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Excitonic lifetimes and optical response of carbon nanotubes modulated by electrostatic gating
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We investigate the excitonic optical properties of carbon nanotubes modulated by an electrostatic field applied
in a direction transversal to the carbon nanotubes’ axis. We find that excitation energies are redshifted while
absorption peaks split due to symmetry breaking. Furthermore, from analysis of the electron-hole wave function
calculated in the Wannier approximation, it is seen that the exciton wave function tends to polarize, with a
separation of the electron and hole in the large-field limit. This has the effect of reducing the excitonic intrinsic
radiative decay rates due to reduced electron-hole overlap. We compute thermalized effective decay rates for
comparison with experiments, reflecting the interplay between exciton energy shifts and reduced intrinsic decay
rates. Hence, these results suggest several possibilities for modulating the optical response of carbon nanotubes
by the application of an electrostatic field in gatelike configurations.
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I. INTRODUCTION

In the past decade, a great deal of attention has been
devoted to uncovering the remarkable optical properties of
carbon nanotubes (CNTs) [1–17]. Even with attention shifting
to a new breed of two-dimensional materials perhaps better
suited for realizing devices on an industrial scale [18],
CNTs remain of tremendous importance for the study of
low-dimensional electronic systems. The optical response of
CNTs is, in the visible energy range, dominated by excitations
of correlated electron-hole pairs termed excitons. [3–5,11]
In low-dimensional systems, the spatial extent of these
complexes is confined in at least one dimension, enhancing
the attractive Coulomb interaction often resulting in exciton
binding energies of several hundred meVs. The absorption
spectrum has been investigated theoretically using several
models, both in the independent particle approximation [8,15]
and including electron-hole interaction [5,19], and measured
experimentally [9,20].

Both experiments [21,22] and theory [14,16] suggest that
the application of an electrostatic field across a CNT, in a
direction perpendicular the tube axis, may be an effective
way of tuning its optical response. This case has been
considered both theoretically in the linear [1,2,10,14,15] and
second harmonic [16] cases; however, all models applied
to this problem have so far been at the one-electron level,
neglecting important excitonic effects. It should be noted that
the somewhat similar case of an electrostatic field applied
parallel to the long axis of CNTs and other one-dimensional
semiconductors, leading to the excitonic Franz-Keldysh effect,
has been considered. [12,23]

In the present paper, we include excitons in the treatment of
the optical response of several CNT species under the influence
of a strong electrostatic field applied perpendicularly to their
tube axes. We investigate the resulting electro-optical changes
induced in the dielectric function, which should be measurable
in experiments. Furthermore, we consider modulation of
excitonic radiative lifetimes also of experimental relevance.
In our analysis, we initially consider a simplified model of an
electron-hole pair confined to the surface of a homogeneous
cylinder, with an electric field applied transversally to its
axis, as a model for a CNT exciton complex. While such
an effective mass model has been applied before to describe

much of the fundamental physics involved [3,4], allowing, e.g.,
calculation of exciton binding energies, it does not contain
the atomic information necessary to, for example, distinguish
between various CNT chiralities, or allow the calculation of
optical matrix elements. Hence, we also consider a slightly
more complicated Bethe-Salpeter based model, where exciton
states are expanded in a basis of singly excited, many-electron
wave functions constructed from π -electron tight-binding
(TB) orbitals. This method has previously been demonstrated
to yield reliable results for both CNTs [5] and conjugated
polymers [24].

We report that strong electrostatic fields can induce a
significant splitting and redshift of the main absorption peaks
in the excitonic spectrum, in addition to new features which
arise from breaking optical selection rules. Many of these
effects may be compared qualitatively with previous one-
electron theory [1,2,10,14,15]; however, excitonic effects are
of paramount importance for the prediction of correct line
shapes, peak intensities, and spectral positions. Moreover, the
lowest exciton states will tend to polarize upon the application
of the electrostatic field, which in turn reduces the spatial
overlap of electron and hole wave functions. This leads to
reduced exciton radiative decay rates and, hence, increased
lifetimes. To arrive at a thermalized effective decay rate for
comparison with experiments [25], we perform a statistical
averaging procedure [6], revealing that the observed decay
rates arise from the interplay between modulated exciton decay
rates and the accompanying redshifts.

In the following, the theoretical methods applied are
reviewed, starting with the simple case of an electron-hole
pair confined to a cylinder surface. Next, the exciton model
based on a TB band structure is considered followed by the
introduction of the methods for optical response and radiative
recombination rate calculations.

II. THEORY AND METHODS

A. Wannier effective mass model

Similarly to Refs. [3,4,19], we model the excitonic states
using a two-particle Hamiltonian, describing an electron and
a hole confined to the surface of a homogeneous cylinder,

Ĥeh = K̂ + Veh + Vext, (1)
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where K̂ is the two-particle kinetic energy operator, Veh

is the Coulomb interaction potential between electron and
hole, while Vext describes the externally applied electrostatic
field. Hence, exciton binding energies and wave functions
are found, respectively, as eigenvalues and eigenvectors to
Ĥeh. Converting to effective exciton units, the electron and
hole kinetic energies (in effective exciton Rydbergs Ry∗) in
cylindrical coordinates may be written as [4]

K̂ = − 1

M∗
∂2

∂Z2
− 1

μ

∂2

∂z2
− 1

m∗
eR

2

∂2

∂θ2
e

− 1

m∗
hR

2

∂2

∂θ2
h

. (2)

The effective electron and hole masses (in units of the reduced
electron-hole mass) are denoted m∗

e and m∗
h, while M∗ = m∗

e +
m∗

h and μ = m∗
em

∗
h/(m∗

e + m∗
h). The CNT radius is denoted R,

while z and Z are, respectively, the relative and center-of-mass
axial coordinates—all in exciton Bohr radii a∗

B . Moreover, θe

and θh are the angular coordinates of the electron and hole,
respectively. Using these conventions, the attractive Coulomb
interaction between the electron and hole Veh may be written as

Veh = − 2√
z2 + 4R2 sin2[θe/2 − θh/2]

, (3)

while the electrostatic potential energy term Vext takes the form

Vext = FR(cos θe − cos θh), (4)

F denoting the electrostatic field strength. The valence and
conduction bands nearest to the Fermi level are dominated by
π -electron states, and may be approximated fairly accurately
as mirror symmetric across the Fermi level (for undoped sam-
ples). In fact, in the much-used nearest-neighbor orthogonal
TB model, this is also the case [26]. Hence, we apply identical
electron and hole masses m∗

h = m∗
e = 2, M∗ = 4, and μ = 1.

The Hamiltonian Eq. (1) is diagonalized in a suitable
basis, where we take the angular behavior to be described
by complex exponential functions gl(θ ) = 1/

√
2π exp ilθ ,

while the dependence on the relative axial coordinate z is
taken to be Gaussian fn(z) = exp(−αnz

2). Here, l is an
integer indicating angular momentum, while αn represents
a variational parameter determining the decay of the wave
function with axial electron-hole separation. Hence, the nth
electron-hole wave function is expanded according to

�n(z,θe,θh) =
Nα∑

n=1

Nk∑

l,k=−Nk

Cnklfn(z)gk(θe)gl(θh), (5)

with the parameters {αi} determined variationally and Cnkl

denoting expansion coefficients.
In order to convert results from effective exciton units

to physical units, we need the effective mass and dielectric
constant of the system under investigation. We will assume
that screening is primarily due to the medium surrounding the
CNT, and simply take it as a parameter ε ≈ 3.5 suitable for
CNTs suspended in water or embedded in a zeolite crystal. As
has been detailed in Ref. [3], the radius of any CNT is R ≈ 0.1
exciton Bohr radii following from the inverse dependence of
the effective masses on the physical CNT radius. Similarly, the
exciton Rydberg is approximately Ry∗ ≈ 0.21 eV Å/r , with
r indicating the CNT radius in Å.

B. π -electron tight-binding model

To extend upon the two-band effective mass model pre-
sented above, we apply a simple tight-binding π -electron
model, which takes both multiple bands and the atomic
geometry into account [26]. However, we neglect any response
from σ electrons in addition to σ -π hybridization known
to follow from the CNT curvature. The latter effect can
be incorporated through the extended tight-binding scheme,
and would explain, e.g., the full band gap/CNT diameter
dependence [13]; however, this complication is known to affect
the exciton binding energy very little [13]. In fact, the π

electrons of conjugated carbon systems are known [26] to be
well described within the semiempirical TB approximation,
taking only nearest neighbor interaction into account and
fitting TB parameters to a band structure derived from density
functional theory. Following the formulation of Ref. [24], we
expand the molecular TB orbitals in Bloch sums of the form

χαk(�r) = 1√
N

N∑

n=1

eiknaφ(�r − �rαn), (6)

where periodic boundary conditions have been introduced,
essentially restricting the calculation to a ring consisting of N

CNT unit cells, each of length a (note that all distances are
measured along the CNT axial direction, and, hence, this is
simply a consistent way of introducing k-space discretization).
Here, k = π (2p − N − 2)/(aN ) is the Bloch wave number,
with p = 1,2,...,N , while φ(�r − �rαn) represent the αth π

orbital inside the nth CNT unit cell. The full TB molecular
orbital ψsk(�r) is then written as a linear combination of Bloch
sums

ψsk(�r) =
∑

α

cαskχαk(�r). (7)

The expansion coefficients cαsk and one-electron energies
Esk are found by diagonalizing the nonorthogonal nearest
neighbor TB Hamiltonian [26], with the electrostatic field
incorporated similarly to Ref. [16]. Taking the on-site energy
for a 2p electron to E2p = −5 eV, the hopping integral to
γ = −2.87 eV, and the overlap integral to s = 0.1 yields
π -electron band energies in good agreement with density
functional theory. Thus, the band gap will be too small,
requiring a quasiparticle correction which can be implemented
in the simplest way using the scissors approximation, leading
to a simple shift of the conduction band energies by a suitable
energy. An appropriate energy shift is found by comparing the
calculated first excitonic absorption peak, at photon energy
E11, with the experimentally derived data of Ref. [20].

Following Ref. [24], the exciton states �n are expanded
in terms of singly excited Slater determinants |(vk) → (ck)〉,
constructed by replacing a valence band state with a conduction
band state of identical wave number in the TB ground state
Slater determinant. Hence, �n = ∑

cvk A
(n)
kvc|(vk) → (ck)〉.

This leads to the Bethe-Salpeter equation, yielding the ex-
pansion coefficients A

(n)
kvc,

∑

k′v′c′
[2Vkvc,k′v′c′ − Wkvc,k′v′c′]A(n)

k′v′c′ = [Ẽn − Eck + Evk]A(n)
kvc.

(8)
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Here Ẽn denotes the nth exciton energy while Wkvc,k′v′c′

and Vkvc,k′v′c′ denote the screened Coulomb matrix element
and the unscreened exchange matrix element, respectively.
These are calculated in a manner identical to Ref. [24]. For
the Coulomb matrix elements, we apply the same screening
constant as in the Wannier model εc = 3.5; however, due to
the truncated electron basis, it is necessary [24] to include a
phenomenological screening of εx = 2 of the exchange inter-
action due to the neglected σ electrons and the surrounding
medium to achieve agreement with experiments. Hence, we
apply a Coulomb interaction kernel regularized using the
Ohno-form [5,24] Vi(r) = U [1 + (Ur/qc)2]−1/2

/εi . Here, r

indicates electron-hole separation, qc = e2/(4πε0), i ∈ {c,x}
(indicating “Coulomb” and “exchange,” respectively), and
U = 20.08 eV is the Ohno parameter [24].

C. Optical properties and intrinsic lifetimes

Having calculated a set of exciton states and energies by
Eq. (8), the optical response may be evaluated using the well-
known expression for the diagonal elements of the dielectric
tensor derived from first order time-dependent perturbation
theory [24]:

εaa(ω) = 1 + 2e2
�

2

ε0m2�

∑

n

| �Pn · â|2
En

[
E2

n − �2(ω + i�)2
] , (9)

where m is the electron mass, � is the CNT volume defined as
in Ref. [27], � is a phenomenological dampening factor, and
a is a Cartesian index with z aligned along the CNT long axis
while â represents the corresponding unit vector. Also, �Pn =
〈0| �̂P |n〉 = ∑

cvk A
(n)
kvc �pvc(k) is a momentum matrix element

coupling the nth excited state to the ground state. The one-
electron momentum matrix element between the conduction
band c and valence band v at k in reciprocal space �pvc(k) may
be calculated according to Ref. [28]. Furthermore, the exciton
states possess an intrinsic radiative decay rate, which may be
written according to a one-dimensional Einstein formula [6,7]

γn = e2| �Pn · ẑ|2
2ε0�m2c2L

, (10)

where L = Na is the length of the CNT. Note that we may
restrict the analysis to decay from axially (z) polarized excitons
due to depolarization effects [6,7]. In the tight-binding model,
we have access to all parameters and variables entering in
Eqs. (9) and (10); however, in the Wannier model the exciton
momentum matrix elements are not known. To avoid this
problem, we may apply the following approximation [24]:
|Pn · â|2 ≈ 2L| �pvc · â|2|〈�n(0,θe,θh)〉θe=θh

|2, where �pvc (ap-
proximated as k independent in the Wannier model) is the
momentum matrix element coupling the valence band v and
conduction band c used to construct the Wannier exciton. The
brackets 〈〉θe=θh

indicate the angular average over θe while
fixing θh = θe. Furthermore, in the effective mass model, we
take the one-electron matrix elements pvc to be independent
of the electrostatic field strength, and calculate the decay rates
relative to the value found for a vanishing electrostatic field γ0.
Hence, γn/γ0 ≈ |〈�n(0,θe,θh)〉θe=θh

/�(0)
n (0,0,0)|2 with �(0)

n

indicating the exciton wave function calculated for F = 0.

In a typical experiment, the exciton recombination rates
may be probed by measuring the nanosecond-scale time
evolution of the photoluminescence (PL) generated by CNTs
excited with femtosecond pulses [25]. Since the excited
electron-hole pairs thermalize rapidly compared to radiative
decay paths [6,7,25], the measured PL is generated by a
statistically occupied ensemble of exciton states, some of
which are dark (i.e., are optically inactive). Hence, in order
to compare our theoretical results directly with, e.g., time-
resolved PL experiments, we have to take the thermal average
along the lines presented in Refs. [6,7]. In general terms, the
full exciton ensemble may be indexed by an exciton band
index n and a wave vector index Q (in addition to spin indices,
however, we do not include relaxation processes involving
spin flips in the present work). Hence, the thermal average
should be taken over both of these indices. Spataru et al. [6]
have derived a simple expression for the effective radiative
decay rate, taking into account the four lowest singlet states (of
which only a single bright exciton is assumed), and taking the
excitonic states to follow a parabolic dispersion in Q. We here
generalize their method slightly to not depend on a specific
exciton fine structure, describing this information through En

and γn instead:

γeff(T ) =
∑

n γ
(n)
eff (T ) e−En/kBT

∑
n e−En/kBT

. (11)

Here, γ
(n)
eff = 4/3γn

√
�/(πkBT ) is the effective radiative

recombination rate of the nth exciton band at temperature
T taking into account the thermal Q average of the exciton
band [6]. Note that En and γn are evaluated at Q = 0. While a
relatively broad range of the band is thermally occupied, only
the bottom [En; En + �],� = E2

n/(2c2M) energy interval
allows for coupling to the radiation field, significantly reducing
the effective recombination rate of the Q-averaged nth band,
when compared to γn. Here, M ≈ me + mh indicates the
effective electron-hole center mass, where me and mh are the
effective masses of individual electron and hole bands.

III. RESULTS AND DISCUSSION

The electron and hole, being oppositely charged quasipar-
ticles, are effectively separated due to the electrostatic field.
Considering the angular distribution of the electron-hole wave
function for an R = 0.5 Wannier exciton plotted for z = 0 in
Fig. 1, three distinct phases may be observed:

(i) With vanishing electrostatic field, the exciton complex
displays no dependence on the center of mass coordinate,
although Coulomb attraction tends to localize the hole around
the electron (and vice versa). Hence, the exciton wave function
has a constant maximum on the θe = θh diagonal, illustrated by
the dashed lines in Fig. 1. (ii) In an intermediate regime, with
larger electrostatic field, the electron-hole complex remains
bound. However, the two-particle wave function displays the
largest amplitude for polarized excitons at angular coordinates
allowing slight separation of electron and hole, with the
resulting dipole aligned along the electrostatic field. This
results in the slight bulge of the wave function away from
the θe = θh diagonal near θe ≈ θh ≈ {0,π}. (iii) With large
enough fields, the electron and hole may dissociate, occupying
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FIG. 1. (Color online) Absolute square of exciton wave functions at z = 0 for an R = 0.5 tube with increasing applied field strength F .
Note that the electrostatic field is reported in effective exciton units Ry∗/a∗

B . The schematic illustrations indicate the electron (blue spheres)
and hole (red spheres) configurations with largest wave function amplitude, and represent phases (i) to (iii) discussed in the text. Note that we
draw multiple exciton complexes to indicate equivalent angular configurations; however, only two-particle interactions are taken into account
(i.e., effects from trions, biexcitons, and the like are not included).

positions on opposite sides of the CNT. This configuration
corresponds to a maximum exciton wave function when
θe ≈ 3π/2 and θh ≈ π/2. However, if the CNT circumference
is smaller than the typical electron-hole distance (i.e., smaller
than the exciton Bohr radius), the electron and hole still overlap
requiring much larger fields for complete dissociation. Note
that to exaggerate effects of the electrostatic field, we have
chosen in Fig. 1 a larger radius than is typical for a CNT, as has
already been discussed. However, this result may be relevant
for other nanotubular structures, which do not follow the
peculiar band gap/effective mass scaling particular to CNTs.

In Fig. 2, we consider the electron-hole wave function,
the exciton binding energy, and the radiative decay rate
for an R = 0.2 tube predicted by the Wannier model. A
dramatic drop in the decay rate results from the reduced
electron-hole overlap, evident from the wave function plots of
the same figure. Furthermore, the redshift of the bound exciton
compares favorably with experimental results [22], which
also demonstrate a redshift of the main E11 absorption peak
quadratic in the applied electrostatic field. Similar results were
obtained for electrostatically perturbed cylindrical quantum
wells, where a Wannier model was applied by Wu and
Tomić [29]. The general redshift of the exciton energies may
be understood in the simple hydrogenic Stark picture. Here,
the leading order energy correction of a two-particle Coulomb-
attracted system due to a perturbing, uniform electrostatic
field is indeed negative, and quadratic in field strength [30]. In
simple terms, the redshift may be understood as the interaction
energy of an induced dipole with the inducing field.

Within the TB exciton model, we have access to the
excitation energy spectrum and exciton wave functions needed
for evaluating the linear optical response for a range of applied
electrostatic field strengths, and we plot results for a (20,0)
CNT in Fig. 3. In the absence of an electrostatic field, the
interband transitions, giving rise to the dispersion in the
dielectric function of semiconducting CNTs, are subject to

a set of strict optical selection rules, which allow only one-
electron transitions conserving angular momentum. Hence, the
absorption edges for the axial (εzz) and the transversal (εxx)
dielectric functions differ in the one electron picture [8]—an
effect which is also observed when including excitons [31], as
may be verified by comparing Figs. 3(a) and 3(b). In Fig. 3(a),
the results for a vanishing electrostatic field (black curves)
display two main peaks corresponding to the so-called E11 and
E22 excitons. The applied scissor shift ensures that we find
E11 = 0.68 eV, in agreement with experimentally derived

FIG. 2. (Color online) Excitonic lifetimes and energies calcu-
lated using the effective mass Wannier model for an R = 0.2 tube.
Lifetimes are normalized to the case of a vanishing electrostatic
field, while energies are displayed in effective exciton Rydbergs
and are measured relative to the unperturbed band gap energy. Top
panels display the electron-hole wave functions at electrostatic fields
indicated by the arrows. The axes of the respective top panels are
identical to the ones in Fig. 1.
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FIG. 3. (Color online) Imaginary part of the dielectric function
for a (20,0) CNT with the exciting optical field aligned (a) parallel
to the axial direction of the CNT and (b) perpendicular to this
direction. The black lines indicate the response at a vanishing applied
electrostatic field.

results reported by Weisman and Bachilo [20]. However,
we model E22 = 1.04 eV, i.e., approximately 7% smaller
than reported by Weisman and Bachilo. This disagreement,
however, is well within the error introduced by, e.g., our sim-
plified screening model or the neglected energy dependence
of the quasiparticle correction. For large tubes, the scaling
rule E22/E11 ≈ 1.7 applies reasonably well [20,32,33]. Exper-
imental results suggest that [20] E22/E11 = 1.63 for a (20,0)
CNT while we find a slightly lower E22/E11 = 1.54 due to the
underestimation of E22.

The result for transversal excitation polarization and van-
ishing electrostatic field is displayed as the black curve in
Fig. 3(b). Here, a relatively broad, featureless peak dominates
the absorption edge instead of the narrow features typical for
strongly bound electron-hole pairs found for axial excitations.
Previous studies [34] have demonstrated how inclusion of
electron-electron Coulomb interaction may lead to quenching
of the oscillator strength of the transversally excited excitons
in CNTs due to so-called depolarization effects. The exchange

interaction is particularly important in this context [34] and,
indeed, we recover a transversal spectrum dominated by
narrow excitonic features when taking this term to vanish
(i.e., by taking the limit εx → ∞). Hence, we conclude
that the optical signatures of transversally excited excitons
are much weaker than longitudinal ones. Furthermore, from
a one-electron TB theory, the lowest transversally allowed
optical excitation is expected at a photon energy E12 ≈
(E11 + E22)/2; however, depolarization effects are known to
result in transversal peaks close to and below [35] E22, in
agreement with our calculations.

Upon applying the electrostatic field, the cylindrical sym-
metry is broken, which lifts the optical selection rules. This
results, e.g., in a new, otherwise forbidden, absorption peak
developing in the transversal dielectric function near energies
which correspond to the lowest E11 transition in the axial
spectrum. For the case of a (20,0) CNT, this peak may be
seen at 0.52 eV in Fig. 3(b). Dramatic changes of the spectral
shapes of various peaks are also observed, with features
in the transversal spectrum becoming much narrower and
increasing in intensity. For example, a sharp peak appears
in the transversal spectrum [Fig. 3(b)] at photon energies near
1.75 eV and electrostatic fields near 0.15 V/Å. The exact
origin of changes induced in higher-lying spectral features
is a combination of exciton energy shifts, broken cylindrical
selection rules, and reshuffled oscillator strengths. Hence, such
features are difficult to interpret in simple terms, using, e.g., a
two-band Wannier model, requiring instead more complicated
numerical simulations, such as the TB model applied here.

A plot of the excitation energies and decay rates of the
lowest ten excitons, displayed in the middle and lower panels
of Fig. 4, allows a more detailed analysis of this behavior.
It is apparent that some of these states are dark, i.e., they
are associated with a vanishing optical matrix element Pn

and, hence, a vanishing radiative decay rate. The existence
and analysis of such dark excitons in terms of symmetry
has been reported before [13], and their optical inactivity
represent a manifestation of the mentioned angular momentum
single-particle selection rules in the exciton picture. Hence,
from the middle panels of Fig. 4, it may be verified how
optical selection rules are broken with the application of an
electrostatic field, causing a few dark excitons to become
bright, with nonvanishing decay rates. Also, the decay rates of
all states are seen to be modulated strongly by the electrostatic
field, in good agreement with the results predicted using the
effective mass model. However, the Wannier model does not
contain the atomic resolution necessary to distinguish between
dark and bright states, instead modeling only the behavior of
the lowest bright exciton. In Figs. 4(a) and 4(b), we compare
the relatively large (20,0) CNT with a smaller (7,0) CNT,
and from that figure it may be verified that effects of exciton
dissociation are more dramatic for the case of larger tubes,
which allow more effective separation of the hole and electron.
Also, the excited states are seen to redshift with the applied
electrostatic field, with a pronounced splitting of degenerate
excitation energies for large fields. This, in turn, has a dramatic
impact on the optical spectra, displayed in the top panels of
Figs. 4(a) and 4(b) and in Fig. 3. There, the main absorption
peak is seen to redshift correspondingly, while a pronounced
splitting of this peak is also observed.
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FIG. 4. (Color online) Logarithm of the imaginary part of the dielectric functions, radiative decay rates, and excitation energies of the ten
lowest excitons found using the TB exciton model for a (a) (20,0) CNT and a (b) (7,0) CNT . We note that the top panels indicating the optical
response display the same data as Figs. 3(a) and 3(b); however, here represented on a logarithmic scale to highlight the weak features. Please
note that the line types (color/full/dashed) used in the middle and lower panels are identical, and indicate the respective exciton states.

Upon performing the statistical averaging in Eq. (11),
we arrive at an effective decay rate for comparison with
experiments [25], and we include the results for a (7,0) CNT
and a (20,0) CNT in Fig. 5. Generally, the effective decay
rates calculated for vanishing electrostatic fields correspond
to lifetimes in the 10 ns range, in good agreement with both
previous theory [6,7] and experiments [25]. Simply put, the
reduction of the effective radiative decay rates by two orders
of magnitude compared to the intrinsic decay rates, predicted
by Eq. (10), is due to the thermal smearing of the excited
electron-hole pair over an ensemble of exciton states, many
of which fail to provide radiative recombination channels
(i.e., they are dark). In fact, in the absence of an electrostatic
field, the lowest exciton will be dark for any semiconducting
CNT [6], followed by a bright exciton at slightly larger energy.
This behavior may also be observed in Fig. 4. Hence, the
statistical averaging [Eq. (11)] will occupy the dark states
of lowest energy to a greater extent than the bright exciton,
making the radiative decay less efficient. However, as is clearly
evident from Fig. 4(b), the electrostatic field may close the gap
between the lowest bright and dark states, thereby providing an

FIG. 5. (Color online) Effective radiative decay rates for a (7,0)
CNT and a (20,0) CNT as a function of temperature and electrostatic
field strength.
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FIG. 6. (Color online) Systematic study of the low-field response
for various CNTs. Only semiconducting tubes are considered, hence
all members of the (3n,0) CNT family are excluded (n indicating an
integer). The lines represent a power law fit α = βr3, with r indicating
the CNT radius, while β is given by 0.09 and 0.06 eV/V2Å for the
(3n + 1,0) and (3n + 2,0) families, respectively. The inset displays a
selection of the fits used for extracting the polarizabilities (lines) and
the shifts calculated using the full TB model (dots).

efficient radiative decay channel. The transition field strength,
where the lowest dark and bright states become degenerate, is
found at 0.33 and 0.12 eV/Å for the (7,0) and the (20,0) CNTs,
respectively. In Fig. 5, a clear signature of this is observed at
low temperatures, where a dramatic increase in the effective
radiative decay rate is observed near these field strengths.
However, a further increase of the electrostatic field tends to
reduce the intrinsic decay rates, as displayed in Fig. 4, which
eventually reduces the effective rates. At higher temperatures,
effects of closing the gap between the first dark and bright
excitons are less pronounced due to the increased thermal
smearing resulting from averaging over a wider distribution of
decay channels.

The redshift with applied electrostatic field is nearly
quadratic in the low-field limit. Hence, we may approximate
the energy shift �E by the formula �E ≈ −α/2 F 2, and then
proceed to fit the polarizability α for various CNT species. We
display the result in Fig. 6. There, we consider the redshift of
the bright exciton (under axial excitation) having lowest en-
ergy. The inset illustrates the fitted functions (lines) compared
to shifts calculated using the full TB model (dots), and indeed
shows very good agreement. The extracted values of α are
displayed in the main figure, where an increasing sensitivity of
larger tubes to the applied electrostatic field may be observed.
Note that we only consider semiconducting tubes in this work.
In the limit of electrostatic fields representing a perturbation

energy comparable to the band gap, a semiconductor-metal
transition has been reported [2]. Since metallic species are
described by photophysics more involved than the model
applied in this work (metallic screening, etc.), the limit of very
large tubes cannot be taken due to the inverse dependence
of the band gap on tube radius. Hence, for very large tubes
even small fields will cause a semiconductor-metal transition,
invalidating the present model for that case. Thus, the fitted
α values may not be extrapolated to infinitely large tubes
either. We can compare our theoretical results in Fig. 6 directly
with the experiments displayed in Fig. 4(b) of Ref. [22]. The
experimentally reported values for α are larger by a factor of
100 compared to our calculations; however, this discrepancy
is easily explained by the fact that the electrostatic field in
the experiments are aligned primarily along the long axis,
which is more easily polarized. To compare with our results,
it would be interesting to perform similar experiments, with
the electric field polarized primarily transversally to the tube
axis.

Comparing with previous theoretical work on CNTs in-
fluenced by electrostatic fields, such as Refs. [2,14,15], we
conclude that the one-electron models applied there are indeed
insufficient for correctly reproducing electro-optic effects in
CNTs, mainly due to the dominance of bound electron-hole
pairs. Hence, features such as modulation of line shapes,
redshift of absorption peaks, and transfer of oscillator strength
due to the electrostatic fields are all affected strongly by
inclusion of electron-hole attraction. These conclusions are
in good agreement with previous studies on the similar
case of electrostatic fields applied along the CNT tube
axis [12].

IV. CONCLUSION

In conclusion, we demonstrate that applying an electrostatic
field across a CNT can have a dramatic impact on its excitonic
energy spectrum, with a general redshift of the lowest lying
excitons. This is a result of increasingly polarized excitons,
where the exciton and hole wave functions become separated.
With stronger applied fields, this results in delocalized excitons
where the electron and hole are located on opposite sides of
the CNT. This trend is accompanied by a dramatic drop in the
radiative exciton recombination rates due to reduced overlap
between electrons and holes. However, a statistical averaging
procedure, taking into account the thermal occupation of the
exciton states, reveals that introducing a strong electrostatic
field may increase the effective recombination rate seen in
experiments at low temperatures. Hence, we demonstrate
theoretically the possibility of tuning the excitonic optical
response of CNTs by an electrostatic field in a geometry, which
may be realized experimentally.
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