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Electronic and vibrational properties of TiSe2 in the charge-density-wave phase from first principles
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We study the charge-density-wave phase in TiSe2 by using first-principles density functional theory calculations
with the harmonic approximation for the electron-phonon coupling. We consider several local functionals and
both experimental and theoretical cell parameters. The results obtained are very sensitive to the cell parameters
used. However, we show that, if the experimental cell is used, harmonic calculations are able to reproduce not
only the structural instability of TiSe2 but also the effective distortion observed in the experiments, irrespective of
the local functional used. If the experimental cell is used, the energy profile obtained by displacing the atoms is
independent of the local functional considered too. With the semiempirical functional Grimme B97-D, aimed at
describing better the van der Waals forces coupling the TiSe2 layers, the theoretical cell is in agreement with the
experimental one and the structural analysis gives results analogous to the ones obtained with the experimental
cell. We also present a study of the electronic structure evolution under the charge-density-wave deformation. In
particular, we apply the unfolding technique in order to compare the calculated energy bands for the distorted
structure with angle-resolved photoemission spectroscopy (ARPES) data taken at low temperature. In order to
obtain a better agreement between ARPES and the calculated bands, both at high and low temperature, we
investigate the effect of the correlation on the electrons of the localized Ti-3d orbitals by using the LDA + U

method. We show that within this approximation the electronic bands for both the undistorted and distorted
structure are in good agreement with ARPES. On the other hand, U eliminates the phonon instability of the
system. A possible explanation for this counterintuitive result is proposed. Particularly, the possibility of taking
into account the dependence of the parameter U on the atomic positions is suggested.
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I. INTRODUCTION

The group IVb transition metal diselenide 1T-TiSe2 (space
group P 3m1) is a layered compound which has received
considerable attention because of its interesting physical prop-
erties. In particular, below the critical temperature TCDW �
200 K, it undergoes a commensurate charge density wave
(CDW) transition, with the formation of a 2×2×2 superlattice
structure (space group P 3c1) accompanied by the softening
of a zone boundary phonon and changes in the transport
properties [1–3]. In spite of many experimental and theoretical
studies, the driving force of this structural phase transition
remains controversial. Several mechanisms have been pro-
posed for the origin of the instability in TiSe2 and they can
be roughly classified into two main groups depending on the
driving role played either by the electrons or by the lattice. In
fact, a charge density wave occurs always simultaneously with
a periodic lattice distortions, so with both a modification of
the electron and phonon spectra, but it is still unclear if what is
observed is primarily an instability of the electronic system or
of the lattice [4,5]. The excitonic insulator model belongs to
the first case [6–8], where the CDW is essentially viewed
as a many-body effect originated by the poorly screened
electron-hole Coulomb interaction giving rise to a condensate
of excitons and a consequent distortion. In the second family,
we find Peierls and Jahn-Teller band-type mechanisms [9,10],
where the instability essentially comes from the electron-
phonon coupling leading to a lattice distortion that lowers the
total energy of the system. Quite recently, a scenario where
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the CDW transition is driven by a combination of excitonic
ordering and Jahn-Teller effect has also been proposed [11,12].
The CDW phase competes with superconductivity since TiSe2

is not superconducting at low temperatures but the CDW is
suppressed and the superconductivity is stabilized either by
Cu intercalation [13] or pressure [14]. For this reason, a deep
and definitive understanding of the CDW occurrence would
be interesting both for conceptual reasons and technological
applications.

There is ample theoretical literature on the distorted phase
of TiSe2. The results obtained by Motizuki and coworkers
[3,15–17], who developed a general microscopic theory of
the structural instability in dichalcogenides, through the
band-type Jahn-Teller mechanism by using the tight-binding
approximation, are very important. In particular, they studied
the instability and the electronic structure of the CDW phase in
TiSe2 by using a tight-binding model with the free parameters
set by fitting the energy bands with the results of the self-
consistent local density calculation made for the undistorted
structure in Ref. [18].

In this paper, we present the results of first-principles
density functional theory (DFT) calculations of the CDW
instability in TiSe2 with the harmonic approximation for
the electron-phonon coupling. Our aim is to investigate at
what level an unbiased first-principles calculation is able to
recover the experimental results and to analyze the specific
role of the electron-phonon coupling in the appearance of
the CDW. The calculations have been performed with several
local functionals and experimental or theoretical unit cells.
The results obtained depend on the cell parameters used. We
show that, if the experimental unit cell is used, through DFT
it is possible to observe a structural instability at the L and M
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points of the Brillouin zone (BZ) consistent with a 2×2×2 (L)
and 2×2×1 (M) real-space superstructure [19], regardless of
the local functional used. We present an analysis of both the M

and L distortion patterns and we show that the distortion giving
the most stable structure is the so-called triple-point pattern in
L, the same kind of distortion observed in the experiments
(and described the first time by di Salvo and coworkers in
Ref. [1]). Moreover, the magnitude of the lattice distortion
calculated is close to the experimental one. If the experimental
cell parameters are used, these results are independent of the
local functional.

The theoretical cell parameters are obtained by relaxing the
cell in order to achieve zero theoretical pressure. The values of
the theoretical lattice parameters strongly depend on the func-
tional used and, in general, for standard local functionals, they
are not in good agreement with the experimental ones. How-
ever, as adjacent layers in TiSe2 are coupled by van der Waals
forces, we considered also the Grimme B97-D semiempirical
functional, which is aimed at describing more accurately this
kind of interaction [20]. We show that with that functional
the theoretical cell parameters are in good agreement with
the experiment and so, as expected, in this case the structural
analysis with the theoretical cell gives results analogous to
the ones obtained with the experimental cell.

After the structural analysis, we present the results of the
calculations for the electronic structure of the system. In DFT
pseudopotential calculations the system in the undistorted
phase appears to be metallic, with the Fermi surface depending
on the unit cell used. We show the effect of the distortion on the
energy dispersion around the Fermi level and in particular on
the density of states (with results at some level compatible with
other results present in literature [16]). Moreover, we compare
the calculated electronic bands for the undistorted and distorted
phase with data taken from an ARPES experiment at high and
low temperature, respectively. Particularly, for the distorted
phase, we unfold the bands into the undistorted BZ in order to
make the comparison more efficient.

In order to improve the match between the calculated bands
and ARPES, we investigated the effect of the Coulomb repul-
sion on the electrons of the localized Ti-3d orbitals by using the
LDA + U method. We show that U significantly improves the
comparison with ARPES but it also spoils the lattice instability.
We discuss how these somehow counterintuitive results could
be interpreted.

The paper is organized as follows. In Sec. II, we summarize
the method and the parameters used. Then, in Sec. III, we
present the ab initio structural analysis of the TiSe2 instability
and CDW phase. Afterwards, in Sec. IV, we analyze the
electronic structure of the undistorted and distorted phases,
and in Sec. V, we compare the bands with ARPES data (in
Sec. V A, for the LDA and Grimme B97-D functionals and
in Sec. V B, for the LDA + U case). Finally, conclusions are
presented in Sec. VI. In Appendix, we provide some details
about the unfolding technique.

II. COMPUTATIONAL DETAILS

All calculations were performed within the framework of
DFT using the QUANTUM ESPRESSO package [21] which uses
a plane-wave basis set to describe the valence-electron wave

functions and charge density. For the exchange-correlation
functional (xc functional) we used both the Perdew-Zunger
local density approximation (LDA) [22] and the Perdew-
Burke-Ernzerhof conjugate gradient approximation (GGA)
[23]. As adjacent layers in TiSe2 are coupled by van der
Waals forces, we also considered Grimme B97-D, a GGA-type
semiempirical functional aimed at describing more accurately
this kind of interaction [20]. In the text, we will indicate this
functional also with GGAVdW. The phonons have been calcu-
lated using density functional perturbation theory (DFPT) in
the linear response [24].

We used a cutoff of 85 Ry and 850 Ry (1 Ry ≈ 13.6 eV)
for the wave functions and the charge density, respectively;
the BZ integration has been performed with a Monkhorst-Pack
grid [25] of 24×24×12 k and a Hermite-Gaussian smearing
of 0.01 Ry. The self-consistent solution of the Kohn-Sham
equations was obtained when the total energy changed by
less than 10−10 Ry. We studied the system with internal
theoretical coordinates (i.e., zero theoretical forces) and with
both experimental and theoretical cell (i.e., zero theoretical
pressure). The theoretical parameters have been obtained
by relaxing the structure starting from the experimental
parameters [26] until the forces on the atoms were less than
10−3 Ry a−1

0 (a0 ≈ 0.529 177 Å is the Bohr radius) and the
pressure less than 0.5 Kbar.

The values of the geometrical parameters obtained for
different local functionals are reported in Table I. As it can
be seen, the values of the theoretical lattice parameters are
very sensitive to the local functional used. For example, the
distance c between layers is underestimated in LDA and
overestimated in GGA, in the second case, with quite an
important relative error around 12% for c. As expected, the
best agreement between theory and experiment is obtained by
using the GGAVdW functional.

In order to take into account the strong correlation effects
due to the localized d orbitals of Ti, we also considered
the LDA + U method in the simplified form described in
Refs. [27,28]. Since we consider the Hubbard-like correction

TABLE I. Experimental and theoretical geometrical parameters
of the system in the undistorted phase (cf. Fig. 1): hexagonal lattice
constant a, distance c between the layers, distance h between the Se
and the Ti planes in a layer and horizontal projection R of distance
between Se and Ti in an octahedron. The subscripts “Exp” and “Th”
refer to the experimental and theoretical cell, respectively. Notice that
for the undistorted phase, R is fixed by the unit cell geometry (it must
be equal to a

√
3/3 in order to obtain a null force along the planar

direction), whereas this is not true anymore in the distorted phase (cf.
Table VI).

a (Å) c (Å) h (Å) R (Å)

Exp 3.540 6.007 1.532 2.044
LDAExp 3.540 6.007 1.499 2.044
GGAExp 3.540 6.007 1.534 2.044
GGAVdW

Exp 3.540 6.007 1.532 2.044
LDATh 3.434 5.792 1.535 1.982
GGATh 3.536 6.719 1.548 2.041
GGAVdW

Th 3.510 6.165 1.553 2.026
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for one orbital and no spin, there is a single additional
parameter U in the calculation.

We essentially performed two kinds of analysis. On one
hand, we calculated the variation of the phonon frequencies
in L and M with the value of U for the experimental cell
and theoretical internal coordinates obtained by relaxing the
atomic positions for each value of U . In this case, the phonon
frequencies have been obtained by using the finite difference
method in Ref. [29] with a 2×2×2 cell and atomic displace-
ments of 1/66 � 0.015 Å. A mesh grid of 24×24×12 k for the
supercell Brillouin zone and a Hermite-Gaussian smearing of
0.125×10−2 Ry have been used for the related self-consistent
calculations of the forces.

On the other hand, we calculated, by linear response, a
first-principles estimate of U for the LDAExp case in the
undistorted phase, through the difference between the screened
and bare second derivative of the total energy with respect to
the occupation of the Ti-3d orbital [27]. For an input value
Uin, used to define the starting system, the linear-response
calculation returns a different output value Uout �= Uin but, in
order to be consistent and replace the LDA interaction term
with the corresponding Hubbard correction, the ideal case in
which Uin = Uout ≡ U should be considered. In fact, even if it
is a common practice to simply compute the ab initio value of
U in one step with Uin = 0, this consideration can be relevant,
especially if the LDA and LDA + U systems are qualitatively
different [30]. In our case, in particular, the effect of U is to
open a gap between the bands with the result of obtaining,
for U � 4, a metal-insulator transition (see Sec. V B). For
this reason, we determined U with a self-consistent procedure
starting from the unperturbed system (Uin = 0) and using, step
by step, the obtained Uout as Uin for the subsequent calculation.
For each step, we obtained the result first by performing
the linear response calculation on a 2×2×2 cell and then
extrapolating the outcome to a 6×6×6 cell (see Ref. [27] for
details). With this procedure we converged in a few steps to the
value U � 3.902 eV. Since we decided to work with a fixed

h

Ti

Se
R

a

ν > 0

ν < 0

FIG. 1. (Color online) Octahedral structure of TiSe2 in a layer.
The Se atoms in the upper and lower plane are on circles of radius
R at distance h from the Ti atoms plane. The value of the hexagonal
lattice parameter a, the distance c between two layers (not shown)
and h completely define the system (the value of R is fixed by the
geometry in the undistorted phase). The rotational displacement of
the Se atoms in a triple-q mode and the attraction (repulsion) exerted
over the Ti atoms by two close Se’s for ν > 0 (ν < 0) is also shown
(see the main text for the definition of ν).

configuration, for all the steps we always used the same internal
coordinates obtained by relaxing the atomic positions with
U = 0; moreover, in order to achieve a precision of 10−3 eV
for the converged value of U , we set the energy convergence
threshold for self-consistency equal to 10−14 Ry.

III. STRUCTURAL ANALYSIS OF THE CDW

In the BZ of TiSe2, the three L points—L1, L2, L3—and
the three M points—M1, M2, M3—are equivalent thanks to
the three-fold rotation symmetry of the system (see Fig. 2).
The vectors qLi

and qMi
from � to Li and Mi , respectively,

have reduced components (cf. Fig. 2):

qM1 = (
1
2 ,0,0

)
, qL1 = (

1
2 ,0, 1

2

)
,

qM2 = (
0,− 1

2 ,0
)
, qL2 = (

0,− 1
2 , 1

2

)
, (1)

qM3 = (− 1
2 , 1

2 ,0
)
, qL3 = (− 1

2 , 1
2 , 1

2

)
.

In Li and Mi , the small group is C2h and the decomposition in
irreducible representations is

2Au ⊕ 2Ag ⊕ 4Bu ⊕ Bg. (2)

By using the density functional perturbation theory (DFPT),
we computed the phonon frequencies at M and L. We found
that in all the cases the lowest phonon mode has symmetry Au

with frequency always imaginary except in the LDATh case.
The values for the phonon frequencies in the GGAVdW

Th case
are shown in Table II and the frequencies of the lowest mode
for all the cases are reported in Table III. When a phonon

b1

b2

b3

L1(M1)

L3(M3)

L2(M2)
A(Γ)

L3

L2

M2
K

H
M3

Γ

L1

M1

qL2

qL3

qL1

qM2
qM1

qM3

FIG. 2. (Color online) Brillouin zone of TiSe2. The bottom figure
is the BZ as seen from above. The bi are the reciprocal lattice basis
vectors (b3 is orthogonal to the layers).
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TABLE II. Phonon frequencies with relative mode symmetries at
L and M in the GGAVdW

Th case.

ωL (meV) ωM (meV)

Au −10.00 −9.33
Bu 12.18 12.69
Au 14.27 14.62
Bg 17.37 17.25
Bu 17.95 17.57
Ag 20.33 20.44
Ag 23.67 23.48
Bu 24.78 24.93
Bu 37.00 37.84

frequency ω is imaginary, we conventionally indicate it with
the negative value −|ω|.

A. Ab initio analysis of the structural instability

The imaginary phonon frequencies at M and L correspond
to a structural instability consistent with a 2×2×1 (M) or a
2×2×2 (L) real-space superstructure. In order to study the
2×2×2 distortions, we consider the corresponding supercell
of the undistorted crystal (which has 24 atoms) and the
72-dimensional space V whose general element d ≡ diα is
the displacement of the ith atom of the supercell along the
Cartesian direction α.

For the 2×2×2 superstructure, the eight points �, A, Li , and
Mi of BZ refold to the � point. Therefore, the space V is equal
to the orthogonal sum of the corresponding nine-dimensional
subspaces V� , VA, VLi

, VMi
:

VL ≡
3⊕

i=1

VLi
, VM ≡

3⊕
i=1

VMi
, (3)

whose vectors describe distortions with a definite modulation
character with respect to the original 1×1×1 unit cell of the
undistorted phase. In particular, VLi

and VMi
are made of

plane-wave lattice distortions with wave vector qLi
and qMi

,
respectively, that is, distortions having the atomic displacement
of the kth atom in the lth unit cell given by

ulk = εk cos(q · Rl), q ∈ {
qLi

,qMi

}
, (4)

where Rl is the lth lattice vector and εk gives the amplitude of
the displacement for the kth atom in the unit cell of the origin.

If E(d) is the energy of the system per supercell as a func-
tion of the 2×2×2 distortion, in the harmonic approximation

TABLE III. Phonon frequencies of the lowest mode (Au) at L and
M for the cases analyzed.

ωL (meV) ωM (meV)

LDAExp −10.38 −9.17
GGAExp −9.83 −8.28
GGAVdW

Exp −9.61 −8.03
LDATh +4.32 +7.13
GGATh −13.14 −13.18
GGAVdW

Th −10.01 −9.34

it is

E(d) � E(0) + 1

2

∑
iαjβ

∂2E

∂diα∂djβ

∣∣∣∣
d=0

diα djβ (5)

≡ E(0) + 1

2

∑
iαjβ

Ciα,jβ diα djβ, (6)

and, by grouping the two indices (iα) ≡ I , we obtain a real-
symmetric 72×72 matrix CIJ , which has N = 72 couples of
real eigenvalues and eigenvectors (λ,d(λ)). With the distortion
d(λ) the system has the variation of energy:

dE = λ

2
‖d(λ) ‖2, (7)

where ‖d(λ) ‖ is the euclidean norm of d(λ). Thus, a negative
eigenvalue corresponds to a displacement that lowers the
energy of the system.

By using the DFPT, we calculated CIJ and subsequently
we diagonalized it. Because of the symmetry, we obtained the
same spectrum for the three spaces VLi

and the same spectrum
for the three spaces VMi

, the corresponding displacements
being related by threefold rotations. Consistently with the
phonon analysis, we found, in each of these spaces, two
eigenspaces with symmetry Au, one of them with negative
eigenvalue. Since we are interested in the instabilities of the
system, we focus on this kind of distortions.

B. The Au distortions

The displacements Au, for a point Li or Mi , are transversal
to the direction of propagation q, planar (i.e., no component
outside the layer plane) and opposite for selenium atoms Se1

and Se2 on two adjacent wave fronts. We indicate with −ν the
ratio between the displacements of the titanium atoms on a
wave front and the selenium atoms Se1 on an adjacent wave
front:

Au :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

εk ⊥ q,

εz
k = 0,

εSe2 = −εSe1 ,

εTi = −ν εSe1 ,

(8)

z being the direction orthogonal to the layers. Thus, the sign
of ν indicates if the displacement of two adjacent Ti and
Se front waves are in phase (ν < 0) or out of phase (ν > 0)
(see Fig. 3).

These modes form a two-dimensional vector space 2Au

made of displacements along a fixed line, where the only two
free parameters left are the values of the shifts. We indicate
with δTi the shift of the Ti atoms on a displacement wave front
along a given direction and with δSe the displacement of the Se
atoms on an adjacent wave front along the opposite direction
(see Fig. 3). It is ν = δTi/δSe. By using the two parameters
δTi and δSe, the space 2Au can be represented as in Fig. 4. By
symmetry, two displacements with opposite values for both δTi
and δSe are equivalent, whereas by changing the relative phase
between the shifts of the Se and the Ti atoms, we obtain two
different configurations. In fact, a significant parameter is the
ratio ν, which identifies a one-dimensional subspace Au(ν) of
2Au. Therefore, a general d ∈ 2Au is uniquely identified either
by ν and ‖d‖ or, for example, by ν and δTi (δSe).
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Ti Se

δTi

δSe

δTi

δSe

δTi

δSe

Au(L2 andM2)

ν > 0 ν < 0

3qL and3qM

Au(L1 andM1)

Au(L3 andM3)

a1

a2

a3

FIG. 3. (Color online) Schematic representation of the atomic
displacements in the 2×2×2 cell of a single layer viewed from
above for the three Au modes in the points Li and Mi and the
triple modes 3qL and 3qM . The two non-equivalent cases with ν > 0
(left-hand figures) and ν < 0 (right-hand figures) are shown, ν being
the ratio between δTi and δSe. The Se atoms with a dot are on the
upper plane with respect to the Ti atoms plane. In the first picture,
the direct lattice basis ai and the 1×1×1 unit cell are also drawn.
The two central arrows indicate the positive directions used to
measure the shifts δTi and δSe. In the 3q mode with ν > 0, a three
atom cluster is highlighted with a dotted line. Notice that the triple-q
modes shown are not equal to the sum of the Au single-q modes
represented as, otherwise, the displacements should be larger (the
displacements of the atoms in a triple mode are two times larger than
the displacements of the component single modes).

Each of the two orthogonal one-dimensional eigenspaces of
symmetry Au found by diagonalizing CIJ is characterized by a
specific value of the ratio, one positive and the other negative.
In fact, it can be shown that two generic one-dimensional
subspaces Au(ν1) and Au(ν2), corresponding to different
values of the ratio ν = ν1 and ν = ν2, are orthogonal if and
only if ν1ν2 = −2. We found that, in all the studied cases and
in both points M and L, the Au with the smallest eigenvalue
λ corresponds always to the positive ratio ν > 0, that is, to
the out of phase distortion. For the studied cases, the values
found for the smallest λ and the corresponding ν in the points
L (λL, νL) and M (λM, νM ) are reported in Table IV. From

−0.10 −0.05 0 +0.05 +0.10
√

2 δSe (Å)

−0.10

−0.05

0

+0.05

+0.10

δ
Ti

(Å
)

ν > 0

ν > 0

ν < 0

ν < 0

Au(+2.51)

Au (−0.80)

Exp

2Au

FIG. 4. (Color online) Diagram representing the distortion space
2Au in L and M as a function of the displacements (δSe,δTi). The
factor

√
2 on the horizontal axis comes from the two Se atoms in

the unit cell and it is necessary in order to convert the orthogonality
condition in 2Au into the Euclidean orthogonality on the diagram. A
line on this plot represents a one-dimensional subspace Au(ν) with
a specific ratio ν = δTi/δSe. As an example, the two orthogonal
vectors corresponding to the Au distortion modes of the GGAVdW

Th

case are drawn. The point corresponding to the CDW distortion
experimentally observed [1] is also drawn.

now on, we analyze only the cases where the system displays
instability, therefore we do not consider LDATh anymore.

The value νL (νM ) defines (up to a sign) three orthogonal
unit vectors d̂Li

(d̂Mi
) corresponding to degenerate displace-

ments of type Au, which generate a three-dimensional space
V−

L (V−
M ). By considering displacement vectors d in this space

with an increasing modulus ‖d‖ but fixed direction, we can
study the energy variation of the system along a pattern. We
observe that the energy, after an initial parabolic decrease,
starts departing from the harmonic regime, reaches a minimum
and then increases (cf. Fig. 5). The minimum along this energy
path corresponds to the configuration giving the most stable
structure obtainable with that kind of distortion. In general,
different patterns in V−

L (V−
M ) return different results as for

finite displacements the symmetries of the lattice are not
preserved.

C. The single-point and triple-point patterns

The displacement pattern of type Au characterized by a unit
vector d̂Li

(d̂Mi
) is also called a single-qL pattern (single-qM

pattern). In Fig. 5, we show, for the several studied cases, the
energy path for the single-q patterns in L and M . As we can
see the distortion of type L returns always a structure
more stable than the distortion of type M , except in the
GGATh case where the two energy patterns approximatively
coincide, meaning that the interaction between layers plays
a non-negligible role in the minimization of the total energy
unless their distance is large enough. Moreover, as long as
the cell dimensions are comparable, we find similar results
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TABLE IV. Values of the eigenvalue λ and of the ratio ν =
δTi/δSe for the Au distortions in L and M corresponding to the
smallest eigenvalue. Last row: value of the ratio measured for the
CDW distortion [1].

λM νM λL νL

LDAExp −1.07 2.89 −1.37 2.93
GGAExp −0.89 2.60 −1.26 2.53
GGAVdW

Exp −0.84 2.64 −1.20 2.56
LDATh +0.69 2.34 +0.25 2.42
GGATh −2.26 2.46 −2.25 2.43
GGAVdW

Th −1.14 2.51 −1.31 2.46
ν

Exp
CDW – – – 3.42 ± 1.48

irrespective of the local functional used. Instead, in the GGATh

case, where the distance between the layers is larger (see
Table I), the energy gain due to the distortion is higher.1 These
considerations lead to the conclusion that the suppression of
the instability in the LDATh case is due to the geometry of the
unit cell, the LDA theoretical cell parameters being smaller
than the experimental ones (see Table I).

The patterns characterized by the unit vectors d̂3L and d̂3M

obtained by combining the three directions d̂Li
and d̂Mi

:

d̂3M ≡
3∑

i=1

1√
3

d̂Mi
, d̂3L ≡

3∑
i=1

1√
3

d̂Li
, (9)

are called a triple-qL (3qL) pattern and a triple-qM (3qM )
pattern, respectively. In fact, by definition, a general triple-q
distortion of type L (M) is obtained by superimposing, with
equal weights, three Au distortions for the points Li (Mi)
having the same values of δTi and δSe.

In a layer, the shifts of the atoms in a 3q distortion can be
described by considering the TiSe6 octahedral structure of the
system [31] (see Fig. 1). We distinguish two kinds of Ti and
Se atoms: in one the Ti(α) atoms do not move and are in the
middle of Ti(α)Se(α)6 octahedra where the three Se(α) atoms
above Ti(α) and the three Se(α) atoms below Ti(α) rotate
with opposite direction. Therefore there are couples of Se(α)’s
that become closer and, depending on whether the component
three modes have ν > 0 or ν < 0, they attract or repulse a
Ti(β) atom [in the first case, as a consequence, we observe a
Ti(β)-Se(α) bond shortening and the formation of three-atom
clusters Ti(β)Se(α)2 in the system]. In the distortion we also
have Se(β) atoms, which are not involved in any rotation [they
are originally in octahedra centered around Ti(β) atoms] but
stay in their position.

For an adjacent layer, depending on whether we are
considering a 3qM or a 3qL distortion, the displacement of the
atoms is the same or the opposite one [i.e., in the 3qL case if in
one layer the Se(α)’s on the upper plane and lower plane show
a clockwise and a counterclockwise rotation, respectively, the
opposite happens in an adjacent layer]. Two 3q distortions
with ν > 0 and ν < 0, in a layer and view from above, are
shown in Fig. 3.

1This corrects a statement in Ref. [46] about the irrelevance of c in
the lattice instability.

−8

−6

−4

−2

0

LDAExp

d̂Mi

d̂Li

d̂3M

d̂3L

−8

−6

−4

−2

0

GGAExp

−8

−6

−4

−2

0

GGAVdWExp

−8

−6

−4

−2

0

GGAVdWTh

0.00 0.05 0.10 0.15 0.20 0.25

‖d‖ (Å)
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FIG. 5. (Color online) Variation of the energy with respect to
the undistorted phase obtained by moving the atoms according to
different patterns. The unit vectors d̂Li

, d̂Mi
, d̂3L, d̂3M characterize a

single qLi
and qMi

mode, and a triple qL and qM mode, respectively.
The vertical dashed line in the GGAVdW

Th plot marks the point where
the calculations of Fig. 7 have been performed.

D. The CDW distortion

In their seminal paper, Di Salvo and coworkers stated that
according to neutron-diffraction measurements and symmetry
considerations, the lattice distortion experimentally observed
with the CDW is a 3qL mode with ν > 0, with data taken at
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77 K, which best fitted with the values [1]

δTiExp = (0.042 ± 0.007) Å,

δSeExp = (0.014 ± 0.004) Å (10)

for the displacements of the atoms in the single Li component
mode. These values correspond, for the complete 3L pattern,
to the displacements

(3)
δTiExp = (0.085 ± 0.014) Å,

(3)
δSeExp = (0.028 ± 0.007) Å (11)

for the Ti and Se atoms that actually move (in a 3q mode
not all the atoms move). The experimental values for the
displacements in a single qLi

component mode are also shown
on the diagram in Fig. 4 and correspond to the experimental
estimate for the ratio

νExp ≡ δTiExp/δSeExp = 3.42 ± 1.48. (12)

Motivated by these experimental results, we calculated the
energy pattern of the 3qL mode in V−

L for the studied cases.
Moreover, in order to study the role played by the interaction
between layers, we also calculated the energy pattern of the
3qM distortion in V−

M . The results are shown in Fig. 5. As
we can see, a triple-q pattern returns always a structure more
stable than the corresponding single-q displacement and it
is always the 3qL distortion that gives the lowest energy
(except, again, in the GGATh case where the modes 3qL and
3qM are almost degenerate). Moreover, as with the single-q
patterns, if the cell dimensions are comparable, we find similar
results, irrespective of the local functional used. For the GGA
theoretical cell, which is larger than the experimental one, the
system is more unstable as during the distortion the energy
decrease is greater. In Table V, we report, for the minimum
point of the 3qL energy pattern, the values of the energy
variation (per supercell) and the shift of the atoms (for
the component Au single-qL modes) with respect to the
undistorted crystal. The values of the displacements for the
studied cases, compared with the experimental result, are also
shown in Fig. 6 (which corresponds to a portion of the diagram
in Fig. 4). From the magnitude of the atomic displacements,
we can see again that with the experimental cell the results

TABLE V. First column: largest energy gain (per supercell), with
respect to the undistorted phase, for the 3qL triple pattern in V−

L .
Second and third columns: corresponding atomic displacements, with
respect to the undistorted phase, for the component single modes (Au

symmetry). Notice that for the resultant 3qL mode the displacement
of the atoms that actually move is two times larger, cf. Fig. 3. First
row: experimental measure of the displacement for the CDW phase
with respect to the high-temperature phase [1].


Emin (meV) δTi (Å) δSe (Å)

EXP – 0.042 ± 0.007 0.014 ± 0.004
LDAExp −8.4 0.030 0.010
GGAExp −7.4 0.027 0.011
GGAVdW

Exp −6.8 0.026 0.010
GGATh −23.4 0.037 0.015
GGAVdW

Th −8.3 0.028 0.011

0 0.01 0.02 0.03√
2 δSe (Å)

0

0.01

0.02

0.03

0.04

0.05

δ
Ti

(Å
)

Exp

GGAVdWTh

GGATh

GGAExp

LDAExp

GGAVdWExp

2Au

FIG. 6. (Color online) Filled points: displacement of the atoms
corresponding to the energy minimum along the 3L pattern in V−

L

(single Au component). Empty points: Au component of the total
displacement obtained by further relaxing the structure.

do not essentially depend on the local functional used. The
results obtained in the GGAVdW

Th case are also similar, the
unit cell being similar to the experimental cell, whereas the
displacement is greater in the GGATh case, which has a larger
unit cell.

The fact that a 3qL pattern gives a structure more stable than
the single qL pattern is in agreement with the experimental
findings but, in order to demonstrate that the ab initio calcula-
tions are able to predict the experimental results, it is necessary
to go further and demonstrate that the 3qL pattern gives the
most stable structure among all the possible distortions in V−

L .
Since we expected analogous results in all the analyzed cases
we just considered the GGAVdW

Th one. In order to accomplish the
task, we should have considered a uniform sample of the unit
sphere in V−

L and computed the energy path for an increasing
modulus of the distortion along each of that directions. Instead,
in order to reduce the workload, we just computed the energy of
the system for distortions d having a fixed modulus ‖d‖ = D,
where D = 0.146 Å is a length approximately in half position
between the minimum along the qLi

and the 3qL patterns (cf.
Fig. 5). In this way, we only needed to scan the energy of the
system for a uniform grid on the two-dimensional sphere inV−

L

with radius D. We used the basis d̂Li
to parametrize the space

V−
L and the fact that, given a general vector d = ∑3

i=1 ci d̂Li
,

all the other vectors obtained from it by changing the sign of
its components ci give equivalent distortions. Therefore, we
considered only one octant of the sphere of radius D to obtain
a general scan of the surface:

d =
3∑

i=1

ci d̂Li
,

3∑
i=1

|ci |2 = D, ci > 0. (13)

A heat-map plot of the results obtained is showed in Fig. 7:
our calculations confirm that on this sphere the 3qL pattern
(which has components ci = D/

√
3) returns, among all the

possible patterns in V−
L , the most stable structure. We conclude

that, in the frame of the electron-phonon interaction, by using

094107-7



BIANCO, CALANDRA, AND MAURI PHYSICAL REVIEW B 92, 094107 (2015)

d̂L1

d̂L2

d̂L3

0 +π
2ϕ

0

+π
2

ϑ

d3L

−8.0

−7.6

−7.2

−6.8

−6.4

−6.0

−5.6

Δ
E
(m
eV
)

FIG. 7. (Color online) GGAVdW
Th case: heat-map plot of the energy variation with respect to the undistorted phase for distortions

corresponding to vectors in V−
L having modulus D = 0.146 Å. Due to the symmetry of the system, the result is shown on a single octant. (Left)

3D color plot on the spherical surface of radius D. (Right) 2D plot in spherical coordinates (ϑ,ϕ) associated to the basis (d̂Li
). The lowest

energy is obtained for the 3qL distortion, whose angular coordinates are ϕ = π/4, ϑ = arccos(1/
√

3).

first-principles calculations, we are able to recover the CDW
structural instability experimentally observed for TiSe2.

E. Optimization of crystal structure in the CDW phase

In order to find the equilibrium configuration for the dis-
torted system, we subsequently relaxed the structure starting
from the configuration corresponding to the minimum of the
energy along the 3qL path. We relaxed the whole structure (cell
and internal positions) or only the internal positions depending
on whether we were considering the theoretical or the (fixed)
experimental cell. This led to a further small gain in energy
with respect to the undistorted phase (see Table VI).

As it can be seen from Table VII, the effect of the relaxation
on the lattice parameters is quite small, with a relative variation
of the order of 10−3. For the internal displacements, we
define the vectors in V , dmin and drlx, characterizing the
atomic shifts from the undistorted phase to the minimum along
the 3qL path in V−

L and the equilibrium position reached
after the relaxation, respectively (in the theoretical cell cases
drlx is the relative displacement with respect to the cell). A
quantitative measure of the extent of the additional atomic
displacements due to the relaxation is obtained by comparing
the modulus and the direction of these vectors. The results
are shown in Table VII and, as we can see, the two vectors
are very similar (only slightly different in the GGATh case),

meaning that the relaxation does not give an additional huge
displacement of the atoms.

The total displacement drlx is mainly made of a 3qL

distortion but it also has a small component that changes the
value of R shown in Fig. 1 (the value of this parameter being not
fixed by the symmetry, anymore) and modifies the distances hα

and hβ between the non-equivalent Se(α) and Se(β) atoms and
the Ti plane. As a consequence, in the distorted structure, the
upper (and lower) Se atoms of a layer are not on the same plane
anymore (cf. also Ref. [32]). The values found for the atomic
displacements are reported in Table VI and, in particular, the
updated values of δTi and δSe for the Au component of the
displacement are also shown in Fig. 6.

In order to test the reliability of our pseudopotentials
and, consequently, of our conclusions, we also performed
structural optimization by using the projector augmented
wave (PAW) method [33]. We relaxed the internal structure
of the undistorted and distorted phases obtained with LDA
and GGA pseudopotentials with experimental cell by using
corresponding projector augmented wave (PAW) potentials.
We found that with PAW-LDA and PAW-GGA the instability
is unaffected and the energies gained with distortion are
in agreement with the ones obtained with LDA and GGA
pseudopotentials, respectively, within an error of 1 meV.
Therefore the incertitude due to the use of pseudopotentials
is irrelevant in our problem.

TABLE VI. Effect of the relaxation on the minimum of the energy along the 3qL path in V−
L : the total variation of the energy (per supercell)

from the undistorted phase 
Erlx, shifts δTi and δSe for the Au component of the atomic displacements, variation of R (see Fig. 1), and change
of h for the two non-equivalent atoms Se(α) and Se(β). First row: experimental measure of the displacement for the CDW phase with respect
to the high-temperature phase [1].


Erlx (meV) δTi (Å) δSe (Å) δR/R δhα/h δhβ/h

EXP – 0.042 ±0.007 0.014 ±0.004 – – –
LDAExp −9.4 0.030 0.010 −0.0003 0.0011 −0.0001
GGAExp −8.7 0.028 0.011 −0.0003 0.0016 0.0004
GGAVdW

Exp −7.9 0.027 0.010 −0.0002 0.0014 0.0004
GGATh −27.6 0.040 0.016 −0.0018 0.0031 −0.0038
GGAVdW

Th −9.5 0.029 0.011 −0.0004 0.0010 −0.0006
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TABLE VII. Effect of the relaxation on the minimum of the
energy along the 3qL path in V−

L . First two rows: comparison of
the vectors dmin and drlx representing the shifts of the internal atomic
positions from the undistorted phase to the minimum of the energy
along the 3qL path and the final relaxed configuration, respectively.
Last two rows: relative variation of the cell parameters a and c (in the
theoretical cell cases).

‖drlx‖
‖dmin‖

〈drlx | dmin〉
‖drlx‖‖dmin‖


a

a


c

c

LDAExp 1.0008 0.9992 – –
GGAExp 1.0016 0.9981 – –
GGAVdW

Exp 1.0022 0.9985 – –

GGATh 1.0392 0.9918 0.0006 0.0013
GGAVdW

Th 1.0046 0.9990 0.0006 0.0006

In conclusion, in this section, we have shown the results of
a DFT pseudopotential structural analysis for TiSe2 performed
with several local functionals and experimental or theoretical
lattice parameters. The results depend on the cell used and,
in turn, the theoretical cell parameters depend on the local
functional considered.

If the experimental cell is used, the results do not depend
on the local functional used, the system becoming unstable
in L (and M) with a Au displacement pattern. Moreover, the

distortion giving the most stable structure is the triple-point
pattern in L, in agreement with neutron diffraction experiments
for the CDW transition, and the magnitude of the distortion is
not far from the experiment, the atomic displacements being
slightly underestimated (especially for the Ti).

If we consider the LDA theoretical cell, which has lattice
parameters smaller than the experimental ones, no instability is
found. If we consider the GGA theoretical cell, which has the
lattice parameter c quite larger than the experimental one, the
instability is found but with atomic displacements and energy
decrease greater than the ones obtained with the experimental
cell. Finally, if we consider the GGA-type functional Grimme
B97-D in order to describe better the Van der Waals forces,
we obtain theoretical cell parameters quite similar to the
experimental ones. Consistently, in this case, we obtain for the
structural analysis results comparable to the ones obtained with
the experimental cell. In Ref. [34], we provide the geometrical
parameters for the distorted phase obtained in the studied cases.

IV. ELECTRONIC STRUCTURE IN THE CDW PHASE

A. Undistorted energy bands

In Fig. 8, we can see the undistorted bands of TiSe2

around the Fermi level (EF) for a high-symmetry path (cf.
Refs. [18,32]). The atomic/orbital character of the bands is also

Ti-3d

Other

Se-4p

FIG. 8. (Color online) Band structure of TiSe2 (undistorted phase) for several cases along a BZ high-symmetry line (cf. Fig. 2). The
atomic/orbital character of bands is expressed by using different colors. The four cases shown have different unit cell parameters. Only in the
LDATh case the system does not have a structural instability.
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Ti-3d

Other

Se-4p

eV

FIG. 9. (Color online) DFT bands, with orbital character, of the 2×2×2 superlattice along the high-symmetry line �scMscKsc�sc of
the supercell Brillouin zone. (Left) Undistorted configuration (‖d‖ = 0.00 Å). (Right) Distorted configuration (‖d‖ = 0.16 Å). An arrow
highlights, in two cases, the effect of the repulsion between two Ti-3d bands.

shown (cf. Ref. [32]). In all the studied cases, we find similar
results. Around the Fermi level there are only Ti-3d and Se-4p

derived bands. In particular, a narrow Ti-3d band is almost
entirely unoccupied except around the L point where it crosses
the Fermi level and forms an electron pocket. Moreover, two
Se-4p and Ti-3d strongly hybridized bands cross the Fermi
level. Thus, in all these cases, the system appears to be metallic
with a negative indirect band gap. However, a qualitative
difference is found for a narrow Se-4p band whose position
mostly depends on the cell parameters used but not on the local

functional (calculations with the same unit cell but different
local functionals give similar results). As a consequence, the
shape of the calculated Fermi surface is very sensitive to the
cell parameters used. Nevertheless, as we will see, this Se-4p

band does not change during the CDW distortion.

B. Energy bands and DOS in the CDW phase

In this section, we discuss the evolution of the DFT band
structure under the lowest energy 2×2×2 distortion found in
V−

L . From now on we consider the cases LDAExp and GGAVdW
Th .
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FIG. 10. (Color online) Density of states around the Fermi level
for three cases in the undistorted (red line) and distorted (blue line)
phases.

With the subscript “sc” below the labels �,M,K of the special
points in the BZ, we refer to the corresponding points of the
2×2×2 supercell Brillouin zone (SBZ), which has the same
shape of the BZ but half size.

In Fig. 9, we show the 2×2×2 bands, around the Fermi
level, for a high-symmetry line of the SBZ for the undistorted
and distorted phases, the last one corresponding to the
minimum of the energy along the 3qL distortion path inV−

L . On
formation of the superstructure, we observe a net change near
the Fermi level with similar characteristics in the two cases. In
particular, around �sc, we find avoided crossings at the Fermi
level and, just below it, the appearance of a characteristic
structure due to the repulsion of bands having Ti-3d character
(see Fig. 9). As we will see in Sec. V A, this structure seems to

describe a feature observed in the experiment. The Se-4p bands
crossing the Fermi level around the wave vector (1/2)�scMsc,
instead, do not suffer any modification during the distortion,
as anticipated. As expected, the change of the electronic
dispersion around the Fermi level leads to a change of the
density of states (DOS) as it is shown in Fig. 10. On forming
the superlattice structure the DOS decreases by around 40% at
EF and a peak, essentially due to the Ti-3d orbitals, develops at
0.15/0.2 eV below EF. These effects have been qualitatively
observed in some previous theoretical works (see Ref. [16], for
example, for a tight-binding study) and could be, at some level,
compatible with the change of the resistivity experimentally
observed in the CDW transition [1].

C. Energy band folding and unfolding

The superlattice distortion doubles the original lattice
periodicity of the system. In fact, each eigenfunction �K ,J

of the distorted system has the pseudomomentum K in the
SBZ, which is one-eighth of the original BZ. Nevertheless, the
function �K ,J is made of eight contributions ψ

K ,J
ki

which are
functions pseudoperiodic on the original lattice and whose
pseudomomenta ki are obtained by unfolding K into the
original BZ:

�K ,J =
8∑

i=1

ψ
K ,J
ki

. (14)

The spectral weights ω
K ,J
ki

:

ω
K ,J
ki

≡ ∥∥ψ
K ,J
ki

∥∥2
,

8∑
i=1

ω
K ,J
ki

= 1, (15)

can be used to evaluate the contributions to �K ,J coming from
different points of the original BZ (see Appendix).

From geometrical considerations, we see that in our case
the SBZ can be unfolded into eight regions of the BZ centered
around the points �,A,Li,Mi , respectively, and we can use
this property to label the corresponding unfolding weights.
Moreover, due to the threefold symmetry of the system, for a
point K , it is convenient to sum the contributions coming
from the three equivalent Li points, and the same for the
contributions coming from the three Mi points: in this way,
we have four contributions of type �,L,M,A depending on
the BZ portion they came from. In Fig. 11, the weights of
these four contributions on the bands are shown by means of
a color code. In this way, we easily recognize, for example,
that the characteristic band configuration under EF in �sc due
to the repulsion of Ti-3d bands has a pure L character.

A complementary method to describe the 2×2×2 distortion
in the frame of the original translation symmetry (and best
suited to make a direct comparison with ARPES experiments)
is to unfold the superlattice band structure from SBZ into the
original BZ [35,36]. This consists in plotting, for the points
k of a line in the BZ, the energy bands EK ,J of the distorted
system with an intensity I

K ,J
k equal to the spectral weights

ω
K ,J
k (for I

K ,J
k = 0, we have full transparency, i.e., no band,

and for I
K ,J
k = 1 full opacity). In this way, the displacement

of the atoms is observed as a distortion, smearing and fade of
the original bands plus the appearance of new ghost bands.
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FIG. 11. (Color online) DFT bands of the 2×2×2 superlattice along the high-symmetry line �scMscKsc�sc of the supercell Brillouin zone.
(Left) Undistorted configuration (‖d‖ = 0.00 Å). (Right) Distorted configuration (‖d‖ = 0.16 Å). The colors indicate the weights of the
corresponding eigenfunctions on different parts of the 1×1×1 Brillouin zone.

In Fig. 12, the unfolded bands with the orbital character are
shown. In order to ease the comparison with the undistorted
phase, we also superimpose the unfolded bands on the original
band structure. From these figures, we can clearly see what is
the principal effect of the 3L distortion: some of the bands with
(partial) Ti-3d character do not cross the Fermi level anymore,
whereas the Se-4p bands essentially remain unaffected, the net
effect being the depletion around EF seen in Fig. 10. Moreover,

we see the appearance of a ghost band in L, which gives the
characteristic structure we have already discussed.

V. COMPARISON WITH ARPES

A. LDAExp and GGAVdW
Th

In the previous sections, we analyzed the kind of distortion
that lowers the total energy of the system and the consequent
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GGAVdW
Th

LDAExp + U = 3.9 eV

Ti-3d

Other

Se-4p

FIG. 12. (Color online) Unfolded bands for three cases. (Left) Unfolded bands for the distorted phase on a high-symmetry line of the
original Brillouin zone with the orbital characters highlighted by colors. (Right) Unfolded bands (in red) superimposed on the undistorted
bands (in black) along the same line.

changes in the electronic structure as they are found by
ab initio DFT calculations. In this section, we compare the
results of the calculated band structure with recent ARPES
data taken from Ref. [37]. In Fig. 13, we show the DFT bands
for the undistorted and distorted phases superimposed on the
ARPES data taken at high (T = 300 K) and low (T = 35 K)
temperature, respectively.

In TiSe2, the electronic structure seems to depend crucially
on kz [10,38]. This is, for example, also demonstrated by
the fact that standard pseudopotential DFT bands have an
electron pocket in L but not in M . However, kz is not a

good quantum number in ARPES and so, given the nontrivial
electronic structure of TiSe2, there is not a clear kz attribution
in the experiments as a function of the incident energy. For
these reasons (the indetermination of kz in the ARPES and the
substantial kz dispersion in the electronic structure of TiSe2),
we consider the DFT bands along the two directions �-M
and A-L in BZ. In the high-temperature case, we simply plot
the bands along these two lines for the undistorted system,
and in the low-temperature case, we plot the 2×2×2 bands
of the distorted structure unfolded into BZ along these two
directions. In this second case, in order to ease the comparison
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FIG. 13. (Color online) Comparison with ARPES data (from Ref. [37]) in three cases. First row: ARPES data taken at high temperature
(left-hand panel, T = 300 K) and low temperature (right-hand panel, T = 35 K). Last three rows: DFT bands superimposed on the ARPES
data. Black lines: �-M direction in BZ. Red lines: A-L direction in BZ. In the high-temperature cases, the bands of the undistorted structure
are plotted. In the low-temperature cases, the 2×2×2 bands of the distorted structure unfolded into the original BZ are plotted. The intensity
of the unfolded ghost bands have been slightly enhanced in order to ease the comparison with the ARPES figure (see main text).

with the underlying figure, we slightly enhanced the intensity
of the unfolded bands by scaling the whole transparency by a
factor f = 4:

I
K ,J
k = f · ω

K ,J
k . (16)

As anticipated, the structure in the distorted theoretical
bands arising from the repulsion of the Ti-3d bands seems
to reproduce a feature experimentally observed with ARPES

in M(L). Nevertheless, the overall agreement between the
theoretical bands and ARPES data, both in the low- and
high-temperature phases, is not good. Particularly, the large
band overlap between the conduction and valence bands found
in the undistorted phase is not compatible with the ARPES data
considered.

It is worthwhile to recall that, in general, ARPES measures
only occupied states, so the detection of states too close to
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Other

Se-4p

FIG. 14. (Color online) Effect of U on the bands. In the last
figure, the vertical dashed line indicates the final self-consistent value
U � 3.9 eV, which corresponds to an insulating phase with a small
gap of approximatively 0.014 eV.

the Fermi level can be very difficult. In literature, there are
several works that have tried to estimate the energy dispersion
around the Fermi level, especially the overlap/gap between the
Se-4p valence band in � and the Ti-3d conduction band in L,
sometimes with discordant results. Among the early works on
the high-temperature phase, we can cite the paper by Anderson
et al. [38], reporting an overlap (<120 meV) between these

bands, and the paper by Traum et al. [39], which also estimates
a degeneracy between the conduction and valence bands within
0.2 eV. In Ref. [40], Stoffel et al. claim a semiconductor band
character in both high- and low-temperature phases with a
bang gap of 0.06 eV and 0.02 eV, respectively, but leaving
open the possibility of a slight overlap in the high-temperature
phase due to the error uncertainty.

Among more recent works, Pillo et al. [41] estimate a small
overlap between the conduction and valence band of ∼5 meV
in the high-temperature phase, and a small positive gap in
the low-temperature phase (however, with a semimetallic
character in both the phases). Rossnagel et al. [10], instead,
estimate a positive Se-4p/Ti-3d band gap increasing from 35
to 110 meV upon cooling from room temperature to 100 K
(with an error bar of order of 30 meV). In Ref. [42], Kidd
et al. describe a CDW transition from a very small gap
semiconductor (∼0.05 eV) to another semiconductor with a
larger gap (∼0.15 eV). In Ref. [43] Rasch et al., by using H2O
surface absorption, identify TiSe2 at room temperature as a
semiconductor with a small gap of 150 ± 20 meV, whereas Li
et al. [44] combine ARPES data with optical measurements
and estimate a CDW transition between two semimetallic
phases, with an overlap between the Se-4p and Ti-3d bands
in the high-temperature phase compatible with the results in
Ref. [18], and an open gap between the conduction and valence
bands of ∼0.15 eV in the low-temperature phase.

Independently from the specific results or interpretations,
the majority of modern works seems to converge toward
similar conclusions. At high temperature, the positive or
negative (i.e., overlap) indirect gap between Se-4p and Ti-3d

bands is larger than the negative gap obtained with standard
pseudopotential DFT calculations. Upon cooling the system,
the CDW transition induces a distortion that either (slightly)
increases the existing gap or leads to a gap opening between
these bands, the value of the gap for the low-temperature
phase being roughly around 0.1–0.15 eV. These results are
also compatible with the ARPES data that we have considered
in our comparisons.

A possible explanation for the mismatch found between
theoretical bands and experiments could be the electron
correlation effects due to the localized d orbitals of Ti,
which are not properly taken into account in DFT-LDA or
DFT-GGA calculations. We explored this possibility by using
the LDA + U method and in the next section we show the
results of this analysis.

B. LDAExp + U

As explained in Sec. II, we considered the Hubbard-like
correction to the electronic structure of LDAExp. We used the
experimental cell, the internal theoretical coordinates obtained
with LDA and, on the top of this, the U correction for the
Ti-3d orbitals. The most evident effect of introducing U is to
open a gap between the bands with the result of obtaining,
for U � 3.8 eV, a metal-insulator transition (see Fig. 14).
Motivated by this result, we found appropriate to estimate
ab initio the proper value of U by using a self-consistent
procedure. In a few steps, we obtained the converged value
U = 3.902 eV for which the system is in an insulating phase
with a small gap of approximatively 0.014 eV (see Fig. 14).
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FIG. 15. (Color online) Lowest phonon frequency in L and M as
a function of U , for the LDA + U system with the experimental cell
and theoretical internal coordinates.

Therefore, the LDAExp+U result seems to be closer to the
experimental observations cited in the previous section than
the large negative gap obtained with DFT calculations with
standard local exchange-correlation functionals (cf. Sec. IV A,
Fig. 8).

We used the same value of U also for the distorted
structure found in the LDAExp case. We observed that the
distortion has, on the electronic bands, the same qualitative
effect already observed without U , the shift of the Ti-3d bands
now increasing the initial small band gap up to a value of
approximatively 0.2 eV (see Figs. 9–12). In the lowest panel
of Fig. 13, we compare the calculated LDAExp + U bands
with ARPES data: now the theoretical results for both the
distorted and undistorted structures are in very good agreement
with experimental data taken at high and low temperatures,
respectively. However, as a result of a maybe slightly excessive
gap opening, the structure that was observable for the distorted
phase in the LDAExp and GGAVdW

Th cases, resulting from the
repulsion of the last two Ti-3d valence bands in L, now
disappears (cf. Figs. 9 and 12).

According to these results, the correction provided by U

seems to solve the dubious result regarding the comparison
between the DFT electronic structure and the experiment, in
particular by giving a good agreement between the theoretical
bands and the ARPES data. Unfortunately, a serious drawback
of this approach is that the presence of U eliminates the
instability.

In Fig. 15, we show the lowest phonon frequency ωL (ωM )
in L (M) as a function of U calculated by using the

finite-difference method. When a phonon frequency ω is
imaginary we conventionally indicate it with the negative value
−|ω|. We considered the LDA system with the experimental
cell and internal coordinates now obtained by relaxing the
atomic positions for each value of U . It can be observed
that the frequencies, which are negative (i.e., imaginary) for
U = 0 eV, increase as we increase U and begin to have a
positive value around U � 2.5 eV for ωL and U � 1.5 eV
for ωM . A phonon-converged calculation with this method
was revealed to be extremely costly, especially for values of
U close to the metal-insulator transition, therefore we also
explicitly verified that the total energy of the system increases
as we move the atoms along the expected distortion pattern.
We performed similar tests also for the other functionals and
we reached the same conclusion: the U corrected system
is not unstable anymore for the value of U that seems to
return the best agreement between the undistorted bands and
the high-temperature ARPES data (notice that this value is
functional-dependent, U being not a physical measurable
quantity).

At this point, an intriguing question arises: on one hand,
it seems that we are able to correct the energy band structure
by using U , but on the other hand, the same correction spoils
the prediction of the instability driven by the electron-phonon
coupling, a prediction whose reliability, in turn, strongly
depends on the correctness of the energy evaluation.

A possible explanation for this apparent paradox could
be in the simplistic approach used to describe the structural
instability with U . In general, the energy of a U corrected
system (with cell fixed) is given by a function E (Ri ,Uj ) of
the atomic positions Ri and the values Uj for the orbitals.
Moreover, for a certain atomic configuration Ri , we have a
proper value Uj = Uj (Ri) for the Hubbard terms. So the total
energy of the system as a function of the atomic positions,
E(Ri), is given by

E(Ri) = E (Ri ,Uj (Ri)), (17)

and when we consider the forces and the force constant matrix
(through the first and second derivative of E with respect to
the positions Ri , respectively) we should take into account
the full dependence on the atomic positions [28,45]. On the
contrary, a commonly accepted procedure is to neglect the
dependence of the Hubbard terms on Ri and to move the atoms
by keeping fixed the values of Uj found for the undistorted
system. This is the approach we considered in our study but
its correctness seems to be questionable in this case since
even a small variation of U (so small that it does not affect
the energy bands position) leads to a total energy variation
that is huge if compared with the energy decrease obtained
with the distortion. For example, during the self-consistent
calculation of U , we found that for 
U � 1 meV the system
has a variation of the total energy 
E � 8 meV. In other
words, we can suppose different values Uund and Udis for the
undistorted and distorted structures, respectively, with Udis in
principle (slightly) different from Uund � 3.9 eV (actually for
the distorted phase we have two Ti atoms in non-equivalent
positions, therefore we should properly consider two different
parameters U 1

dis and U 2
dis). For the distorted system, a very

small variation of Udis does not have any observable effect on
the energy bands around the Fermi level, but it can give a total
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energy higher (i.e., no instability) or lower (i.e., instability)
than the undistorted one. This consideration has not to be
confused with the results shown in Fig. 15 where, in order to
restore the instability in L, a variation for U of at least 2.5 eV
is required: in that calculation, the value of U for the Ti-3d

orbital is kept fixed during the distortion.
Therefore, in general, we expect that in order to make a

proper structural analysis of TiSe2 with a U correction it is
necessary to take into account the full position dependence
(and consider that in the distorted phase we have two non-
equivalent Ti sites with, in principle, two different values of U ).
However, it also means that, for example, a careful study of the
convergence of U with the size of the supercell used to perform
the perturbative calculation should be done. Nonetheless, it
seems that, in general, the precision required for the value of
U (at least 10−5 eV) is unrealistic and probably rules out the
use of a U method in this form.

VI. CONCLUSIONS

In this work, we have presented a first-principles study
of the charge-density wave in TiSe2 by using DFT calcu-
lations with the harmonic approximation for the electron-
phonon coupling. We have considered several local exchange-
correlation functionals and both experimental and theoretical
cell parameters.

As it is well known, in TiSe2 the distance c between the
layers is underestimated with LDA and overestimated with
GGA. Thus, with these functionals it is impossible to have both
the theoretical cell and pressure matching the experimental
ones and a choice has to be made. A better result is obtained by
using the semiempirical GGA-type functional Grimme B97-D,
since it takes better into account the van der Waals forces
acting between the layers of TiSe2. With this functional, at
zero theoretical pressure, the lattice parameters are quite in
agreement with the experiment.

The results of the structural analysis strongly depend on the
lattice parameters used. If the experimental unit cell is used,
the system is unstable and similar results are obtained with
different local functionals. On the contrary, with the LDA
theoretical cell the system does not display any instability,
whereas with the GGA theoretical cell the system displays an
instability larger than the one obtained with the experimental
cell (i.e., for the distorted phase, both the energy gain and
the atomic displacements are greater with the theoretical cell
than with the experimental cell). With Grimme B97-D the
theoretical and experimental cells give analogous results.

The instabilities found in the calculations correspond to
distortions in the L and M points of the BZ with symmetry
Au. In both cases, the most stable distortion is obtained by
combining with equal weights the three rotational-symmetric
degenerate patterns (the triple-point patterns in M and in
L). The difference between the patterns in L and in M is
only in the phase between two adjacent layers, the atomic
displacements for adjacent layers being the same for the M

patterns and the opposite for the L patterns. Since we have
found an instability in both points, with the same kind of
pattern, we can conclude that, as expected, the intralayer
interactions are of paramount importance in order to give
the structural instability of TiSe2. Nonetheless, as long as the

layers are close enough to have a significant interaction, the
L distortions are always more favorable than the M ones,
meaning that the interlayer interaction is not negligible in
the CDW transition (with the GGA theoretical cell the
corresponding energy patterns for L and M distortions are
instead degenerate, the distance between layers being quite
large in this case). Notice, however, that the interlayer
interaction affecting the lattice instability is not of van der
Waals type since, with the experimental cell, the calculations
with the simple GGA or the GGA-type B97-D functional
return analogous results. As a consequence, the van der Waals
forces between the layers have to be taken into account in
order to correctly estimate the distance between layers but
they do not have effect on the energy of the lattice distortions.
This, in some sense, legitimizes the choice of analyzing the
CDW instability with the experimental cell, irrespective of the
theoretical pressure (whose value depends on the functional
used). Moreover, the dependence of the instability on the
lattice parameters observed in calculations is compatible
with the CDW suppression observed in experiments at high
pressure.

The configuration with the lowest energy is a triple-qL

pattern, in agreement with the results of neutron diffraction
experiments. The magnitude of the corresponding atomic
distortion is not far from the experimental one. These results
are in agreement with the tight-binding results in Ref. [3].
However, in those calculations, no phonon softening is found
in M . This is an important difference with respect to our results.

We have also analyzed the electronic structure of the
system. In the undistorted phase, the standard calculations
(LDA and GGA-type functionals) give a metallic system with
quite a large negative indirect gap. In this case, the choice of
the lattice parameters is important too: the position of a Se-4p

band crossing the Fermi level, and so the Fermi surface, is
affected by the values of the unit cell parameters (but with
fixed experimental cell parameters it is independent of the
local functional used). In the experiment, the phase transition
is accompanied by changes in the transport properties. With
the distortion we observe modifications in the calculated
bands near the Fermi level and a resulting depletion in the
DOS (this result is compatible with the theoretical results
in Ref. [3]).

We have compared the theoretical bands of the undistorted
and distorted phases with the results of an ARPES experiment
at high and low temperatures, respectively. For the distorted
phase, the bands of the superstructure have been unfolded into
the undistorted BZ in order to ease the comparison. Due to the
distortion, the energy bands undergo a deformation that seems
to reproduce some effects observed in ARPES. Nonetheless,
the bands for both the undistorted and distorted phases are not
in good agreement with ARPES data.

In order to correct the mismatch between ARPES data and
band calculations, we have explored the role of the correlation
for the Ti-3d electrons by performing an LDA + U calculation
with the experimental cell. We have estimated ab initio, self-
consistently, the value of the parameter U for the localized Ti-
3d orbital in the LDAExp undistorted structure. For this value
of U , the Hubbard-like correction opens a small indirect gap in
the electronic bands of the undistorted phase. This result seems
to be closer to the experimental observations than the ones
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obtained with standard local exchange-correlation functionals.
More importantly, the LDA +U bands are in good agreement
with the results of a high-temperature ARPES experiment. By
using the same value of U for the distorted structure, we have
seen that the CDW increases the size of the undistorted phase
band gap. The unfolded bands of the distorted phase are in
good agreement with the low-temperature ARPES data too.

The drawback of the LDA + U approach is that the U

correction removes the instability, the phonon frequency in
M and L becoming real as we increase the value of U . A
possible explanation for this effect is that the total energy in
TiSe2 depends very much on U . Therefore, the energy scale
of our interest requires a very high precision on the value of
U , which is out of the ordinary use and, probably, not even
achievable. In particular, an accurate evaluation of U should
also take into account the usually neglected, but in principle
existing, dependence of U on the atomic positions.

In conclusion, we have shown that the CDW structural
instability in TiSe2 can be predicted with DFT local exchange-
correlation functional calculations if the experimental unit cell
is used, irrespective of the local functional adopted. Analogous
results are obtained for the structural analysis if the Grimme
B97-D functional with theoretical cell is used, in this case, the
theoretical cell being in good agrement with the experimental
one. As a consequence, with the Grimme B97-D functional
the structural instability can be considered fully ab initio
predicted.

In principle, DFT is an exact many-body theory so with
the exact exchange-correlation functional it would be able
to recover all the possible correlation effects. Nevertheless,
since in practice we use different local functionals, which
are obviously only approximatively correct, the robustness of
our results at fixed experimental cell should be considered
a proof that in the harmonic approximation it is possible to
recover the CDW instability only by considering the lattice
degree of freedom, i.e., the electron-phonon coupling, without
considering any electron many-body effect. This confirms one
of the results present in the experimental paper by Porer et al. in
Ref. [11], namely that the CDW survives even if the electronic
ordering is quenched.

On the other hand, calculations of the electronic structure
show that DFT with ordinary local exchange-correlation
functionals is not able to fully account for all the experimental
findings, especially the ARPES measurements. The simple
correction provided by the Hubbard-like U term improves this
aspect considerably, but it doest not provide a full satisfactory
picture as it spoils the phonon instability. As argued, this is
only an apparent contradiction since it is probably related to
an intrinsic weakness of the simplistic U correction adopted.
Nonetheless, it appears necessary to consider a higher level
exchange-correlation functional in order to give a full complete
description of TiSe2 through DFT calculations. Of course,
since the displacement of the atoms influences the electron
screening and, hence, the electron-phonon coupling, we expect
that a better description of the electron exchange-correlation
effects should also influence the distortion (i.e., the energy
pattern and the magnitude of the atomic displacements), even
if the CDW has a lattice origin. These represent open issues
that deserve to be examined in future studies.
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APPENDIX: FOLDING AND UNFOLDING, DEFINITION
OF THE SPECTRAL WEIGHTS

We label with R and R̃ the direct and reciprocal lattice
vectors of the unit cell, respectively. Moreover, we define
Rsc and R̃sc as the direct and reciprocal lattice vectors of the
2×2×2 supercell, respectively. We find eight vectors Gi ∈ R̃sc

(defined up to a vector of R̃) whose differences are not vectors
of R̃:

Gi ∈ R̃sc, Gi − Gj /∈ R̃. (A1)

In the coordinates relative to R̃ it is, for example,

G0 = (0.0,0.0,0.0), G1 = (0.0,0.0,0.5),

G2 = (0.5,0.0,0.0), G3 = (0.5,0.0,0.5),

G4 = (0.0,0.5,0.0), G5 = (0.0,0.5,0.5),

G6 = (0.5,0.5,0.0), G7 = (0.5,0.5,0.5). (A2)

By using these vectors, we can unfold a general K ∈ SBZ into
eight ki ∈ BZ:

ki = K + Gi , (A3)

and write

�K ,J =
8∑

i=1

Pki
(�K ,J ), (A4)

where Pki
is the projector on the space of the Bloch functions

having pseudomomentum ki with respect to R, that is,
Pki

(�K ,J ) is a function ψ
K ,J
ki

(x) such that

ψ
K ,J
ki

(x + r) = eiki ·r ψ
K ,J
ki

(x), ∀ r ∈ R. (A5)

The square modulus of Pki
(�K ,J ) is, by definition, the

unfolded weight ω
K ,J
ki

of the superlattice band (K ,J ) in ki :

ω
K ,J
ki

≡ ∥∥Pki
(�KJ )

∥∥2
. (A6)

In order to plot the unfolded energy spectrum along a
high-symmetry line of BZ, we considered, for each k0 of this
line, the superstructure eigenvectors �K (k0),J and eigenvalues
EK (k0),J , K (k0) being the SBZ point into which k0 ∈ BZ folds

K (k0) = k0 − G0 = k0. (A7)
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Then we plotted the bands EK (k0),J with intensity

I
K (k0),J
k0

= ω
K (k0),J
k0

. (A8)

I
K (k0),J
k0

= 0 corresponding to full transparency (no band) and

I
K (k0),J
k0

= 1 to full opacity.

Notice that, properly speaking, k0 and K (k0) are not simple
vectors: they represent classes of vectors defined up to the sum
with an element in R̃ and R̃sc, respectively. Thus, even if the
representatives k0 and K (k0) are equal, they refer to different
sets of vectors.
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L. Forró, Phys. Rev. Lett. 99, 146403 (2007).

[7] J. A. Wilson, Phys. Status Solidi B 86, 11 (1978).
[8] J. A. Wilson, Solid State Commun. 22, 551 (1977).
[9] H. P. Hughes, J. Phys. C 10, L319 (1977).

[10] K. Rossnagel, L. Kipp, and M. Skibowski, Phys. Rev. B 65,
235101 (2002).

[11] M. Porer, U. Leierseder, J.-M. Ménard, H. Dachraoui, L.
Mouchliadis, I. E. Perakis, U. Heinzmann, J. Demsar, K.
Rossnagel, and R. Huber, Nat. Mater. 13, 857 (2014).

[12] J. van Wezel, P. Nahai-Williamson, and S. S. Saxena, Phys. Rev.
B 81, 165109 (2010).

[13] E. Morosan, Zandbergen, B. S. Dennis, J. W. G. Bos, Y. Onose,
T. Klimczuk, A. Ramirez, N. P. Ong, and R. J. Cava, Nat. Phys.
2, 544 (2006).

[14] A. F. Kusmartseva, B. Sipos, H. Berger, L. Forró, and E. Tutiš,
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