. In the following, we use
J to represent the heat current vector with components Jx , Jy ,
and Jz.

B. General expression of the heat current

The heat current used in Eq. (2) is defined as the time
derivative of the sum of the moments of the site energies

Ei = 1
2miv

2
i + Ui (3)

of the particles in the system [5]:

J ≡ d

dt

∑
i

r iEi =
∑

i

viEi +
∑

i

r i

d

dt
Ei. (4)

Here mi , vi , r i , and Ui are the mass, velocity, position, and
potential energy of particle i, respectively. Conventionally, one

defines a kinetic part

Jkin =
∑

i

viEi (5)

and a potential part

Jpot =
∑

i

r i

d

dt
Ei (6)

and writes the total heat current as a sum of them:

J = Jkin + Jpot. (7)

The kinetic term Jkin needs no further derivation, apart from
a possible issue of defining Ui for a many-body potential, and
the potential term Jpot can be written as

Jpot =
∑

i

r i(Fi · vi) +
∑

i

r i

dUi

dt
, (8)

where the kinetic energy theorem, d
dt

( 1
2miv

2
i ) = Fi · vi , Fi

being the total force on particle i, has been used. The kinetic
term is also called the convective term, and is mostly important
for gases. For Lennard-Jones liquid, Vogelsang et al. [20]
showed that the thermal conductivity is mainly contributed by
the partial HCACF involving the potential-potential term. For
solids, the kinetic term barely contributes and can be simply
discarded. Note that the kinetic and potential terms defined
here correspond to the potential and kinetic terms, respectively,
used in the Einstein formalism studied by Kinaci et al. [21],
who also found that the convective term (the potential term
in the Einstein formalism) does not contribute to the thermal
conductivity for solids. We thus focus on the potential part
[Eq. (8)] in the following discussions.

C. Heat current for two-body potentials

Before discussing many-body potentials, let us first ex-
amine the case of two-body potentials. For these, the total
potential energy of the system can be written as

U = 1

2

∑
i

∑
j �=i

Uij , (9)

where the pair potential between particles i and j , Uij =
Uji = Uij (rij ), only depends on the distance rij between the
particles. The factor of 1/2 in the above equation compensates
the double-counting of the pair potentials; one can equally
omit it by requiring j > i (or j < i). The derived forces are
purely pairwise and Newton’s third law is apparently valid:

Fi =
∑
j �=i

Fij , (10)

Fij = ∂Uij

∂ r ij

= −Fji , (11)

where Fij is the force on particle i due to particle j and the
convention [22]

r ij ≡ rj − r i (12)

for the relative position between two particles is adopted. If
periodic boundary conditions are applied in a given direction,
the minimum image convention is used to all the relative
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positions in that direction. Using the above notations, the first
term on the right-hand side of Eq. (8) can be written as∑

i

r i(Fi · vi) =
∑

i

∑
j �=i

r i(Fij · vi). (13)

To make further derivation for the second term on the right-
hand side of Eq. (8), one has to make a choice for the site
potential Ui . A natural choice is Ui = 1

2

∑
j �=i Uij , but for

two-body potentials, it does not matter much how to define
the site potential. For example, the above choice is equivalent
to Ui = 1

4

∑
j �=i(Uij + Uji) because Uij = Uji . Therefore, the

second term on the right-hand side of Eq. (8) can be written as∑
i

r i

dUi

dt
= 1

2

∑
i

∑
j �=i

r i[Fij · (vj − vi)]. (14)

Using the above two expressions, we can write the potential
term of the heat current as

Jpair
pot = 1

2

∑
i

∑
j �=i

r i[Fij · (vi + vj )]. (15)

In numerical calculations, the absolute positions, r i , will cause
problems for systems with periodic boundary conditions. For-
tunately, one can circumvent the difficulty by using Newton’s
third law Eq. (11), from which we have

Jpair
pot = −1

4

∑
i

∑
j �=i

r ij [Fij · (vi + vj )], (16)

where only the relative positions, r ij , are involved. This
expression is also equivalent to a less symmetric form:

Jpair
pot = −1

2

∑
i

∑
j �=i

r ij [Fij · vi]. (17)

In some situations such as in the simulation of thermal
transport in superlattices, the HCACF may exhibit large high-
frequency oscillations which do not contribute to the thermal
conductivity. In such situations, one usually replaces [23,24]
the instantaneous position difference vectors r ij by the
equilibrium ones.

The potential part of the heat current is also intimately
related to the virial part of the stress tensor. To see this, we
first note that the virial W can be written as a summation of
individual terms,

W =
∑

i

Wi , (18)

where the per-atom virial Wi for a periodic system reads

Wi = −1

2

∑
j �=i

r ij ⊗ Fij . (19)

Therefore, the potential part of the heat current can be
expressed in terms of the per-atom virial as

J stress
pot =

∑
i

Wi · vi . (20)

The current implementation of the Green-Kubo formula for
thermal conductivity in LAMMPS adopts this stress-based
formula. However, as we show later, it does not apply to many-
body potentials.

D. Force expressions for Tersoff potential

We now move on to many-body potentials, first focusing on
the Tersoff potential. The total potential energy for a system
described by the Tersoff potential can also be written as U =
1
2

∑
i

∑
j �=i Uij , where the many-body bond energy Uij can be

written as [10]

Uij = fC(rij )[fR(rij ) − bijfA(rij )], (21)

bij = (
1 + βnζ n

ij

)− 1
2n , (22)

ζij =
∑
k �=i,j

fC(rik)gijk, (23)

gijk = 1 + c2

d2
− c2

d2 + (h − cos θijk)2
. (24)

Here, β, n, c, d, and h are parameters and θijk is the angle
formed by r ij and r ik , which means that

cos θijk = cos θikj = r ij · r ik

rij rik

. (25)

While the functions fC , fR , and fA only depend on rij , the
bond-order function bij also depends on the positions rk of the
neighbor particles of i and j and thus generally, Uij �= Uji ,
which is a manifestation of the many-body nature of the Tersoff
potential. However, we notice that bij , hence Uij , is only a
function of the position difference vectors originating from
particle i (in the equation below, k = j is allowed):

Uij = Uij ({r ik}k �=i). (26)

This property will play a crucial role in the following
derivations.

We now start to derive the force expressions for the Tersoff
potential. We begin with the definition

Fi ≡ −∂U

∂ r i

≡ −1

2

∑
j

∑
k �=j

∂Ujk

∂ r i

. (27)

We can expand it as

Fi = −1

2

⎛
⎝∑

k �=i

∂Uik

∂ r i

+
∑
j �=i

∂Uji

∂ r i

+
∑
j �=i

∑
k �=j,i

∂Ujk

∂ r i

⎞
⎠. (28)

The first, second, and third terms on the right-hand side of
Eq. (28) correspond to the parts with j = i, k = i, and j,k �= i

in Eq. (27), respectively. Then, using Eq. (26), we have

Fi = −1

2

⎛
⎝∑

k �=i

∑
j �=i

∂Uik

∂ r ij

∂ r ij

∂ r i

+
∑
j �=i

∑
k �=j

∂Uji

∂ rjk

∂ rjk

∂ r i

⎞
⎠

− 1

2

∑
j �=i

∑
k �=j,i

∑
m�=j

∂Ujk

∂ rjm

∂ rjm

∂ r i

= 1

2

⎛
⎝∑

k �=i

∑
j �=i

∂Uik

∂ r ij

+
∑
j �=i

∂Uji

∂ r ij

+
∑
j �=i

∑
k �=j,i

∂Ujk

∂ r ij

⎞
⎠.

(29)
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Since ∑
k �=i

∑
j �=i

∂Uik

∂ r ij

=
∑
k �=i,j

∑
j �=i

∂Uik

∂ r ij

+
∑
j �=i

∂Uij

∂ r ij

, (30)

we have

Fi = 1

2

∑
j �=i

∂

∂ r ij

⎛
⎝Uij + Uji +

∑
k �=i,j

(Uik + Ujk)

⎞
⎠. (31)

From this, a pairwise force between two particles can also be
defined for the many-body Tersoff potential:

FTersoff
ij ≡ 1

2

∂

∂ r ij

⎛
⎝Uij + Uji +

∑
k �=i,j

(Uik + Ujk)

⎞
⎠. (32)

The total force can be expressed as a sum of the pairwise forces

Fi =
∑
j �=i

FTersoff
ij , (33)

and Newton’s third law

FTersoff
ij = −FTersoff

ji (34)

still holds.
In the above derivations, we have not assumed any form

of the site potential Ui . The definition of Ui for a many-body
potential amounts to a decomposition of the total potential into
site potentials. While such a decomposition is not needed for
the derivation of the forces, it is needed for deriving the heat
current, which involves a time derivative of the site potential
[cf. Eq. (8)]. A natural choice for the decomposition is

U =
∑

i

Ui with Ui ≡ 1

2

∑
j �=i

Uij . (35)

There is no clear physical intuition favoring this decomposition
over others [cf. Eq. (B18)], but we find that Eq. (35) is a very
reasonable definition. To show this, we notice that the site
potential defined by Eq. (35) is also only a function of the
relative positions originating from particle i:

Ui = Ui({r ij }j �=i). (36)

Using this property, the total force on particle i can be derived
as

Fi ≡ −∂U

∂ r i

≡ −
∑

j

∂Uj

∂ r i

= −
∑
j �=i

(
∂Uj

∂ r i

)
− ∂Ui

∂ r i

= −
∑
j �=i

⎛
⎝∑

k �=j

∂Uj

∂ rjk

∂ rjk

∂ r i

+ ∂Ui

∂ r ij

∂ r ij

∂ r i

⎞
⎠

=
∑
j �=i

(
∂Ui

∂ r ij

− ∂Uj

∂ rji

)
, (37)

which is equivalent to Eq. (31), and the pairwise force is
simplified to be

FTersoff
ij = ∂Ui

∂ r ij

− ∂Uj

∂ rji

. (38)

One can check that Eq. (38) reduces to Eq. (11) in
the case of two-body interaction. We also point out that
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FIG. 1. (Color online) Per-atom virial stresses in the x direction
on individual carbon atoms in a configuration generated by randomly
shifting the positions of all the atoms from the perfect graphene
structure by a small amount. Circles and crosses represent the results
obtained by the LAMMPS code and our GPU code [using the formula
Eq. (39)], respectively. The solid and dashed lines represent the mean
values of the circles and crosses, respectively.

our force expressions for the Tersoff potential are only
seemingly different from other alternatives. There should be
no ambiguity for the calculation of the total force on a given
particle. However, different formulations may lead to different
computer implementations. A crucial advantage of our for-
mulation is that the total forces for individual particles can
be calculated independently, which is desirable for massively
parallel implementation. The numerical calculations presented
in this work were performed by a molecular dynamics code
implemented on GPUs using the thread scheme (one thread
per atom) in Ref. [25]. However, a detailed discussion of the
GPU implementation of the Tersoff potential is beyond the
scope this paper, which will be presented elsewhere.

Another advantage of our formulation is that the per-atom
virial for the Tersoff potential takes the same form as for the
two-body potential:

WTersoff
i = −1

2

∑
j �=i

r ij ⊗ FTersoff
ij , (39)

which is unambiguously defined for periodic systems [26].
This is not exactly equivalent to what has been implemented
in LAMMPS, as can be seen from Fig. 1. Here, the test system
corresponds to a graphene sheet perturbed from the perfect
honeycomb structure by randomly shifting the positions of all
the atoms by a small amount. One can see that the per-atom
stresses computed by the LAMMPS code deviate from those
computed by our GPU code using Eq. (39). On the other hand,
the total (or mean) virial stresses obtained by the two methods
are equal. Despite this equivalence, we note that Eq. (39)
is easier to understand and allows for an efficient parallel
implementation on the GPU, as in the case of force evaluation.

E. Heat current for the Tersoff potential

We now derive the heat current expressions for the Tersoff
potential, using the potential decomposition given by Eq. (35).
Using Eq. (37), the first term on the right-hand side of Eq. (8)
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can be written as∑
i

r i(Fi · vi) =
∑

i

∑
j �=i

r i

(
∂Ui

∂ r ij

− ∂Uj

∂ rji

)
· vi . (40)

Using Eq. (36), the second term on the right-hand side of
Eq. (8) can be written as∑

i

r i

dUi

dt
=

∑
i

∑
j �=i

r i

∂Ui

∂ r ij

· (vj − vi). (41)

From these two expressions, we get the following formula for
the potential part of the heat current for the Tersoff potential:

JTersoff
pot =

∑
i

∑
j �=i

r i

(
∂Ui

∂ r ij

· vj − ∂Uj

∂ rji

· vi

)
. (42)

Again, one can get rid of the absolute positions r i by rewriting
the above formula as

JTersoff
pot = −1

2

∑
i

∑
j �=i

r ij

(
∂Ui

∂ r ij

· vj − ∂Uj

∂ rji

· vi

)
. (43)

A less symmetric form can also be readily obtained:

JTersoff
pot = −

∑
i

∑
j �=i

r ij

(
∂Ui

∂ r ij

· vj

)
, (44)

or equivalently,

JTersoff
pot =

∑
i

∑
j �=i

r ij

(
∂Uj

∂ rji

· vi

)
. (45)

Therefore, the potential part of the heat current for the
Tersoff potential is not equivalent to the stress-based formula
given by Eq. (20). One can check that, in the case of two-body
interactions, the heat current expressions in Eqs. (42)–(45) for
the Tersoff potential reduce to those for the two-body potential
in Eqs. (15)–(17).

Apart from the velocities vi and relative positions r ij , the
only nontrivial terms in the force and heat current expressions
are ∂Ui

∂ r ij
and ∂Uj

∂ rji
, the latter being able to be obtained from the

former by an exchange of i and j . An explicit expression for
the former is presented in Appendix A.

In Appendix B, we show that Eq. (45) is equivalent to the
one derived by Hardy [27] at the quantum level for general
many-body interactions. In the following, we refer to Eq. (45)
as the Hardy formula and Eq. (20) as the stress formula.

There has been some confusion about the seemingly
different heat current expressions for the Tersoff potential
in the literature. Guajardo-Cuéllar et al. [18] and Khadem
et al. [19] compared several expressions [13,14,16–18,27] in
the literature. From their results, it seems as if all of these
expressions were inequivalent. In Appendix B, we show that
many of them are equivalent to the Hardy formula.

F. Generalization to other many-body potentials

Besides the Tersoff potential, the Brenner potential [11] and
the Stillinger-Weber (SW) potential [12] are also widely used
in the study of covalently bonded systems. Here, we first show
that the derivations for the Tersoff potential can be generalized

to these potentials and then summarize our results for a general
many-body potential.

The generalization to the Brenner potential is straightfor-
ward. The many-body bond energy Uij for this takes the
same form as that for the Tersoff potential [Eq. (21)]. The
bond-order function bij , hence Uij , is only a function of
the position difference vectors originating from particle i,
although the explicit form of bij in the Brenner potential
is more complicated. This is the only property we used to
derive the pairwise force expression [Eq. (32)] for the Tersoff
potential. Therefore, the same pairwise force expression also
applies to the Brenner potential. Using the same potential
partition as for the Tersoff potential, Ui = 1

2

∑
j �=i Uij , we

can arrive at a simplified pairwise force expression [Eq. (38)]
and the Hardy formula [Eq. (45)] of heat current, as in the case
of the Tersoff potential.

We next consider the SW potential. The total potential
energy consists of a two-body part and a three-body part, the
latter being given as [12]

U (3) =
∑

i

∑
j>i

∑
k>j

(hijk + hjki + hkij ), (46)

where

hijk = λ exp

[
γ

rij − a
+ γ

rik − a

](
cos θijk + 1

3

)2

. (47)

Here, λ, γ , and a are parameters and cos θijk is defined as
in Eq. (25). Similar definitions apply to hjki and hkij . It is
clear that hijk is symmetric in the last two indices: hijk = hikj .
Using this property, we can reexpress the three-body part of
the total potential as

U (3) = 1

6

∑
i

∑
j �=i

∑
k �=i,j

(hijk + hjki + hkij ), (48)

which can be further simplified as

U (3) = 1

2

∑
i

∑
j �=i

∑
k �=i,j

hijk. (49)

Without referring to any potential partition, but noticing that
hijk is only a function of the position difference vectors
originating from particle i, one can derive a pairwise force
expression for the three-body part:

F(3)
i =

∑
j �=i

F(3)
ij , (50)

F(3)
ij = 1

2

⎛
⎝∑

k �=i

∑
m�=i,k

∂hikm

∂ r ij

+
∑
k �=j

∑
m�=j,k

∂hjkm

∂ r ij

⎞
⎠

= −F(3)
ji . (51)

With a definition of the site potential,

U
(3)
i ≡ 1

2

∑
j �=i

∑
k �=i,j

hijk with U (3) =
∑

i

U
(3)
i , (52)

the above pairwise force expression can be simplified to

F(3)
ij = ∂U

(3)
i

∂ r ij

− ∂U
(3)
j

∂ rji

. (53)
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This is formally the same as that for the Tersoff potential, the
only difference being the form of the site potential. Adopting
the above potential decomposition, and noticing that Ui is only
a function of the position difference vectors originating from
particle i, one can confirm that the potential part of the heat
current also takes the form of the Hardy formula:

J (3)
pot =

∑
i

∑
j �=i

r ij

(
∂U

(3)
j

∂ rji

· vi

)
. (54)

In fact, the pairwise force formula and the Hardy formula
of heat current apply to any many-body potential, because the
crucial property we have used in the above derivations, i.e.,
that the many-body bond energy Uij (or the site potential Ui)
is only a function of the set of vectors {r ij }j �=i , is satisfied by
any empirical potential: any other position difference vector
can be expressed as the difference of two vectors in this set.
In other words, the vectors {r ij }j �=i form a complete set of
independent arguments for any pair or site potential associated
with particle i. We can summarize our formulations as follows.
For a general classical many-body potential,

U =
∑

i

Ui({r ij }j �=i), (55)

there exists a pairwise force between two particles i and j ,

Fij = −Fji = ∂Ui

∂ r ij

− ∂Uj

∂ rji

, (56)

a well-defined virial tensor for periodic systems,

W = −1

2

∑
i

∑
j �=i

r ij ⊗ Fij , (57)

and a well-defined potential part of the heat current for periodic
systems,

Jpot =
∑

i

∑
j �=i

r ij

(
∂Uj

∂ rji

· vi

)
. (58)

The existence of a pairwise force for classical many-body
potentials, albeit not surprising according to the principles of
classical mechanics, has not been widely recognized in the
community. Without an explicit expression for the pairwise
force, much effort has been devoted to constructing general
expressions for the virial tensor in periodic systems [26,28].
Our formulations are thus not only useful for thermal conduc-
tivity calculations based on the Green-Kubo formula, but can
also find application in the study of properties related to the
stress tensor.

III. APPLICATIONS ON THERMAL CONDUCTIVITY
CALCULATIONS

We now apply the heat current formulations to study lattice
thermal conductivities of various kinds of material. To be
specific, we present results obtained by using the Tersoff
potential, which has been applied extensively in the study
of thermal transport properties of silicon, diamond, graphene,
and CNT. The Tersoff parameters used for diamond and silicon
are taken from Ref. [10] and those for graphene and CNT are
the optimized ones obtained by Lindsay and Broido [29]. To

be specific, we only consider isotopically pure 12C and 28Si
in our simulations, although our method is not limited to this
case. When calculating the thermal conductivity of graphene
and CNT, one has to specify the effective thickness of the
graphene sheet. We have chosen it to be 0.335 nm. We use
cubic simulation cells for silicon and diamond and roughly
square-shaped simulation cells for graphene. The time step
of integration in the MD simulations is chosen to be 1 fs
for most of the simulated systems, but for smaller carbon
systems, we found that smaller time steps are desirable. The
evolution time in the equilibration stage (canonical ensemble,
where temperature is controlled) of the MD simulation lasts
one to several nanoseconds, depending on the simulations
cell size. The heat current data are recorded every 10 steps
in the production stage (microcanonical ensemble, where
temperature is not controlled). We only consider systems with
zero external pressure and the lattice constants for silicon at
500 K and diamond at 300 K are determined to be 0.544 nm
and 0.357 nm. For graphene and CNT at 300 K, the average
carbon-carbon distance is determined to be 0.144 nm.

A. Performance of the GPU implementation

Before presenting the numerical results for thermal con-
ductivity calculations, we first comment briefly on the perfor-
mance of our GPU implementation, choosing 2D graphene as
the testing system. We have chosen CUDA (compute unified
device architecture) [30] as the developing tool and used a
Tesla K40 graphics card from NVIDIA to run the CUDA code.
To measure the performance of our GPU implementation, we
compare its computational speed with that of the LAMMPS
code running on a single core in Intel Xeon CPU E3-1230 V2
at 3.3 GHz. We define the speedup factor as the computation
time used by the LAMMPS code divided by that used by the
CUDA code for the same amount of computation. It turns out
that the computational speed (defined as the product of the
number of atoms and the number of time steps divided by the
computation time) of the LAMMPS code does not change as
the simulation cell size increases from N = 103 to N = 106,
being about 6 × 105 atom · step/second. On the other hand,
due to the large number of CUDA cores in the GPU (2880
in the Tesla K40 graphics card), the computational speed of
the CUDA code increases with increasing simulation cell size
and only saturates when N exceeds one million. Specifically,
the speedup factor is about 20 when N = 103, over 100
when N = 104, over 200 when N = 105, and about 300 when
N = 106. These speedup factors are obtained by using single
precision. For double precision, the speedup factors are about
two times smaller.

B. Silicon

We start presenting our results by considering silicon.
Figures 2(a)–2(e) show the RTCs [given by Eq. (1)] for silicon
at 500 K with different simulation cell sizes N . For a given N ,
there are large variations between the independent simulations
associated with different sets of initial velocities in the MD
simulations. Despite the variations, a well-converged RTC can
be obtained by averaging over sufficiently many independent
simulations, along with estimations of an average value and
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FIG. 2. (Color online) (a)–(e) Running thermal conductivities as
a function of correlation time for silicon with different simulation cell
sizes at 500 K. The thinner (and lighter) and the thicker (and darker)
lines represent the results of independent simulations with different
initial velocities and the ensemble average over the independent
simulations, respectively. (f) Thermal conductivity as a function of the
simulation cell size N . Markers with error bars represent the average
values and the corresponding standard errors for a given N . The solid
line indicates the average (147 W/mK) over the 5 simulation cell
sizes and the dashed lines indicate the corresponding standard error
(±2 W/mK).

the corresponding error estimate for the converged thermal
conductivity. In this work, we determine them in the following
steps (for a given N ):

(1) Determine (by visual inspection) a range of correlation
time [t1,t2] where the averaged RTC has converged well.

(2) Calculate the average values of the RTCs for the
independent simulations over the range of correlation time
determined in the last step.

(3) Take the mean value and standard error (standard
deviation divided by

√
M , where M is the number of

independent simulations) of the average values obtained in
the last step as the average value and error estimate, which are
represented by an open circle and the corresponding error bar
in Fig. 2(f) for a given N .

To determine [t1,t2], we have to ensure that the averaged
RTC is sufficiently smooth. The smoothness can be enhanced
by increasing either the simulation time ts of the individual
simulations or the number of independent simulations Ns .
More precisely, it is determined by the product Nsts . We found
that a value of Nsts = 200 ns is enough for silicon at 500 K. It
can be seen that all the averaged RTCs in Figs. 2(a)–2(e) are
rather smooth and [t1,t2] = [400 ps, 500 ps] is a fairly good
choice for the converged time interval.
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FIG. 3. (Color online) Same as Fig. 2, but for diamond at 300 K.

Before comparing our results with previous ones, we need
to further check possible finite-size effects in the calculations.
The Green-Kubo formula is, in principle, only meaningful
for infinite systems, i.e., systems in the thermodynamic limit.
However, in practice, one can only simulate systems with
finite simulation cell sizes, with periodic boundary conditions
applied along the directions which are thought to be infinite to
alleviate the finite-size effects in those directions. One can then
check whether the results converge with increasing simulation
cell size.

Figure 2(f) presents the converged thermal conductivities
of silicon at 500 K obtained by using different simulation cell
sizes: N = 512, 1000, 1728, 2744, and 4096. It can be seen
that they do not show a systematical decreasing or increasing
trend with increasing N .

Due to the small finite-size effects, we can take the
average values of thermal conductivity for different simulation
cell sizes as independent simulation results and obtain an
average value and the corresponding error estimate. In this
way, we obtain the final result, (147 ± 2) W/mK, which
is in good agreement with that obtained by Howell [31],
(155 ± 4) W/mK. Note that Howell used the direct method
with the same Tersoff parameters. This comparison thus further
confirmed the equivalence between the direct method and the
Green-Kubo method, as has been shown by Schelling et al. [6]
for SW silicon.

C. Diamond

We next consider diamond. The RTCs at 300 K with 5
simulation cell sizes, N = 512, 1000, 1728, 2744, and 4096,
are shown in Figs. 3(a)–3(e) and the corresponding converged
values are presented in Fig. 3(f). The averaged RTCs converge
earlier than those for silicon. Here, it can be seen that the
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FIG. 4. (Color online) Same as Fig. 2, but for graphene at 300 K.

converged time interval can be chosen to be [t1,t2] = [150 ps,
200 ps]. Due to the shorter correlation time required for
converging, the total simulation time required for obtaining
smooth curves of the RTC is shorter than that for silicon,
being about Nsts = 100 ns.

As in the case of silicon, there is no systematical decreasing
or increasing trend with increasing N . Our calculated thermal
conductivity averaged over the 5 simulation cell sizes is
(1950 ± 40) W/mK. Using the Brenner potential [11] and the
Green-Kubo method, Che et al. [14] obtained a converged
value of about 1200 W/mK for isotopically pure 12C diamond,
which is about one third smaller than ours. This difference can
be understood by noticing that the original Brenner potential
is more anharmonic than the original Tersoff potential, as has
also been noticed in the study of CNT and graphene [29].
Experimentally, the thermal conductivity of isotopically pure
12C diamond at room temperature is about 3000 W/mK [32],
larger than both of our results. The difference between theo-
retical and experimental results may result from an excessive
anharmonicity of the empirical potentials.

D. Graphene

The above results are for 3D bulk materials. We now
turn to study low-dimensional materials, first considering
2D graphene. The RTCs at 300 K with 5 simulation cell
sizes, N = 960, 3840, 8640, 15360, and 24000, are shown
in Figs. 4(a)–4(e), with the corresponding converged values
presented in Fig. 4(f). For each N , a total simulation time
of Nsts = 500 ns is required to obtain an average RTC well
converged in the time interval of [t1,t2] = [250 ps, 500 ps].

As in the case of diamond and silicon, the thermal
conductivity of graphene does not increase with increasing

simulation cell size. In fact, the contrary is true when N is
smaller than 104, as found by Pereira and Donadio [33]. Similar
results have also been obtained by Zhang et al. [34] for smaller
N . The increasing of the simulation cell size has two opposite
effects: (1) It allows more long-wavelength phonons, which
can increase the thermal conductivity; (2) it also allows more
phonon scattering, as suggested [35] by Ladd et al., which
can decrease the thermal conductivity. In 2D graphene, more
phonon scattering can be induced by the acoustic flexural
modes with increasing out-of-plane deformation, which is
positively correlated to the simulation cell size [36]. When
the simulation cell size is relatively small, the second effect
may dominate, resulting in a decreasing thermal conductivity
with increasing simulation cell size. When the simulation cell
size is relatively large, these two effects largely compensate
each other, resulting in converged thermal conductivity with
increasing simulation cell size.

The thermal conductivity of graphene at 300 K averaged
over the 5 simulation cell sizes is (2700 ± 80) W/mK. Using
the optimized Brenner potential [29] and the Green-Kubo
method, Zhang et al. [34,37] reported a converged value
of (2900 ± 93) W/mK for graphene at 300 K, which is
slightly larger than ours. This difference may be explained
by the fact that they have used smaller simulation cell sizes,
which, according to the discussion above, results in larger
thermal conductivity for graphene. On the other hand, Haskins
et al. [38] reported a value of 2600 W/mK based on the Einstein
formulation [21], which is in good agreement with ours.

It is interesting to point out that our estimate of the thermal
conductivity for graphene at room temperature is compatible
with NEMD calculations (using the same Tersoff potential
parameters) in Ref. [39], which give κ ≈ 2300 W/mK with a
simulation length of about 1.5 μm. If we take the consistency
between the Green-Kubo method and the NEMD method as
granted, this comparison indicates that the NEMD results have
not been converged up to a simulation length of 1.5 μm. In fact,
both the NEMD results and the experimental data [39] suggest
a logarithmic length dependence of thermal conductivity
of graphene at the micrometer scale. On the other hand,
whether the thermal conductivity is upper limited or not in the
infinite-size limit has been largely debated recently [39–42].
Our results provide evidence that the thermal conductivity of
an extended (macroscopic) graphene sheet is finite, although
at the micrometer scale κ still depends on the length of the
graphene patch.

E. (10, 0)-carbon nanotube

Last, we examine the longitudinal thermal conductivity of
CNT. To be specific, we consider a (10, 0)-CNT, without
a detailed study of the effects of chirality and radius. The
RTCs at 300 K with 5 simulation cell sizes, N = 2000, 4000,
6000, 8000, and 10000, are shown in Figs. 5(a)–5(e), with
the corresponding converged values presented in Fig. 5(f). For
each N , a total simulation time of Nsts = 1000 ns is required
to obtain an average RTC almost converged in the time interval
of [t1,t2] = [500 ps, 1000 ps].

Compared with 2D graphene, the (10, 0)-CNT has even
larger thermal conductivity: (3100 ± 68) W/mK. This high
value of thermal conductivity is mostly due to the long phonon
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FIG. 5. (Color online) Same as Fig. 2, but for (10, 0)-CNT at
300 K.

wavelength (large phonon relaxation time) in Q1D CNTs [43],
as indicated by the slow convergence of κ with respect to t .
While there were debates on the size convergence of κ for
CNTs [44–48], our results do not suggest a divergent κ with
respect to the simulation cell length. Previously, the thermal
conductivity for (10, 0)-CNT was calculated to be (1750 ±
230) W/mK in Ref. [45] (see also Ref. [48]) and (1700 ± 200)
W/mK in Ref. [49], which are both smaller than the value
obtained in this work, but due to different reasons: Ref. [45]
employed the original parameter set provided by Tersoff [10];
Ref. [49] used the stress formula as implemented in LAMMPS,
which also results in smaller values of κ comparing with the
Hardy formula, as we show below.

F. Comparing the stress and the Hardy formula

Previously, we remarked that the stress formula [Eq. (20)]
and the Hardy formula [Eq. (45)] are inequivalent for the
Tersoff potential. Also, the per-atom virial as implemented
in LAMMPS is not equivalent to ours [Eq. (39)], which would
result in different heat currents based on the stress formula.
Here, we show these two kinds of nonequivalence numerically.

Figure 6 shows the RTCs of (a) silicon at 500 K, (b) diamond
at 300 K, (c) graphene at 300 K, and (d) (10, 0)-CNT at
300 K calculated using the Hardy formula, the stress formula
in our formulation, and the stress formula as implemented
in LAMMPS. We note the following observations based on
Fig. 6:

(1) For 3D diamond and silicon, all the three methods result
in comparable results.
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FIG. 6. (Color online) Running thermal conductivities κ(t) as a
function of correlation time for (a) silicon at 500 K, (b) diamond at
300 K, (c) graphene at 300 K, and (d) (10, 0)-CNT at 300 K obtained
by using the Hardy formula (solid lines), the stress formula (dashed
lines), and LAMMPS (dot-dashed lines). For each material, the line
and the shaded area represent the averaged κ(t) and the standard error
calculated from an ensemble of 10 independent simulations.

(2) For 2D graphene, the RTC in the converged regime
([250 ps, 500 ps]) obtained by the stress formula is about
1/2 of that by the Hardy formula and that by the LAMMPS
implementation is about 1/3 of that by the Hardy formula. The
LAMMPS results are consistent with previous ones [33,50].

(3) For Q1D CNT, while the RTC in the converged
regime ([400 ps, 600 ps]) obtained by the stress formula is
comparable to that by the Hardy formula, that by the LAMMPS
implementation is about 1/2 of that by the Hardy formula. The
LAMMPS results are also consistent with previous ones [49].

From these observations, we conclude that the stress
formula is generally inequivalent to the Hardy formula
and the LAMMPS implementation of the stress formula is
inequivalent to our implementation based on the pairwise
force. Although we are not clear about the reason why the
differences between these formulations are more significant
in low-dimensional materials (especially 2D graphene) than
in 3D materials, our results can explain an extraordinarily
low value of thermal conductivity of graphene at 300 K,
(280 ± 15) W/mK, obtained by Mortazavi et al. [51] using
LAMMPS and the (second-generation) Brenner potential [52].
Apart from the higher anharmonicity of this empirical potential
compared with the optimized Tersoff potential, this small
thermal conductivity could be attributed to the use of the stress
formula implemented in LAMMPS.

IV. CONCLUSIONS

In summary, we formulated force, stress, and heat current
expressions of many-body potentials in MD simulations. After
deriving these expressions for the Tersoff potential in detail
and briefly discussing their generalizations to the Brenner
potential and the Stillinger-Weber potential, we reached a set of
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universal expressions [Eqs. (56)–(58)] which apply to general
many-body potentials.

The pairwise force expression [Eq. (56)], whose existence
is guaranteed by the principles of classical mechanics, has
not been widely recognized in the community so far. We
demonstrated the importance of the pairwise force expression
in the construction of a well-defined virial tensor [Eq. (57)].
With a reasonable potential partition, we arrived at the Hardy
formula [Eq. (58)] for the potential part of microscopic
heat current used in lattice thermal conductivity calculations
based on the Green-Kubo formula. Many of the seemingly
different formulations of the heat current in the literature were
demonstrated to be equivalent to the Hardy formula.

We have implemented the formulations for the Tersoff
potential on GPUs and obtained orders of magnitude speedup
compared to the serial LAMMPS implementation. While the
details of the GPU implementation are beyond the scope of
this paper, we have applied it to calculate systematically the
lattice thermal conductivities of various kinds of material,
including 3D silicon and diamond, 2D graphene, and Q1D
CNT, with emphasis on the effects of the simulation time and
simulation cell size. We demonstrated the correctness of our
formulations by comparing our results with previous ones.
Last, we provided explicit evidence on the nonequivalence
between the Hardy formula and the stress formula as well as
on the nonequivalence between the LAMMPS implementation
of the stress formula and our implementation based on
the pairwise force. Particularly, we showed that the stress-
based formulation underestimates the thermal conductivity
of systems described by many-body potentials, and that this
effect is more noticeable for low-dimensional systems. While
a more in-depth understanding of these differences is yet to
be obtained, our findings in this work would be very useful
for scientists modeling thermal transport in low-dimensional
systems via molecular dynamics simulations.
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APPENDIX A: EXPLICIT EXPRESSION OF ∂Ui
∂ r i j

FOR THE
TERSOFF POTENTIAL

In this Appendix, we present an explicit expression of ∂Ui

∂ r ij

for the Tersoff potential, which can be easily implemented in
a computer language.

Using the partition given by Eq. (35), we have

∂Ui

∂ r ij

= 1

2

∂Uij

∂ r ij

+ 1

2

∑
k �=i,j

∂Uik

∂ r ij

. (A1)

After some algebra, we have

∂Ui

∂ r ij

=1

2
f ′

C(rij )[fR(rij ) − bijfA(rij )]
∂rij

∂ r ij

+ 1

2
fC(rij )[f ′

R(rij ) − bijf
′
A(rij )]

∂rij

∂ r ij

− 1

2

∑
k �=i,j

fC(rik)f ′
C(rij )fA(rik)b′

ikgijk

∂rij

∂ r ij

− 1

2

∑
k �=i,j

fC(rik)fC(rij )g′
ijk

∂ cos θijk

∂ r ij

× [fA(rij )b′
ij + fA(rik)b′

ik], (A2)

where

∂rij

∂ r ij

= r ij

rij

, (A3)

∂ cos θijk

∂ r ij

= 1

rij

[
r ik

rik

− r ij

rij

cos θijk

]
, (A4)

and we have used the following notations: f ′
A(rij ) ≡

∂fA(rij )/∂rij , f ′
R(rij ) ≡ ∂fR(rij )/∂rij , f ′

C(rij ) ≡
∂fC(rij )/∂rij , b′

ij ≡ ∂bij /∂ζij , and g′
ijk ≡ ∂gijk/∂ cos θijk .

APPENDIX B: UNIFYING DIFFERENT HEAT CURRENT
EXPRESSIONS IN THE LITERATURE

The derivation of the heat current expressions for a general
lattice has been considered very early by Hardy [27] at the
quantum level. The potential part of the heat current was
derived to be

JHardy
pot = 1

2

∑
i

∑
j �=i

rji

1

i�

[
p2

i

2mi

,Uj

]
+ H.c., (B1)

where � is the reduced Planck constant, pi and mi are the
momentum operator and mass for particle i, and H.c. stands
for Hermitian conjugate. Using the identity

[ pi ,Uj ] = −i�
∂Uj

∂ r i

, (B2)

the classical analog of Eq. (B1) can be derived to be

JHardy
pot =

∑
i

∑
j �=i

r ij

(
∂Uj

∂ r i

· vi

)
. (B3)

Using Eq. (36), we have
∂Uj

∂ r i

=
∑
k �=j

∂Uj

∂ rjk

∂ rjk

∂ r i

= ∂Uj

∂ rji

, (B4)

and

JHardy
pot =

∑
i

∑
j �=i

r ij

(
∂Uj

∂ rji

· vi

)
. (B5)

This equation is identical to Eq. (45) and thus equivalent to all
the expressions in Eqs. (42)–(44).
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We now show that many of the seemingly inequivalent
expressions of the potential part of the heat current for the
Tersoff/Brenner potential are equivalent to the Hardy formula.

We first consider the one used by Li et al. [13], which takes
the following form:

JLi
pot = −

∑
i

∑
j �=i

r ij

∂Ei

∂ rj

· vj . (B6)

Since ∂
∂ rj

( 1
2miv

2
i ) = 0, we have

JLi
pot = −

∑
i

∑
j �=i

r ij

∂Ui

∂ rj

· vj , (B7)

which has the same form as that used by Dong et al. [16]. By
noticing that [where we have used Eq. (36)]

∂Ui

∂ rj

=
∑
k �=i

∂Ui

∂ r ik

∂ r ik

∂ rj

= ∂Ui

∂ r ij

, (B8)

we have

JLi
pot = JDong

pot = −
∑

i

∑
j �=i

r ij

∂Ui

∂ r ij

· vj , (B9)

which is exactly Eq. (44) and is thus equivalent to the Hardy
formula. We also note that the one used by Berber et al. [15]
is exactly the Hardy formula.

We next consider the one derived by Che et al. [14], which
takes the following form:

JChe
pot = −1

2

∑
i

∑
j

∑
k

∑
l

r ik

∂Ukl

∂ r ij

· vi . (B10)

Since

∂Ukl

∂ r ij

=
∑
m

∂Ukl

∂ rkm

(δkiδmj − δkj δmi), (B11)

we have

JChe
pot = 1

2

∑
i

∑
j

∑
l

r ij

∂Ujl

∂ rji

· vi

=
∑

i

∑
j �=i

r ij

∂Uj

∂ rji

· vi , (B12)

which is exactly the Hardy formula.
The Hardy formula is also equivalent to a seemingly

different one derived by Chen et al. [17], which reads (the
original expression in Ref. [17] contains a typo, which has

been noticed by Guajardo-Cuéllar et al. [18])

JChen
pot = −1

2

∑
i

∑
j �=i

r ij

∂Uij

∂ rj

· vj

− 1

2

∑
i

∑
j �=i

∑
k �=i,j

r ik

∂Uij

∂ rk

· vk. (B13)

By a change of indices (k ↔ j ), the second term on the right-
hand side of the above equation can be written as

−1

2

∑
i

∑
j �=i

∑
k �=i,j

r ij

∂Uik

∂ rj

· vj , (B14)

which, combining with the first term, gives [using Eq. (35)]

JChen
pot = −

∑
i

∑
j �=i

r ij

∂Ui

∂ rj

· vj . (B15)

It takes the same form of Eq. (B7) and is thus equivalent to the
Hardy formula.

Recently, Guajardo-Cuéllar et al. [18] also derived an
expression for the potential part of the heat current. They
have used the equation mi

dvi

dt
= ∑

j �=i

∂Uij

∂ r ij
in their derivation,

which means that the force on particle i was taken to be
Fi = ∑

j �=i

∂Uij

∂ r ij
. This is only valid for two-body potentials,

and as such it is not valid for the Tersoff potential. We thus
do not expect that their expression is equivalent to the Hardy
formula.

Last, we notice that Li et al. [13] also presented the potential
part of the heat current as the sum of the following parts:

JLi1
pot = −1

4

∑
i

∑
j �=i

⎛
⎝r ij

∂Uij

∂ rj

· vj +
∑
k �=i,j

r ik

∂Uij

∂ rk

· vk

⎞
⎠

(B16)
and

JLi2
pot = −1

4

∑
i

∑
j �=i

⎛
⎝rji

∂Uij

∂ r i

· vi +
∑
k �=i,j

rjk

∂Uij

∂ rk

· vk

⎞
⎠.

(B17)

It can be shown that JLi1
pot = JHardy

pot /2 and JLi2
pot �= JHardy

pot /2 if
one assumes the partition of potential energy given by Eq. (35).
However, they have in fact chosen a different decomposition:

Ui = 1

4

∑
j �=i

(Uij + Uji). (B18)

The calculated thermal conductivity is usually insensitive to
the specific decomposition of the potential energy, as shown
by Schelling et al. [6] for SW silicon.
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