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Consequences of disorder on the stability of amorphous solids
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Highly accurate numerical simulations are employed to highlight the subtle but important differences in the
mechanical stability of perfect crystalline solids versus amorphous solids. We stress the difference between
strain values at which the shear modulus vanishes and strain values at which a plastic instability ensues. The
temperature dependence of the yield strain is computed for the two types of solids, showing different scaling
laws: γ
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2/3 for amorphous solids.
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I. INTRODUCTION

It is well known that the mechanical stability of bulk
crystalline solids at finite temperatures is dominated by the
motion of topological defects such as dislocations. In perfectly
ordered crystalline solids, there are no dislocations, and also
in amorphous solids, the notion of a dislocation does not exist
since there is no long-range order with respect to which a
dislocation can be defined. Both crystalline and amorphous
solids resist a small external stress (or strain) and return to
their original shape when the stress is removed. On the other
hand, when higher stresses are applied, some brittle solids
break while other ductile solids exhibit plasticity; they deform
and do not return to their original shape when the stress is
removed.

Characterizing the mechanical strength of a given solid
requires an understanding of the values of external stress or
strain at which the solid becomes mechanically unstable. We
will refer to the values of stress where instabilities occur as
“critical stresses.” For practical purposes, one is interested in
the so-called yield stress σ

Y
, which is defined as the highest

value of the stress which a solid can sustain before undergoing
unbounded plastic flow. In a generic crystalline solid, the yield
stress depends on the existence of defects, on temperature,
on the time of the observation, etc. Therefore, in order to
define a sharp characteristic yield stress, one defines the ideal
strength—the maximum achievable stress of a defect-free
crystal at zero temperature. The first attempt to estimate this
value for an ideal crystal which is elastically unstable was made
by Frenkel [1]; cf. Eqs. (12) and (13) below. Recently, it was
shown [2] that a crystal can lose stability before the critical
point predicted by Frenkel, i.e., when one vibrational mode
reaches zero frequency. In fact, this loss of stability occurs
before the shear modulus of the crystal vanishes. In this paper,
we will argue that one major consequence of the randomness
in amorphous solids is that the instability associated with
the appearance of a soft vibrational mode (zero frequency)
is generically after the vanishing of the shear modulus. The
reasons for this important difference will be elucidated and
explained in Secs. III and IV.

The critical stresses are calculated at zero temperature under
quasistatic conditions, as is explained in Sec. II. In contrast,
experiments are usually carried out at finite temperatures.
Therefore, it is important to extend the calculation of the
critical stresses to finite temperatures. In both perfect crystals

and amorphous solids, the values of the critical stresses
reduce when the temperature is increased, simply because it
becomes easier to overcome the energy barrier involved in the
mechanical instabilities. Nevertheless, we will show in Sec. IV
that the difference between perfect crystals and amorphous
solids translates to different temperature dependence in the
reduction of the critical stresses.

Section V presents a summary and conclusions of the
present paper.

II. MODELS AND SIMULATION METHODS

A. Potentials

In this section, we introduce the numerical procedures that
are common to our analysis of perfect crystals and amorphous
solids. The different implementations will be explained in
subsequent sections.

In all our simulations, we employ binary potentials between
pairs of particles. In perfect crystals, we have only one type
of particles, say A, and in the model amorphous solids, we
employ two types of particles, say A and B. The interatomic
interactions between particle i (being A or B) and particle j

(being A or B) are defined by shifted and smoothed Lennard-
Jones potentials,

φij (r) =
{

φLJ
ij (r) + Aij + Bij r + Cij r

2 if r � Rcut
ij

0 if r > Rcut
ij ,

(1)
where

φLJ
ij (r) = 4εij

[(
κij

r

)12

−
(

κij

r

)6]
. (2)

The parameters are taken from Ref. [3]. All of the potentials
given by Eq. (1) vanish with two zero derivatives at distances
Rcut

ij = 2.5κij . The parameters of the smoothing part and
details of the interparticle interactions can be found in Ref. [4].
It is convenient to introduce reduced units, with κAA being
the unit of length and εAA the unit of energy. In terms of the
potential, the internal stress below will be computed according
to

σ int
αβ = ρT δαβ − 1

2V

∑
K ,L

∑
i �=j

∂φK L(rij )

∂rij

rα
ij r

β

ij

rij

,
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FIG. 1. (Color online) Configuration of the one-component sys-
tem with perfect hexagonal structure. The dotted lines represent the
simulation box which is continued periodically in both directions.

where rij is the distance between particles i and j , α,β =
x,y denotes components of a vector r ij , and K ,L = A,B

distinguish the kind of particle. When not in doubt, below we
will omit the upper script “int” from the stress.

B. The preparation of the initial configuration

The first step in all simulations is the construction of a
model solid (crystalline or amorphous) of N particles in a
two-dimensional box of size Lx × Ly with periodic boundary
conditions. In the case of a crystalline solid, we place the
N particles on the vertices of a hexagonal lattice; see, for
example, Fig. 1. Since the crystal is obviously free of defects,
it is also stress free. Thus the configuration is ready for
subsequent straining.

The preparation of the amorphous solid is more involved.
First, we equilibrate a system with 65% particles A and 35%
particles B at a temperature T = 1 in Lennard-Jones units.
This ratio is chosen to avoid crystallization upon cooling.
Next we cool the system to T = 10−6 in steps of �T = 10−3

until T = 10−3, and then in one step to the final temperature.
The obtained configuration is not necessarily stress free, with
particle position denoted by si from the set {si}Ni=1. Therefore,
we apply simple shear, which for a general strain γ is defined
by

r i = h(γ ) · si , (3)

with the transformation matrix

h(γ ) =
(

1 γ

0 1

)
. (4)

Note that this transformation is volume preserving.
The configuration with (almost) zero stress is obtained at a

strain γ0; the particle positions at this configuration are denoted
by {r0

i }Ni=1,

r0
i = h(γ0) · si . (5)

Subsequently, we strain the initial configuration, either
crystalline or amorphous, with additional external affine
simple shear. The procedure is as follows: the particle positions
change under shear strain from the reference state {r0

i } to a new
one, denoted {r i}, by an affine transformation that is defined
by a matrix J,

r i = J · r0
i . (6)

Here, the matrix J in Eq. (6) is given by J = h(γ ) · h−1(γ0). It
follows from Eq. (4) that the matrix J is defined by

J(γ ) =
(

1 γ − γ0

0 1

)
, (7)

where the strain γ0 corresponds to the deformation from the
rectangular simulation box to the reference system.

In the case of an amorphous solid, the affine transformation
given by Eq. (6) always destroys the mechanical equilib-
rium. To regain mechanical equilibrium, one should allow
a nonaffine atomic-scale relaxation of the particle positions
{r i} (see, e.g., [5]). Also for a crystalline solid at finite
temperature, one should allow this step of nonaffine relaxation.
At finite temperature, this relaxation can be performed by
molecular dynamics or Monte Carlo methods. In the Monte
Carlo protocol, one moves the particles randomly and the move
is accepted with probability

Ptr = min

[
1, exp

(
− �G

T

)]
, (8)

where G is the generalized enthalpy. Under strain control,
the matrix h is fixed and the difference of the generalized
enthalpy is defined by the difference of the potential energy of
the system U (h,{s}),

�G = U
[
h(γ ),s1, · · · ,snew

i , · · · sN

]
−U

[
h(γ ),s1, · · · ,sold

i , · · · sN

]
, 1 � i � N, (9)

where the displacement of the particle positions is defined by

snew
i = sold

i + δs, 1 � i � N, (10)

with the periodic boundary conditions taken into account. In
this equation, the α component of the displacement vector of
a particle is given by

δsα = �smax(2ξα − 1), (11)

where �smax is the maximum displacement and ξα is an
independent random number uniformly distributed between
0 and 1.

It follows from Eqs. (8) and (9) that in the limit T → 0, only
the configurations with decreasing energy are accepted, i.e.,
the Monte Carlo process should converge to one configuration
with minimal energy. In practice, the direct minimization
of the energy of a system at zero temperature after every
small increase in strain (the athermal quasistatic (AQS) strain-
control protocol [6,7]) is more effective than the stochastic
Monte Carlo method.
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III. HEXAGONAL LATTICE

A. Thermodynamic instability

The perfect hexagonal structure is shown in Fig. 1. The
energy of the system is minimal, U/N = −2.5388472, when
the distance between neighboring particles is R0 = 1.12152
(at this point, the pressure and the internal shear stress are
equal to zero) and the dimensionless particle number density
is ρ = 0.918. The dependence of the energy and the shear
stress on the shear strain γ under the simple shear defined by
Eq. (4) is shown in Fig. 2. The elastic shear modulus of the
system estimated at small strains is μ ∼ 24.12. Note that the
shear modulus vanishes at the maximal and minimal points of
the stress vs strain curve in the middle panel of Fig. 2.

The energy is a periodic function of the strain and reaches
its maximum when the hexagonal lattice is transformed into
a square one (which is unstable; see, e.g., [8]) at the strain
γ = 1/

√
(3). It follows from the stress-strain curve (middle

panel) that the region between the points indicated by square
symbols is thermodynamically unstable. Frenkel proposed an
analytical guess for the periodic functions shown in Fig. 2 in
the form

U = μ[1 − cos(
√

3πγ )]

3π2
(12)

and

σ int
xy = μ√

3π
sin(

√
3πγ ) . (13)

The Frenkel approximation is shown in Fig. 2 by the dashed
lines. Both the approximation and the numerical results
indicate that the stress cannot exceed some value σ int

xy �
σY

xy . The quantitative details differ. Equation (13) yields the

estimation σY
xy = μ/(

√
3π ) ≈ μ/5, underestimating the result

of direct numerical calculation, σY
xy ≈ μ/4. In fact, Eqs. (12)

and (13) should be considered as first terms in a Fourier
expansion [9]. The maximum value of the stress in the
approximation given by Eq. (13) corresponds to the inflection
point of the strain-energy curve at γY = 1/(2

√
3), which is

associated with theoretical (ideal) strength that is achieved by
a homogeneous deformation.

B. Vibrational instability

1. Pure affine straining

In fact, it is possible to lose stability during purely affine
straining due to inhomogeneous deformations by vibrational
modes before becoming thermodynamically unstable. The
signifiers of such an instability are the eigenvalue of the
Hessian matrix. At low temperatures, the energy of a system in
the solid state can be written in the harmonic approximation,

U = U0 + �rα
i H

αβ

ij �r
β

j , (14)

with repeated indices summed upon and α,β denoting the
Cartesian components. Here, U0 is the energy of a system in
equilibrium and the Hessian H is the matrix,

H
αβ

ij = ∂2U

∂rα
i ∂r

β

j

. (15)
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FIG. 2. (Color online) The (a) energy and (b) shear stress under
affine simple shear when the nonaffine response is frozen by hand.
The blue solid line represents the exact, numerically computed
data. The dashed red line is the Frenkel approximation, given by
Eqs. (12) and (13). The red triangle and the green square represent
the vibrational and the thermodynamic instabilities, respectively.
(c) The number of negative eigenvalues of the Hessian for the system
with N = 400 as a function of the strain when nonaffine responses
are suppressed by hand. When nonaffine responses are taking effect,
only one mode becomes unstable; cf. Fig. 4.
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In a canonical form, Eq. (14) reads

U = U0 +
∑

i

λiS
2
i , (16)

where λi are eigenvalues of the Hessian and Si are normal
coordinates. It follows from Eq. (16) that in the harmonic
approximation, a solid can be expressed as a number of
uncoupled oscillators. The structure is stable for arbitrary Si if
all eigenvalues are positive. The unstable deformation begins
when the smallest eigenvalue approaches zero [10–15].

The first eigenvalue λP crosses zero before the shear
modulus vanishes, at the value of strain γP denoted with the
red triangle in Fig. 2. Note that when the strain increases, this
eigenvalue becomes negative, and other eigenvalues cross zero
and add up to a group of negative eigenvalues. The dependence
of the number of the negative eigenvalues on the strain under
affine transformation is shown in the lower panel of Fig. 2. The
hexagonal lattice loses its stability as a harmonic system much
before the loss of thermodynamic stability. The reader should
note that in practice, one would never observe this increase
in the number of negative eigenvalues since the system will
respond to the instability with nonaffine responses, which are
studied next. Here such nonaffine effects were suppressed by
hand.

For the perfect crystal without defects, we expect the lowest
eigenvalue of the Hessian to be an analytic function of γ , at
least until the point of instability. In other words, we can write

〈�p|H|�p〉 ≡ λP = A(γP − γ ) + B(γP − γ )2 + · · · ,

(17)
where �P is the eigenfunction of the Hessian associated
with the eigenvalue λP that vanishes when γ → γP . The
consequences of this analyticity assumption are explored
below.

2. Relaxational effects

The picture obtained with purely affine straining is incom-
plete. For more precise and detailed information, it is necessary
to take into account relaxational effects in which the system
responds to the vanishing of an eigenvalue with nonaffine
motion. To this aim, we apply to the same crystalline hexagonal
solid an athermal quasistatic protocol in which, after every
increase �γ in the affine strain, we follow up with gradient
energy minimization to regain mechanical equilibrium [16].

The strain-stress relation obtained in the frame of the AQS
protocol is shown in Fig. 3. One sees that the system loses
stability before the point of the homogeneous instability. Note
that the stress value at which a plastic event is initialized
remains constant throughout the simulation. The reason for
this is that in the crystalline example, there exists only one
reference state which is the perfect hexagonal lattice. On the
other hand, the minimal value of the stress after the nonaffine
response is random. This follows from the fact that “strain” is
not a state variable and the stress can fluctuate even when the
strain values are periodic.

It is useful to follow the trajectory of the lowest eigenvalue
of the Hessian matrix as the strain is increased. This is shown
in Fig. 4 for two system sizes with N = 400 and N = 1600.
The point at which the eigenvalue vanishes is the same for
two system sizes. Near this instability point, the dependence
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FIG. 3. (Color online) Stress-strain relation for the perfect
hexagonal lattice. The solid line shows results of AQS simulations
with nonaffine responses; the dotted line corresponds to the affine
transformation (see also Fig. 2) when nonaffine responses are sup-
pressed. The reader should note that throughout the straining process
including the nonaffine responses, the lattice remains perfectly
ordered without developing any defects.

of λ on γ is well represented by a linear law. This linearity is
a direct consequence of the analyticity assumption (17). This
will be shown to be in marked difference from the amorphous
solid case.

When the harmonic approximation is being lost, it is
necessary to take into account effects of anharmonicity in
modeling the energy. The simplest model of an anharmonic
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FIG. 4. (Color online) Lowest eigenvalues of the Hessian for a
perfect hexagonal lattice with particle number N = 400 and N =
1600 in the simulation box. The dashed red lines are an aid to the eye
to observe the linearity of the dependence of the eigenvalue on the
strain. Note that when nonaffine responses are allowed, only the two
modes that are degenerate by symmetry become unstable.
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FIG. 5. (Color online) Unharmonic model as given by Eq. (18).
The green triangles denote the extrema of the potential.

well is given by

U (s) = 1

2
λP (γ )S2 + 1

6
KS3, (18)

where λP (γ ) is the lowest eigenvalue of the Hessian and K

is the constant of the anharmonicity. The dependence of the
energy given by Eq. (18) on the variable S for different λP (γ )
is shown in Fig. 5.

It follows from Eq. (18) (see also Fig. 5) that the potential
barrier is related to the eigenvalue by

�U (γ ) = 2

3

λP (γ )3

K2
. (19)

One should note that Eq. (18) is only approximate, taking
into account only the most unstable mode. In reality, especially
in the thermodynamic limit, we expect other modes to
intervene and dress the predictions discussed above. This can
be seen, for example, from the fact that the first instability
shown in Fig. 3 occurs at γ ≈ 0.15. On the other hand, the
eigenvalue λP goes to zero at γ ≈ 0.14. Due to the intervention
of other modes, the eigenvalue should become “slightly
negative” before stability is actually lost. To understand this
further, consider Eq. (16). Upon the energy minimization
after the affine step, all eigenvalues are affected, i.e., some
of them increase and some decrease. The positive ones add
to Eq. (16) positively and defer the actual instability. If
the energy minimization were performed precisely along the
critical eigenfunction of the Hessian, this slight discrepancy
would disappear.

C. Monte Carlo studies at finite temperature

Monte Carlo simulations are done at finite temperature, be
it as small as it may. This blurs to some extent the definition
of the critical strains associated with the instabilities, since
temperature fluctuation assists in crossing the potential barrier.
Thus all the critical values discussed in this section should be
understood as upper bounds. It is always possible that longer
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FIG. 6. (Color online) Instantaneous values of the internal shear
stress under strain control for different values of the applied strain.
The temperature here is T = 10−6. In all Monte Carlo simulations,
we wait until equilibration.

Monte Carlo runs can result in lower value of the critical
strains.

Instantaneous values of the internal shear stress under
strain-control Monte Carlo simulations are shown in Fig. 6.
For values of the strain less than some critical value, the stress
fluctuates near a given average value. For some critical value
of the strain, the system dwells for some time in a metastable
state and then loses stability, transforming to a new stable state.
We chose the critical value of the strain corresponding to the
appearance of metastable states.

Results of the Monte Carlo protocol for the mean values
of the energy and shear stress are shown for the crystal in
Fig. 7. Under strain control, the system undergoes a series
of transitions associated with a loss of stability. Along each
elastic branch, the system follows the affine transformation
(with the strain increased by some value γ − γP ); see Fig. 2.
Each elastic branch is ending by a drop at different values of
the strain but with the same value of the energy and stress. This
values indicate the limit of the stability of the hexagonal lattice.
With increasing temperature, the critical strains decrease.

At finite temperatures, the barrier can be overcome if T ∼
�U ; therefore, the critical value of the eigenvalue is given by

λP (γP ) ∼
(

3K2T

2

)1/3

. (20)

The dependence of the lowest eigenvalue of the Hessian (for
two system sizes) on the strain estimated in the frame of AQS is
shown in Fig. 4. The consequence of the analyticity assumption
given by Eq. (17) is that in the vicinity of the point γP

defined by λP (γP ) = 0, this dependence can be approximated
by the linear function λP (γ ) = A(γP − γ ). Substitution of this
expression into Eq. (20) yields

γ
Y

� γ 0
Y

− C1T
1/3. (21)
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FIG. 7. (Color online) The Monte Carlo results for the energy
(upper panel) and the shear stress (lower panel) dependence on the
strain for different temperatures. Circles correspond to simulations at
T = 10−6, squares to T = 10−4, and triangles to T = 10−2.
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FIG. 8. (Color online) Temperature dependence of the critical
value of the strain for the perfect crystal.
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FIG. 9. (Color online) Voronoi diagram for a glass configuration.
The color code is green for pentagons, white for hexagons, and
magenta for heptagons. Sometimes an edge in the Voronoi cell can
be hard to visualize at the scale of this image.

Results of Monte Carlo indicate the correctness of this
assessment (see Fig. 8). It would be interesting to try to
establish this relationship also in an experimental context [17].

IV. MODEL GLASS

A composition of A and B particles that is stable in two
dimensions against crystallization is chosen to be 65% of
particles A and 35% of particles B [18]. The structure of the
configuration of the binary mixture which produces our model
glass is shown in Fig. 9.

The typical stress-strain relation of the model glass calcu-
lated in the frame of the AQS method is shown in Fig. 10. In
contrast to the hexagonal lattice (see Fig. 3), instabilities are
now appearing at different values of the stress. This results
from the fact that the hexagonal lattice has only one reference
state; in the glass, there are many reference states and the
transition between them is caused by a saddle-node bifurcation
that is accompanied by a sudden drop in stress.

The fine structure of the stress-strain relation in the vicinity
of the end of an elastic branch is shown in Fig. 11. One can see
that there are two special points. One of them corresponds to
the vanishing of the elastic modulus followed by the instability
point where the lowest eigenvalue of the Hessian goes to zero.
It was shown in [6] that the lowest eigenvalue of the Hessian
tends to zero as λP ∼ √

γP − γ , where γP denotes the value
of the strain at the instability point. When the system is not
too large and the lowest eigenvalue is well separated from the
larger eigenvalues of the Hessian matrix, it follows from this
result (which is supported by the simulations) that the elastic
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FIG. 10. (Color online) AQS stress-strain relation for a glass.
The serrated line corresponds to AQS simulations with nonaffine
corrections, and the dotted line shows stress-strain relation for a purely
affine transformation (without nonaffine corrections); the first points
of instability are indicated by triangles.

modulus in the critical region is approximated by

μ ≈ μB − A√
γP − γ

, (22)

where μB is the Born term. It follows from Eq. (22) that a
theory for the glassy state in the spirit of the Frenkel approach
would employ for the stress an analytic function in the variable
x = √

γP − γ . If applicable, the dependence of the stress on
strain could be expanded in Taylor expansion around the point
γP [7],

σxy(γ ) = σP +
∑
i=1

ci(γP − γ )i/2, (23)
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FIG. 11. (Color online) The shear stress (upper panel) and lowest
eigenvalue of the Hessian (bottom panel) dependence on the applied
strain for a glass configuration. Note that in this case, point A (denoted
by the triangle) where the shear modulus vanishes precedes point B
where the Hessian lowest eigenvalue λP goes to zero.
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FIG. 12. (Color online) Dependence of the critical strain value
on the temperature for a glass.

where c2 = μB . In fact, this expansion may not exist and a
higher-order term may diverge in the thermodynamic limit
due to the accumulation of small eigenvalues of the Hessian
(prevalence of many low-lying barriers), as demonstrated in
Ref. [19].

The difference between crystal and glass

Both for the hexagonal lattice and the glass, there is
a point of instability defined by a vanishing shear elastic
modulus (point A). Another instability point (point B), related
to vanishing the lowest eigenvalue of the Hessian, appears
before point A in the stress-strain dependence of the hexagonal
lattice, but after point A in the case of glass. This difference
has the following consequence: in the case of the hexagonal
lattice when the strain is lower than point A, the system is
thermodynamically stable, and there will be no important
difference between stress-controlled and strain-controlled
protocols. In both cases, the stress can be equilibrated in the
system such that in stress-controlled protocols the internal
and the external stress are equal. Accordingly, one can expect
similar temperature dependencies for γ

Y
(T ) under stress or

strain control.
In contrast, in a glass under stress-control protocols, the

vanishing of the shear modulus is defined by point A with the
lowest eigenvalue of the Hessian being still finite. Therefore,
imagine that we apply to the glass a stress-controlled protocol
with the external stress being smaller than the critical stress
at point A. For this situation, the system is still experiencing
a barrier that needs to be overcome since λP �= 0. At T = 0,
therefore, we will not experience an instability.

The temperature dependence of the strain critical value
obtained in the frame of the Monte Carlo protocol is shown in
Fig. 12. The temperature dependence of the yield strain is in
agreement with ∼T 2/3 behavior [20,21].

V. CONCLUSION

We have presented highly accurate numerical simula-
tions to underline some fundamental difference between the
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instabilities of glassy materials and perfect crystals, even
when the atomistic interactions are the same. The results
indicate the importance of examining small systems where the
precise profiles of the stress vs strain curves can be visualized.
Increasing the system size results in reducing the strain or
stress differences between points of instability, and eventually
obliterating the details of the precise form of the stress vs strain
characteristics.

Fundamentally, the difference is in the analytical de-
pendence of the eigenvalues of the Hessian matrix on the
strain (or the stress). We note, for example, Fig. 10, where

we highlight the distinction between straining the system,
allowing nonaffine response and not allowing it. In the first
case, the eigenvalue has a square-root singularity as a function
of the strain, as discussed in Sec. IV. In the second case
(cf. the dotted line in Fig. 10), the lowest eigenvalue of
the Hessian matrix vanishes in an analytic fashion, linear
in the strain, much in the same way as in the crystalline
case. The avoidance (by hand) of the saddle-node instability
of the nonaffine response results in a fundamental change
in the analytics of the dependence of the stress on the
strain.
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