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Transport through an Anderson impurity: Current ringing, nonlinear magnetization, and a direct
comparison of continuous-time quantum Monte Carlo and hierarchical quantum master equations
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We give a detailed comparison of the hierarchical quantum master equation (HQME) method to a continuous-
time quantum Monte Carlo (CT-QMC) approach, assessing the usability of these numerically exact schemes as
impurity solvers in practical nonequilibrium calculations. We review the main characteristics of the methods and
discuss the scaling of the associated numerical effort. We substantiate our discussion with explicit numerical
results for the nonequilibrium transport properties of a single-site Anderson impurity. The numerical effort of the
HQME scheme scales linearly with the simulation time but increases (at worst exponentially) with decreasing
temperature. In contrast, CT-QMC is less restricted by temperature at short times, but in general the cost of going
to longer times is also exponential. After establishing the numerical exactness of the HQME scheme, we use
it to elucidate the influence of different ways to induce transport through the impurity on the initial dynamics,
discuss the phenomenon of coherent current oscillations, known as current ringing, and explain the nonmonotonic
temperature dependence of the steady-state magnetization as a result of competing broadening effects. We also
elucidate the pronounced nonlinear magnetization dynamics, which appears on intermediate time scales in the
presence of an asymmetric coupling to the electrodes.
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I. INTRODUCTION

Impurity problems are ubiquitous in the theoretical de-
scription of nonequilibrium systems [1,2]. They constitute
small entities with a limited number of degrees of freedom
that are coupled to reservoirs with continua of noninteracting
degrees of freedom. One intuitive physical realization of such
a model is a molecule adsorbed on a surface or contacted
by electrodes [3]. A variety of nonequilibrium scenarios may
be described in terms of impurity models, for instance, by
preparing the impurity in an excited initial state or by coupling
it to different reservoirs in different thermodynamic states.
Another intriguing application occurs in dynamical mean
field theory [2,4–6], where lattice problems either in or out
of equilibrium are mapped to impurity problems with an
environment that is determined by a self-consistency criterion.
This has been important, for instance, in understanding the
metal–insulator transition in materials like transition metal
oxides [4,6,7] and has become an important paradigm in study-
ing nonequilibrium effects in extended interacting systems,
including thermalization after an interaction quench [8,9], the
nonequilibrium steady state [10,11] and Bloch oscillations
[5,12,13] under the influence of a static electric field. Thus the
theoretical description of impurity problems is a key element
in understanding a wide range of phenomena, in particular
nonequilibrium effects.

Few exact solutions are available, and a number of
methods have been developed in the past decades to solve
nonequilibrium impurity problems. They can be sorted into
two broad categories: approximate and numerically exact
methods. Typically, numerically exact methods allow us to
simulate some property of a model in what might be considered
a numerical experiment. Approximate methods, on the other
hand, may miss important physics or suffer from artifacts due
to the approximations involved. A combination of methods,

which operate on different levels of approximation, is often
useful and helps to elucidate the relevant physical mechanisms
[14–20].

The nonequilibrium Anderson impurity model has been
treated by several numerically exact methodologies. Some
approaches require a discretization of the electrodes, for
example, density matrix renormalization group [21–26],
numerical renormalization group [17,27,28], or multilayer
multiconfiguration time-dependent Hartree theory [29,30].
These methods are useful at low temperatures and/or voltages.
They are restricted by revival oscillations and a limited
spectral resolution of the leads [31]. Other approaches can
take advantage of the noninteracting nature of the leads and do
not require discretization. This includes iterative path-integral
schemes [32–36], which converge only for a limited set of
parameters, and stochastic schemes [37–43], where the growth
of the statistical error restricts the accessible time scales. In the
presence of a short memory timescale, long time scales can be
accessed by a combination of reduced dynamics techniques
[44] with a short-time numerically exact scheme; or by the
hierarchical master equation method [45] where the numerical
effort scales linearly with the simulation time. The latter,
however, can only be converged if the temperature in the
electrodes is not too low [19,20].

The numerical effort associated with most numerically
exact schemes restricts practical calculations to specific limits
[46] or limited ranges of parameters. It is important to
delineate the regimes in parameter space to which each
method is applicable, and in particular to find out where
exact results are not available. In this work, we elucidate
the practical limitations of two numerically exact schemes:
the continuous-time quantum Monte Carlo (CT-QMC) method
[37,39,41,43,44,47–49] and the hierarchical quantum master
equation (HQME) method [19,20,50–52]. We will discuss the
main features of these approaches, characterizing, in particular,
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HÄRTLE, COHEN, REICHMAN, AND MILLIS PHYSICAL REVIEW B 92, 085430 (2015)

)c()b()a(

L R

QD

ε

RL QD

ε +UμL

μR

ε

RL Molecule

ε +U
μL

μR

FIG. 1. (Color online) (a) Graphical representation of an Ander-
son impurity, which is realized by a quantum dot (QD). The dot is
coupled to a left (L) and a right electrode (R). (b) Single-particle
levels of the quantum dot junction depicted in (a). The shaded areas
depict the occupied states in the electrodes, which, for simplicity, are
assumed to provide Lorentzian-shaped conduction bands. Applying a
bias voltage to such a system means that the corresponding chemical
potentials μL/R are shifted and the electrodes become charged.
(c) Single-particle levels of a molecular junction. In contrast to the
quantum dot realization [(a) and (b)], the conduction bands are shifted
in the same way as the chemical potentials. Thus, applying a bias
voltage, the electrodes do not become charged.

the associated numerical effort. We find that the range of
parameters where the two methods can be applied overlaps,
but also exhibits areas where only one of the methods can be
applied. As we will see, HQME turns out to be the method of
choice to study long-term dynamics if the temperature of the
reservoirs is not too low. In contrast, CT-QMC gives access to
the short- and intermediate-time dynamics over a wider range
of temperatures.

We demonstrate our findings using an archetypal nonequi-
librium problem: transport through a single-site Anderson
impurity that is coupled to left and right electrodes (see
Fig. 1 for a graphical representation). The most obvious
physical realizations of this impurity problem are quantum
dots containing a single spin-degenerate level. The first
such realizations were based on quantum-confinements in
patterned semiconductor heterostructures [53,54]. Single-
molecule junctions often exhibit similar behavior [55–58], but
in a setting where experimental techniques give less control
over the parameters of the junction. Additionally, other effects,
e.g., due to vibrational degrees of freedom, are important
[59–69]. In these systems, transport is induced by shifting
the electrochemical potentials in the leads with respect to each
other such that electrons tunnel through the impurity in order to
move from the lead with higher chemical potential to that with
lower chemical potential. In semiconductor heterostructures,
this shift is achieved by charging or discharging the leads
[i.e., by filling or emptying electronic levels; cf. Fig. 1(b)].
In single-molecule junctions, the leads are less likely to be
charged, and the shift of the electrochemical potentials is
accompanied by a shift of the respective conduction bands [cf.
Fig. 1(c)]. We will show that these different ways of inducing
transport strongly affect the initial dynamics of the impurity.

We also present exact results for the complex magnetization
dynamics of an Anderson impurity in various nonequilibrium
situations. Typically, this quantity exhibits the slowest relax-
ation behavior [43] and, as we will see, exhibits a nonlinear
behavior on all times scales, in particular when an asymmetric
coupling to the electrodes is considered. To date, this dynamics

had only been accessible at great computational cost using
state-to-the-art CT-QMC methods combined with reduced
dynamics [43]. The HQME method gives access to exact
results of this long-lived correlated dynamics and allows us
to perfrom a scan over a wide range of parameters. It can also
be used to derive approximate results and, therefore, to study
the influence of higher order processes. We are, therefore,
able to elucidate the origin of the nonmonotonic temperature
dependence of the magnetization that was recently reported in
Ref. [43] to be the result of competing broadening effects. We
also find a pronounced nonlinear behavior of the magnetization
on intermediate (still rather long) time scales (e.g., Figs. 7
and 9). In passing we note that the nonequilibrium Anderson
impurity model and its generalizations are of great interest in
the field of strongly correlated materials within the dynamical
mean field theory approximation [2,4–6].

The outline of the article is as follows. In Sec. II,
we present the theoretical methodology. This includes a
short description of the single-site Anderson impurity model
(Sec. II A), the HQME method (Sec. II B), and the CT-QMC
approach (Sec. II C). A discussion of practical aspects of
the two methods is given in Sec. II D. Numerical results
on the time-dependent transport properties of an Anderson
impurity are presented in Sec. III, where we first formulate
the different ways of inducing transport and detail the model
parameters (Sec. III A). A direct comparison of results that are
obtained by the HQME method and the CT-QMC approach
is presented in Sec. III B, where we follow the time evolution
of the electrical current that is flowing through the impurity,
starting from a product initial state where the impurity is not
populated by electrons. These results represent the first explicit
validation that the HQME approach gives numerically exact
results. We also explore how the choice of whether or not
to shift the conduction band with the applied bias voltage
affects the results. We then discuss the magnetization dynamics
of the impurity in the presence of an external magnetic field,
considering both a symmetric and an asymmetric coupling to
the electrodes (Sec. III C).

II. THEORY

A. Model Hamiltonian

We study the transport properties of an Anderson impurity
that is coupled to a left (L) and a right (R) electrode or lead.
The Hamiltonian of this well established system,

H = Himp + HL + HR + Htun, (1)

can be decomposed into the impurity Hamiltonian, Himp; the
left and the right lead Hamiltonians, HL and HR; and a coupling
operator Htun. The impurity Hamiltonian

Himp =
∑

σ∈{↑,↓}
εσ d†

σ dσ + Ud
†
↑d↑d

†
↓d↓ (2)

represents an electronic level that is addressed by creation
and annihilation operators d†

σ and dσ . It can hold a single
spin-up (↑) or spin-down (↓) electron at energies ε↑ and
ε↓, respectively, where ε↑ = ε↓ without the influence of an
external magnetic field. It can also hold a spin-up and a spin-
down electron simultaneously. Such double occupation costs
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an additional charging energy U > 0, representing repulsive
Coulomb interactions.

Each lead is described by a continuum of noninteracting
electronic levels

HL/R =
∑

k∈L/R,σ

εσkc
†
σkcσk (3)

with energies εσk . These levels are addressed by annihilation
and creation operators cσk and c

†
σk . The coupling between the

impurity and the electrodes can be characterized by tunneling
matrix elements Vσk , and the corresponding coupling operator
is written as

Htun =
∑

k∈{L+R};σ
(Vσkc

†
σkdσ + H.c.). (4)

The resulting tunneling efficiencies, or level-width functions,

�K,σ (ε) = 2π
∑
k∈K

|Vσk|2δ(ε − εσk), (5)

depend on the energy of the tunneling electrons (K ∈ {L,R}).
Throughout this work, we assume that the left and the right
electrode have the same properties, in particular that they
have the same temperature T . The only difference between
the electrodes occurs in the presence of a bias voltage � =
μL − μR �= 0. The position of the chemical potentials of the
left and the right lead, μL and μR, are shifted in different
directions. We assume a symmetric voltage drop such that
μL = �/2 and μR = −�/2. The latter is an assumption that,
however, is not crucial for our discussion.

B. Hierarchical master equation approach

We use two different methods to obtain the transport
properties of an Anderson impurity. The first of these methods
is the HQME approach [19,20,50–52]. The second one is the
CT-QMC method [37,39,43,44,48,49]. For completeness and
to establish the notation, we outline the basics of the HQME
method in this section. The CT-QMC technique is detailed in
the following section, Sec. II C.

The central quantity of the HQME technique is the density
matrix of the impurity

ρ =
∑
l,l′

ρl,l′ |ψimp,l〉〈ψimp,l′ |, (6)

where the ψimp,l represent the corresponding Hilbert space. It
is obtained by solving the hierarchy of equations of motion:

∂tρ
(κ)
j1..jκ

(t) = −i
[
Himp,ρ

(κ)
j1..jκ

(t)
] −

∑
λ∈{1,...,κ}

ω
sλ

Kλ,pλ
ρ

(κ)
j1..jκ

(t)

+
∑

λ∈{1,...,κ}
(−1)κ−λη

sλ

Kλ,σλ,pλ
dsλ

mλ
ρ

(κ−1)
j1..jκ /jλ

(t)

+
∑

λ∈{1,...,κ}
(−1)ληsλ,∗

Kλ,σλ,pλ
ρ

(κ−1)
j1..jκ /jλ

(t)dsλ

mλ

−
∑

jκ+1,σκ+1

(
dsκ+1

σκ+1
ρ

(κ+1)
j1..jκ jκ+1

(t)

− (−1)κρ(κ+1)
j1..jκ jκ+1

(t)dsκ+1
σκ+1

)
. (7)

A detailed derivation of these equations can be found in
Refs. [19,52]. The density matrix of the impurity enters at
the 0th tier as ρ(0)(t) = ρ(t). The auxiliary operators ρ

(κ)
j1..jκ

(t)
encode the dynamics of the impurity that originates from the
coupling to the electrodes, starting from a product initial state
or, equivalently, ρ(κ)

j1..jκ
(0) = 0 (κ > 1). They are distinguished

by superindices jλ = (K,σ,s,p), which involve a lead index
K , a spin index σ , and an index s ∈ {+,−} that corresponds
to the creation and annihilation of electrons. The index p is
related to a decomposition of the lead correlation functions

Cs
K,σ (t) =

∫ ∞

−∞

dω

2π
esiωt�K,σ (ω)f s

K (ω) (8)

=
∑

p

ηs
K,σ,pe−ωs

K,pt (9)

by a set of exponential functions, e−ωs
K,pt , where we use

the short-hand notations f +
K (ω) = fK (ω) and f −

K (ω) = 1 −
fK (ω) with fK (ω) representing the Fermi distribution function
of lead K . The use of exponential functions facilitates a
systematic closure of the hierarchy (7) [19,52]. We obtain
the frequencies ωs

K,p and the amplitudes ηs
K,σ,p, using a Pade

decomposition scheme [70,71]. Explicit expressions can be
found in Refs. [19,20].

In principle, the solution of the full hierarchy (7) is exact.
In practical calculations, however, the number of Pade poles
that can be included is limited. For the present studies, we
obtained converged results using 100 Pade poles. In addition,
the hierarchy of equations of motion (7) needs to be truncated.
To this end, we estimate the importance of the operators
ρ

(κ)
j1..jκ

(t) by assigning them the following importance value
[19]:∣∣∣∣∣
( ∏

λ=1,...,κ

1∑
λ′=1,...,λ Re

[
ω

sλ′
Kλ′ ,pλ′

]
)

·
( ∏

λ=1,...,κ

η
sλ

Kλ,σλ,pλ

Re
[
ω

sλ

Kλ,pλ

]
)∣∣∣∣∣.
(10)

We include only those operators in our calculations which
have a value larger than a certain threshold value Ath. In
addition, all operators of the zeroth and first tier are taken
into account regardless of their assigned importance value. The
truncation allows us to reduce the numerical effort to a practical
level. While this procedure represents an approximation,
exact results can be obtained by systematically reducing the
threshold value Ath until the results converge to within the
desired precision. As the importance criterion (10) involves
the ratio between the amplitudes ηs

K,σ,p and the frequencies
ωs

K,p, that is, effectively the ratio �K,σ /T , convergence can
be achieved more easily at higher temperatures, and the
numerical effort increases substantially at lower temperatures.
We will elaborate on this statement in Sec. III B, where we
show that “large enough” means in the present context that
the temperature should be above the Kondo temperature. An
example of a convergence analysis is given in Appendix.

A central characteristic of the technique is that the equations
of motion (7) are local in time. Thus the numerical effort
of computing the time-dependent operators ρ

(κ)
j1..jκ

(t) scales
linearly with the simulation time t . All of our numerical
evidence (e.g., Appendix) shows that the quality of the
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associated effective expansion of the time evolution operator
is independent of the simulation time t . We can therefore
conclude that the numerical effort of the HQME scheme
scales linearly with the simulation time. This allows us to
access the nonequilibrium dynamics of an interacting impurity
system on extremely long time scales (see, e.g., Ref. [20],
where we simulated the dynamics of an interacting quantum
dot system up to t ∼ 104/�). The price of this is a large
number of unknown auxiliary operators ρ

(κ)
j1..jκ

(t) that need to
be determined. At a given time t , they encode the history of
the interplay between the impurity and the electrode at earlier
times, and contain all the information necessary to continue
propagating the density matrix to the next time step.

In addition to the importance criterion (10), the hierarchy
can be truncated at a specific tier κ̃ . This corresponds
effectively to a hybridization expansion of the time evolution
operator of the density matrix ρ(t) that is valid up to
O(�κ̃K,σ /min(D,kBT )κ̃ ) [19]. Such a truncation is not exact
but facilitates a perturbative analysis, which, in principle,
can be driven to arbitrary order. We can therefore assess
the importance of each tier/order by comparison to the exact
converged results (see Sec. III C). In this context, it should
be noted that the hierarchy (7) terminates automatically at
the second tier for U → 0 [52,72]. In the Appendix, we
demonstrate the convergence of our approach to the exact
U = 0 result.

C. Continuous-time quantum Monte Carlo approach

In order to establish the numerical exactness of the HQME
approach, it is useful to compare it to another numerically exact
approach based on entirely different principles. As noted in
the introduction, a wide variety of numerically exact methods
with various advantages and limitations has been applied to
nonequilibrium impurity models [15,18,24,27,32,33,41,73–
79]. We have chosen to compare our results with those of
a continuous-time quantum Monte Carlo method [75,80]. CT-
QMC algorithms are capable of solving a variety of impurity
models by stochastically summing all terms in an exact
diagrammatic expansion around some analytically solvable
limit.

Dynamics and nonequilibrium require a real time (rather
than an equilibrium imaginary time) formulation of the method
to conserve numerical exactness. The first real-time implemen-
tations addressed vibrations in junctions using hybridization
expansions [47,49], with subsequent work treating the An-
derson impurity model [39] and developing expansion in the
interaction [16]. This first generation of methods was mostly
suitable for accessing very short times or weakly interacting
systems. A much wider range of parameters and timescales is
accessible to bold-line algorithms [75,81], which begin from
a diagrammatic approximation containing an infinite subset
of diagrams corresponding to a low-order self energy, and
sum all corrections to it in terms of renormalized skeleton
diagrams. These methods can be further augmented by reduced
dynamics techniques, which give access to essentially any
timescale in cases where the system exhibits a short memory
timescale [43,44,82]. More recently, these techniques were
extended from single-time properties to correlation functions
in equilibrium [80] and nonequilibrium [83].

In this work, we compare our HQME results to bold-line
CT-QMC formulated around the one-crossing approximation
(OCA) [84,85]. OCA is a strong-coupling approximation. It
represents an extension of the noncrossing approximation and
generally performs well near half-filling and outside the Kondo
regime. Convergence becomes easier when the OCA is more
accurate, but all the CT-QMC data presented here has been
converged up to times t = 2/�, and can therefore be assumed
to be numerically exact, independently of the OCA. A detailed
technical discussion of the method can be found in Ref. [80].

While no significant problems occur up to t = 2/�, we
note that, in general, it can be difficult to obtain converged
CT-QMC data at long times (and in the absence of a short
memory), since the sign problem results in an exponential
growth of the statistical error with time. Bold-line algorithms
significantly improve the performance of these algorithms,
but do not eliminate this problem. “Boldification” additionally
depends on one’s ability to solve the underlying self-consistent
diagrammatic approximation (OCA in this case). This gener-
ally implies an initial step with its own computational and
memory demands, both of which increase polynomially with
the simulated time. Higher-order self-energies reduce the sign
problem in the CT-QMC step, but the cost of the diagrammatic
approximation often becomes prohibitive [84].

A particularly simple example, which illustrates how this
polynomial scaling can become a bottleneck, is when several
energy scales which are orders of magnitude apart are present
in the problem. Unless an efficient multiscale representation
of the data is possible, the diagrammatic procedure—which is
implemented on a discrete lattice—suffers from the need to use
very small time steps in the discretization. The effort involved
in solving the self-consistent equations is then polynomial in
the number of time steps, and therefore grows very rapidly
with simulation time. Importantly, this never occurs with
the time-local HQME, where the computational effort is
inherently linear in time.

D. Advantages and drawbacks: when to use which method

The HQME and CT-QMC schemes are similar in the
sense that they are both based on a hybridization expansion.
The methods differ in the way the expansion is carried out.
For the HQME approach, we expand the time evolution
operator of the reduced density matrix. If the expansion
converges, one obtains exact results. If not, one obtains only
approximate results, even at short simulation times. In contrast,
the CT-QMC approach represents a stochastic sum over all
possible trajectories that the system may follow during the
simulation time. The statistical error or, equivalently, the
numerical effort increases in the same way as the number
of relevant trajectories increases with the simulation time
[41]. The number of relevant trajectories grows exponentially
with the simulation time, so QMC methods work well for
short times, but long-lived correlated dynamics is often out of
the method’s reach [43]. HQME, in contrast, gives access to
long-lived dynamics, because the associated numerical effort
scales linearly with the simulation time and because all of
our numerical evidence points out that the quality of the
associated expansion is independent of the simulation time
t . This is, on one hand, evident from Eq. (7) and, on the other
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hand, explicitly demonstrated in Sec. III B, Appendix or, for
example, in Ref. [20]. We also note in passing that because
both HQME and CT-QMC are formulated in continuous time,
they are free from discretization (nonzero time step) errors, so
that very short times may easily be studied.

We further discuss the numerical effort of the HQME
method. Apart from the linear scaling with the simulation time,
it depends on the specific problem, in particular the number N

of distinct superindices jλ. The latter is given by the complexity
of the correlation functions (8). The number of auxiliary
operators scales as Nκ̃/κ̃!, assuming that the hierarchy (7)
is truncated at the κ̃th tier. The importance criterion (10)
further reduces the numerical effort to Nκ̃−1/κ̃!, cutting out
a hypersurface of the total index space [20]. The criterion
also demonstrates that fewer terms are needed at higher
temperatures (cf. the discussion following Eq. (10) in Sec. II B
or Ref. [19]). In addition, each auxiliary operator involves a
number of coefficients that is given by the dimension of the
Hilbert space of the impurity. In general, the size of this space
results in an exponential scaling of the numerical effort with
the spin or orbital degrees of freedom of the impurity. In many
cases, however, one is interested in single-particle quantities or
one can restrict the attention to an active space of considerably
reduced dimension, possibly enabling a power-law scaling.
An explicit demonstration of this conjecture will be subject of
future research.

We summarize our discussion regarding the validity and
usefulness of the methods in Fig. 2. HQME and CT-QMC
have common regimes where they give the same result
(high temperature, short times). This will be demonstrated
in Sec. III B explicitly. There are also regimes where only
one of the methods can be used in practice. Low-temperature

HQME & CT−QMC HQME

CT−QMC

~10/Γ

Simulation time

T
em

pe
ra

tu
re

FIG. 2. (Color online) Sketch of the areas in simulation time and
temperature where HQME and CT-QMC are useful. The dashed
lines represent the exponential growth of the numerical effort
with the simulation time in CT-QMC (black line) and with the
number of coefficients in HQME (gray line) that increases (at worst
exponentially) with the inverse temperature. High temperatures and
short simulation times are accessible by both methods (white area).
Very long simulation times are accessible only by HQME (yellow
area). The low-temperature regime is reserved for CT-QMC (blue
area). At low temperatures and if long simulation times are required,
both CT-QMC and HQME cannot be used. For the given problem,
the exponential walls are located around the Kondo temperature for
HQME and time scales ∼10/� for CT-QMC (cf. Sec. III B and
Refs. [43,44,80]).

systems requiring long simulation times cannot be probed by
either of the methods, unless they also exhibit a short memory
timescale, in which case reduced dynamics techniques may
be applicable. This means that slow dynamics deep in the
Kondo regime remain largely inaccessible for both methods.
The dashed lines in Fig. 2 represent the exponential wall that
is hit in CT-QMC with an increasing simulation time and in
HQME with the number of operators that needs to be taken into
account at decreasing temperatures. These walls are “soft” in
the sense that these boundaries can be pushed by more efficient
codes and procedures, more powerful computer architectures
and merely a larger investment of CPU time. They also depend
to a large extent on the specific problem. Therefore we refrain
from putting specific numbers at this point, but will elaborate
on the boundaries specific for the Anderson impurity model in
the strong coupling regime [U/(π�) > 1] below.

E. Observables of interest

We characterize the nonequilibrium transport properties of
an Anderson impurity by its magnetization m and the electrical
current I that is flowing through the impurity in the presence
of a bias voltage. The magnetization is given by the diagonal
elements of the impurity density matrix

m(t) = ρ↓,↓(t) − ρ↑,↑(t), (11)

where we use the basis {|00〉,|↑〉,|↓〉,|↑↓〉}. This basis includes
the states of the impurity with no electron, |00〉; a single spin-
up electron, |↑〉; a single spin-down electron, |↓〉; and two
electrons, |↑↓〉.

The electrical current flowing through the impurity is
related to the charge flow in and out of each lead K:

IK = −e
d

dt

∑
k∈K

〈c†kck〉, (12)

where −e denotes the charge of an electron. Using the auxiliary
operators ρ

(1)
j (t), it can be written as [19,52]

IK (t) = e
∑

K,σ,p

(
Trimp

[
ρ

(1)
K,σ,+,p(t)dσ

]

− Trimp
[
d†

σ ρ
(1)
K,σ,−,p(t)

])
. (13)

III. RESULTS

A. Formulation of the transport problem

In the following, we investigate transport and relaxation
phenomena of a charge-symmetric Anderson impurity where
ε↑ + ε↓ = −U [see Figs. 1(b) and 1(c)]. We follow the time
evolution from a product initial state where the impurity is not
correlated with the electrodes and carries no electron [i.e.,
ρ00,00(t = 0) = 1, while all other elements of the reduced
density matrix are zero]. We focus on the intermediate to strong
coupling regime, choosing U = 8� (or, equivalently, U

π�
≈

2.5), where � denotes the hybridization strength between the
impurity and the electrodes at the Fermi level. We have chosen
this regime because it represents the most challenging regime
for the HQME framework and indeed for most theoretical
treatments (since simple approximations generally work for
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either U
�

→ 0 or U
�

→ ∞), while also exhibiting a rich and
interesting variety of nonequilibrium phenomena.

We take the tunneling efficiencies [Eq. (5)] to be

�L/R,σ (ε) = �αL/R
D2

(ε − SμL/R)2 + D2
, (14)

where we assume Lorentzian-shaped conduction bands in the
electrodes with D = 10�. Note that the shape of the conduc-
tion bands is not crucial for our discussion but beneficial for the
numerical evaluation of the HQME. The parameters αL/R are
either αL = 1 = αR corresponding to a symmetric coupling of
the impurity to the electrodes or αL = 1 = 4αR to simulate
an asymmetric impurity-electrode coupling. The parameter S

is used to control whether the conduction bands are shifted
with the applied bias voltage [S = 1; cf. Fig. 1(c)] or not
[S = 0; cf. Fig. 1(b)]. While the former situation corresponds
to a scenario that is typically found, for example, in transport
through a single-molecule junction, the latter is often used
to describe transport through quantum dot structures that are
based on semiconductor heterostructures.

Our analysis includes two parts. In the first part, Sec. III B,
we present results for the electrical current that is flowing
through the impurity in the presence of a bias voltage. Thereby,
we give a detailed comparison of HQME and CT-QMC
results, which, on one hand, validates the HQME framework
that we introduced in Ref. [19] (and outlined in Sec. II B)
and, on the other hand, allows us to explore the different
initial dynamics of the electrical current with respect to the
two values of the shift parameter S. Second, in Sec. III C,
we focus on the dynamics of the dot observable that takes
longest to approach its steady state value: the magnetization
m. We simulate the effect of a magnetic field by shifting the
spin-up and the spin-down level of the impurity with the field
strength h,

ε↑ = −U

2
+ h, (15)

ε↓ = −U

2
− h, (16)

and study the evolution of m to its field-dependent steady
state values. This allows us to demonstrate that HQME gives
access to long-lived correlated dynamics that, to date, had
only been accessible at great computational cost using state-
to-the-art CT-QMC methods combined with reduced dynamics
[43]. Moreover, we elucidate the origin of the nonmonotonic
temperature dependence of the magnetization that was recently
reported in Ref. [43]. All model parameters are listed in Table I,
where the different parameter sets are labeled by the figure
depicting the corresponding results.

B. Time-dependent electrical current: comparison of HQME
and CT-QMC

The primary goal of this section is to provide the first
direct comparison of results that have been obtained by
the HQME and CT-QMC approach. We thus validate the
HQME scheme with respect to an established method and,
at the same time, demonstrate explicitly that our truncation
scheme is consistent and gives numerically exact results

TABLE I. Parameters for the quantum dot devices that are
investigated in this paper. All energy values are given in units of
the hybridization strength �.

Fig. ε↑ ε↓ U αL αR S h kBT D

3 −4 −4 8 1 1 0 0 5 10
4 −4 −4 8 1 1 0 0 1 10
5 −4 −4 8 1 1 0 0 1

5 10
6 −4 −4 8 1 1 1 0 1 10
7 −4 −4 8 1 1 0 2 1

2 − 10 10

8 −4 −4 8 1 1 0 2 1
2 − 10 10

9 −4 −4 8 1 1
4 0 2 1

2 − 10 10
10(a) −4 −4 8 1 1 0 0 1 10
10(b) −4 −4 0 1 1 0 0 1 10

once convergence is achieved. As the importance criterion
(10) suggests, the HQME expansion works best for high
temperatures. Accordingly, we start our comparison at a
relatively high temperature in the electrodes, β = (kBT )−1 =
0.2/�, and continue with an intermediate, β = 1/�, and a
low temperature, β = 5/�. The latter is close to the Kondo
temperature of our setup, βKondo ≈ 15/� [86].

We begin with the case S = 0, corresponding to fixed
bands in the electrodes. Figure 3 represents the symmetrized
current I = (IL − IR)/2 flowing through the impurity as a
function of time at β = 0.2/�. The different lines correspond
to bias voltages e� = �,3�, . . . ,19�. The thick blue and
thin orange lines depict results that have been obtained using
the HQME and CT-QMC scheme, respectively. The overlap
between matching pairs of lines demonstrates the agreement
between HQME and CT-QMC in this range of temperatures.

The dynamics seen in Fig. 3 can be described and
understood as follows. Initially, for t � 0.2/�, the current
increases almost linearly in time with a slope that is increasing
linearly with the applied bias voltage. After this initial increase,

CT QMC
HQME

19

3
1

0.0 0.5 1.0 1.5 2.0
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time t 1

cu
rr
en
tI

FIG. 3. (Color online) Symmetrized current I = (IL − IR)/2
flowing through the impurity at kBT = 5� as a function of time t for a
sequence of equally spaced bias voltages � = �,3�, . . . ,19� where
the conduction bands are not shifted with the bias voltage (S = 0).
The model parameters used to obtain this data are summarized in
Table I. After a linear increase, the current saturates to a stationary
value on a voltage-independent time scale 0.2/�. The HQME (blue
lines) and CT-QMC methods (orange lines) give identical results to
within the numerical resolution of the data.
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the current level saturates rapidly to a stationary state. The
short-time behavior can be understood quantitatively from the
relation

d

dt
IK (0) = 2e

∑
σ

(C+
K,σ (0)〈dσ d†

σ 〉 − C−
K,σ (0)〈d†

σ dσ 〉), (17)

which follows directly from the operator equations of motion
and the choice of a product initial state. CK,σ is defined in
Eq. (8). For an initially unoccupied impurity, the slope of the
symmetrized current is therefore given by

d

dt
I (t) = 2e

∑
σ

∫ ∞

−∞

dω

2π
(fL(ω)�L,σ (ω) − fR(ω)�R,σ (ω)).

(18)

For large bandwidth D, the energy dependence of the hy-
bridization strengths �R,σ (ω) can be neglected. The slope of
the current is then solely determined by the difference between
the Fermi functions. The latter is proportional to the applied
bias voltage �. Note that the initial dynamics cannot be linked
to a single time scale here but is influenced by the position of
the energy levels, the bandwidth D and the temperature T .

At lower temperatures, both schemes require a larger com-
putational effort in order to reach the same level of precision
as compared to higher temperatures. This is demonstrated in
Figs. 4 and 5, which show the time-dependent current of our
setup at lower temperatures β = 1/� and 5/�, respectively.
The data have been obtained with a similar numerical effort
as that shown in Fig. 3. One observes that both schemes agree
very well, but small deviations, which are consistent with the
applied accuracy, begin to occur.

As the temperature T decreases, coherent processes become
more important and give rise to oscillations of the current
level (see Figs. 4 and 5). The period of these oscillations is
given by the dynamical phases of the system, in particular
the difference between the energy levels of the impurity
and the chemical potentials in the electrodes. Accordingly,
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FIG. 4. (Color online) Symmetrized current I = (IL − IR)/2
flowing through the impurity at kBT = � as a function of time t for a
sequence of equally spaced bias voltages � = �,3�, . . . ,19� where
the conduction bands are not shifted with the bias voltage (S = 0).
The model parameters used to obtain this data are summarized in
Table I. After a linear increase, the current level slightly oscillates
before it reaches its stationary value. The corresponding time scales
are given by the dynamical phases of the problem and the inverse
temperature 1/(kBT ) = 1/�, respectively.
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FIG. 5. (Color online) Symmetrized current I = (IL − IR)/2
flowing through the impurity at kBT = �/5 as a function of time t for
a sequence of equally spaced bias voltages � = �,3�,..,19� where
the conduction bands are not shifted with the bias voltage (S = 0). The
model parameters used to obtain this data are summarized in Table I.
The oscillations of the current level that appear right after the initial
linear increase become more pronounced at lower temperatures. The
corresponding time scales are given by the dynamical phases of the
problem and the inverse temperature 1/(kBT ) = �/5, respectively.
Deviations between the HQME (blue lines) and CT-QMC results
(orange lines) are consistent.

the dynamical oscillations of the current level show a bias
dependence, which is clearly visible in our data. This behavior
is known as current ringing and has been outlined before in a
slightly different context, namely as a response to bias voltage
pulses and/or quenches [87,88].

Another bias dependence appears in the stationary values of
the current level. For high temperatures, thermal broadening
leads to an almost linear increase of the stationary current,
at least in the range of bias voltages considered here. This
is evident from the almost equidistant values in Fig. 3.
The stationary values seen in Figs. 4 and 5 are clearly
nonequidistant. This indicates a strong non-Ohmic saturation
of the current level with increasing bias voltage, which
originates from the restricted number of conductance channels
through the impurity.

We conclude at this point that the agreement between
HQME and CT-QMC results is very good in the parameter
ranges we have studied. We corroborated this statement for
a number of other setups, where we changed the position of
the energy levels, ε↑/↓ �= −U/2, introduced a level splitting /
magnetic field, ε↑ − ε↓ �= 0, a different shift of the conduction
bands, S = 1 (see below), and different bandwidths (data not
shown). Changing the electron-electron interaction strength,
we also observed that the results converge faster for lower
values of U (which is consistent with the fact that, for U = 0,
the hierarchy (7) terminates at the second tier [52,72]). At
lower temperatures, β � βKondo ≈ 15/�, we were not able to
converge the HQME expansion to a satisfactory level.

Next, we consider electrodes in which the conduction
bands are shifted with the applied bias voltage (S = 1). The
time-dependent current of such a system is shown in Fig. 6.
It should be compared and contrasted with the data shown in
Fig. 4. Two qualitative differences are apparent: the first is that
the slope of the current vanishes at t = 0. This can be easily
understood from Eq. (18), as the integral on the right-hand

085430-7
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FIG. 6. (Color online) Symmetrized current I = (IL − IR)/2
flowing through the impurity at kBT = � as a function of time t

for a sequence of equally spaced bias voltages � = �,3�, . . . ,11�

and � = 19� where the conduction bands are shifted with the bias
voltage (S = 1). The model parameters used to obtain this data are
summarized in Table I. In contrast to Figs. 3–5, the current level is
initially not linearly increasing with the time t when the conduction
bands are shifted with the applied bias voltage (S = 1).

side vanishes for shifted conduction bands. The latter is no
longer true for times t > 0, where, initially, an increase of
the current ∼t3 is inherited from a change of the populations
∼t2 [20,89,90]. After this initial phase, the behavior of the
unshifted bands is recovered. The other difference is the

reduced current level for e� = 19�, which falls below the line
for e� = 11� at times t > 0.8/�. This negative differential
resistance originates from both the shift of the conduction
bands and their finite bandwidth D. This behavior is also well
known, for example, from transport through resonant tunneling
diodes [91,92].

C. Evolution of the magnetization for a symmetric and an
asymmetric coupling to the electrodes

The HQME method is particularly promising because it
allows us to calculate the exact time evolution of a correlated
many-body system with a numerical effort that scales linearly
with the simulation time. In order to demonstrate this, we
discuss the magnetization, as introduced in Eq. (15). Other
observables, like populations or the current, approach their
steady state values much faster and are, therefore, less
suitable for the present purpose. In addition, we consider an
asymmetric coupling to the electrodes. As we will see, the
corresponding dynamics shows a richer set of behaviors than
in the symmetrically coupled case, and occurs on significantly
longer time scales.

We start our analysis with a symmetrically coupled impurity
in a strong magnetic field h = 2� (the behavior at other
field strengths is similar—data not shown). The corresponding
magnetization of the impurity is depicted in Fig. 7 as a
function of both bias voltage � and inverse temperature in

t 0.5

0
0.02
0.04
0.06
0.08

15
10
5
0
5
10
15

bi
as
vo
lta
ge

magnetization

t 5.0

0.2
0.4
0.6
0.8

15
10
5
0
5
10
15

bi
as
vo
lta
ge

steady state, t0.999 14

0.2
0.4
0.6
0.8

0.5 1.0 1.5 2.0

15
10
5
0
5
10
15

inv. temperature β 1

bi
as
vo
lta
ge

t 0.5

0
0.02
0.04
0.06
0.08

15
10
5
0
5
10
15

bi
as
vo
lta
ge

magnetization

t 5.0

0.2
0.4
0.6
0.8

15
10
5
0
5
10
15

bi
as
vo
lta
ge

steady state, t0.999 14

0.2
0.4
0.6
0.8

0.5 1.0 1.5 2.0

15
10
5
0
5
10
15

inv. temperature β 1

bi
as
vo
lta
ge

t 0.5

0
0.02
0.04
0.06
0.08

15
10
5
0
5
10
15

bi
as
vo
lta
ge

magnetization

t 5.0

0
0.2
0.4
0.6
0.8

15
10
5
0
5
10
15

bi
as
vo
lta
ge

steady state, t0.999 310

0
0.2
0.4
0.6
0.8

0.5 1.0 1.5 2.0

15
10
5
0
5
10
15

inv. temperature β 1

bi
as
vo
lta
ge

FIG. 7. (Color online) Magnetization of an Anderson impurity that is symmetrically coupled to the electrodes as a function of temperature
and bias voltage (S = 0), and for three different times (top row: t = 0.5/�; middle row: t = 5/�; bottom row: steady state). The left column
depicts the full HQME result. The middle and the right column has been obtained by truncating the hierarchy (7) at the second and the first
tier, respectively. The magnetization along the red dashed line in the lower left plot is also depicted in Fig. 8.
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the electrodes β. We show a 3 × 3 array of plots, where the
top row represents the magnetization at short time scales,
t = 0.5/�, and the middle row at intermediate time scales,
t = 5/�. The bottom row depicts the steady state values. In
the latter, we also give the time t0.999 at which the impurity
reached 99.9% of its final magnetization (note that this time
scale is longest for low temperatures and bias voltages).
The different columns are obtained using different levels of
approximation. The left column is computed using the full
HQME approach. The second and third column are obtained by
truncating the hierarchy (7) at the second and the first tier. This
corresponds to a hybridization expansion to O((�/(kBT ))2)
and O(�/(kBT )), respectively (see Sec. II B). The different
levels of approximation facilitate a discussion of the relevant
processes and mechanisms, for example, where and when
processes of higher order are important (see below).

The data of Fig. 7 can be understood as follows. As we
start from a state with zero magnetization, the magnetization
at short time scales is almost an order of magnitude smaller
than the final steady state values. The maximum magnetization
is obtained at small bias voltages and temperatures. At higher
temperatures and voltages, where the impurity exchanges par-
ticles with the electrodes at a wider range of energies, the mag-
netization becomes quenched. We would like to emphasize that
the system reaches its steady state not before times t � 15/�.

The exact result is very similar to the one that is obtained
with a second order truncation of the hierarchy (7). A tendency
towards a higher magnetization is visible if the number
of exchange processes that is taken into account in our
calculations is reduced. Truncation at the first tier enhances the
effect, but also results in a qualitatively different structure of
the magnetization at intermediate time scales (right plot of the
middle row). Here, the magnetization shows a peak at positive
and negative voltages, while the exact and second order result
exhibit only a single peak that is centered around zero bias.

The splitting of the peak magnetization can be understood
with the bias dependence of resonant exchange processes with
the electrodes. At zero bias, the difference between the chem-
ical potentials in the electrodes and the single-particle levels
of the impurity see Fig. 1(b) is largest and resonant processes
are strongly suppressed. This suppression is less pronounced
at nonzero voltages such that the steady state magnetization
can develop on shorter time scales. Accordingly, this behavior
shows only a weak temperature dependence, resulting in an
almost horizontal splitting of the peak that is seen in Fig. 7.
This splitting is not seen at short time scales (right plot of the
top row), because the initial state is not decaying exponentially
at short times. It rather shows a power-law decay, ∼t2, which
is well known from an analysis of similar systems in terms of
Born-Markov theory [20,89,90].

Another intriguing effect occurs at higher bias voltages
(|e�| > 10�). Here, the magnetization shows a nonmonotonic
behavior with respect to temperature: it becomes stabilized by
increasing temperature before decreasing again at tempera-
tures β � 0.2/� (follow, e.g., the red dashed line in Fig. 7
from β = 1/� to β = 0.1/�). This nonmonotonic behavior
is explicitly depicted in Fig. 8, where the magnetization m is
shown, for example, as a function of the inverse temperature
β and fixed bias voltages � = ±13�, ±15�, and ±17�. This
nonlinear dependence of the magnetization on temperature was
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FIG. 8. (Color online) Magnetization of an Anderson impurity
that is symmetrically coupled to the electrodes as a function of
temperature in the steady state and applied bias voltages � = ±13�,
±15�, and ±17� (S = 0). Note that the kinks originate from a simple
linear interpolation between the data points.

discovered only recently (see Ref. [43]). It is most pronounced
in the steady state and for a truncation of the hierarchy (7) at
a lower tier. The latter points towards a physical interpretation
of the effect, suggesting that it originates from the broadening
of the peak magnetization around zero bias with increasing
temperature and the quenching of the magnetization at very
high temperatures.

The last scenario we discuss is an asymmetric coupling of
the impurity to the electrodes. The corresponding magnetiza-
tion is shown in Fig. 9. It can be directly compared to the
magnetization of the symmetrically coupled impurity that is
depicted in Fig. 7. It can be seen that, on short time scales (top
row), the initial peak of the magnetization is shifted towards
negative voltages. This is because the coupling to the right
electrode is weaker and we start with an initially unoccupied
system. The initial population of the impurity is therefore
dominated by exchange processes with respect to the left
electrode. The corresponding dynamics occurs on shorter time
scales for negative voltages, because the chemical potential of
the left electrode μL is then closer to the single-particle levels
ε↑/↓.

Another qualitative difference with respect to the sym-
metric case occurs on intermediate time scales. Here, the
magnetization is peaked at nonzero values of the bias voltage
� even when higher-order processes are taken into account.
This behavior was also seen in the symmetric case but only
if the hierarchy (7) is truncated at the first tier, that is by
disregarding higher-order processes. These processes become
quenched by the weaker coupling to the right electrode, while
resonant processes with respect to the left electrode are not.
The situation is therefore similar to the symmetrically coupled
case without higher-order processes. The magnetization of the
impurity evolves to very similar steady state values, but on
even longer times scales (t � 30/�). Minor differences occur
due to the weaker hybridization with the right electrode (i.e.,
a less pronounced broadening of the energy levels).

We close this section by a discussion on the generality
of our findings. We observed, for example, a very similar
behavior of the magnetization dynamics for different choices
of the voltage division factor (μL �= −μR for � �= 0, data
not shown). We also calculated the magnetization dynamics
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FIG. 9. (Color online) Magnetization of an Anderson impurity asymmetrically coupled to the electrodes as a function temperature and bias
voltage (S = 0) and for three different times (top row: t = 0.5/�; middle row: t = 5/�; bottom row: steady state). The left column depicts
the full HQME result. The middle and the right columns have been obtained by truncating the hierarchy (7) at the second and the first tier,
respectively.

starting from different initial states. If, for example, the initial
magnetization points in the direction of the magnetic field,
the impurity magnetization shows a very similar behavior as
compared to the one we discussed for a symmetric coupling
to the electrodes. Similar structures as for an asymmetric
coupling to the electrodes appear, if the initial magnetization
points opposite to the applied magnetic field. These signatures,
however, decay on much shorter time scales due to the stronger
coupling to the right electrode.

IV. CONCLUSION

In this work, we give the first direct comparison of the
hierarchical quantum master equation method [19,20,50–52]
and the diagrammatic, continuous-time quantum Monte Carlo
approach [37,39,43,44,48,49]. To this end, we have studied the
nonequilibrium transport properties of an Anderson impurity
that is coupled to two electrodes with different chemical
potentials. This transport problem represents a well established
and fairly well understood test case. We discussed the main
characteristics of the two numerically exact methods (cf.
Sec. II D). They are distinguished by the range of parameters
where exact results can be obtained in practical calculations.
CT-QMC gives access to the short- and intermediate-time
dynamics (� 10 units of the inverse hybridization strength) but
in general fails to describe long-time dynamics, for example,

in the presence of Kondo correlations, because the numerical
effort scales exponentially with the simulation time [43]. In
contrast, the hierarchical master equation method scales lin-
early with the simulation time and is, therefore, not limited in
terms of the accessible time scale. It represents a hybridization
expansion, which can be carried out to sufficiently high order
if the temperature in the electrodes is not too low. For the
present problem, we were able to obtain converged results only
for temperatures above the Kondo temperature. Our findings
provide a wealth of numerically exact benchmark data certain
to be useful to future method developers.

We have also elucidated interesting physical phenomena
for the range of parameters, where numerically exact results
have been accessible with a reasonable numerical effort. We
investigated the short-time dynamics of the (symmetrized)
current flowing through the impurity in the presence of a bias
voltage, starting from a product initial state where the impurity
is not populated by electrons. While a linear increase of the
current level is found for situations where the conduction bands
are not shifted with the applied bias voltage (corresponding to
realizations of quantum dots with semiconductor heterostruc-
tures), a qualitatively different behavior emerges when the
electrodes are not charged when applying a bias voltage. At
low temperatures, oscillations of the current level, current
ringing [87], due to dynamical phases appear. In addition to
the current, we also studied the magnetization dynamics in
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FIG. 10. (Color online) Convergence analysis of the sym-
metrized current I = (IL − IR)/2 that is flowing through the impurity
at kBT = � and � = 5� (S = 0) as a function of time t . (a) shows the
convergence behavior for U = 8�. The behavior for U = 0 is shown
in (b). The model parameters used to obtain this data are summarized
in Table I.

the presence of a magnetic field. We confirmed the recently
reported nonmonotonic temperature dependence of the steady
state magnetization [43] and traced it back to competing
broadening effects of the impurity levels. In addition, we found
complex structures on intermediate yet long time scales (i.e., in
the cases studied, about 10 units of the inverse hybridization
strength) in the presence of an asymmetric coupling to the
electrodes (cf. Fig. 9).

Our comparative study is a first step towards practical
guidelines in choosing the right solver for a given impurity
problem. Since the presented methods cannot cover the full
spectrum of problems, it would be interesting to compare
them to other exact schemes, including, for example, numerical
renormalization group, density matrix renormalization group,
multilayer multiconfigurational time-dependent Hartree, or
other quantum Monte Carlo schemes. A primary goal is to
identify regions of parameter space where methods overlap
and, of course, regions which cannot be covered satisfactorily
by any of the available methods. Further activities in this
direction are planned, and we would like to encourage other
researchers to participate in these efforts.

TABLE II. Number of auxiliary operators for different threshold
values of the importance criterion (10).

threshold value 10−1 10−2 10−3 10−4 10−5 10−6

number of AOs 269 447 1158 3009 8317 20912
max. tier level 2 3 3 4 5 5
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APPENDIX: CONVERGENCE PROPERTIES OF HQME

The convergence properties of the HQME approach
strongly depend on the importance criterion that is used to
truncate the hierarchy of equations of motion (7). In this
Appendix, we demonstrate the convergence behavior of our
HQME scheme explicitly. To this end, we reconsider the
time-dependent (converged) current shown in Fig. 4. We replot
the result for � = 5� in Fig. 10(a). It corresponds to the
graph with the threshold value Ath = 10−6. In addition, we
plot results that were obtained for higher threshold values Ath.
In Table II, we list the number of auxiliary operators (AO)
that were taken into account and the maximum tier level. The
results are considered to be converged once the threshold value
is below 10−5. The corresponding number of AOs is ∼104. The
respective maximum tier level is 5.

In Sec. III B, we have shown that our (converged) results
coincide with the ones obtained from CT-QMC. This demon-
strates the validity and usefulness of our truncation scheme.
At this point, we would like to give an additional proof of this
statement by showing the convergence of our scheme towards
the solution of an analytically solvable case. Figure 10(a) has
been obtained with the same parameters as Fig. 10(b), except
that we “turned off” electron-electron interactions, i.e., we
used U = 0. In this limit, the exact result is known and can be
obtained, for example, by truncating the hierarchy (7) at the
second tier [without applying the importance criterion (10)]
[52,72]. It can be seen that our results converge to the exact
result and that convergence is faster than in the interacting case.
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[49] M. Schiró and M. Fabrizio, Phys. Rev. B 79, 153302 (2009).
[50] Y. Tanimura, J. Phys. Soc. Jpn. 75, 082001 (2006).
[51] S. Welack, M. Schreiber, and U. Kleinekathöfer, J. Chem. Phys.
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