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Van Hove singularity and ferromagnetic instability in phosphorene
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Using Wannier-function-based interpolation techniques, we present compelling numerical evidence for the
presence of a saddle-point Van Hove singularity at the � point near the phosphorene Fermi energy. We show
that in proximity of the Van Hove singularity the spin susceptibility presents the logarithmic temperature
dependence typical of Liftshitz phase transitions. Furthermore, we demonstrate that the critical temperature
for the ferromagnetic transition can be greatly increased (up to 0.05 K) if strain along the zigzag ridges is applied.
Although the ferromagnetic state would be very difficult to experimentally reach, the logarithmic temperature
behavior of the spin susceptibility due to the Van Hove singularity is found to persist at much higher temperatures
(up to ∼97 K).
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I. INTRODUCTION

Saddle-point Van Hove singularities [1] (VHSs) originate
from saddle points in the band structure, around which the band
curvature has opposite signs along two orthogonal directions.
In two dimensions, the density of states (DOS) diverges
at the VHS, and therefore arbitrary weak interactions can
produce large effects in the electronic behavior, giving rise
to instabilities in many aspects such as charge, spin, and/or
pairing susceptibilities. Once the Fermi energy approaches a
VHS, ferromagnetism [2,3], antiferromagnetism [4], and/or
superconductivity [5–7] can be substantially enhanced.

The VHS is a topological critical point of the Fermi
surface, across which the quantum Lifshitz phase transition
takes place [8–11]. The Lifshitz transition for noninteracting
systems is continuous and does not break symmetry. For inter-
acting systems, however, the Lifshitz transition may become
discontinuous and accompany symmetry breaking [9,12]. In
cuprates, Hall coefficient measurements provide evidence for
the Fermi surface topology change [13,14]. The Lifshitz
transition is also proposed to change the Fermi liquid into
the marginal Fermi liquid [15], and the VHS is thus argued to
be responsible for the linear temperature (T ) dependence of
resistivity and the T -independent thermopower [16] observed
in this regime [17–19]. Moreover, in the so-called “Van Hove
scenario,” the presence of a VHS near the Fermi energy is
argued to play a major role in the high-Tc superconductivity of
cuprates [20,21]. Given the strong influence of VHSs on the
properties of materials, it is important to identify the presence
and understand the role of these singularities, especially for
technologically promising low-dimensional materials such as
phosphorene.

Phosphorene [22,23], a single layer of black phosphorus,
is the most recent addition to the growing family of two-
dimensional (2D) materials. It is a semiconductor with high
potential for applications in electronic and optoelectronic
devices [24]. Despite the relative infancy of the field, few-
layer phosphorene field effect transistors exhibit very high
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on-off current ratios [25,26] (exceeding 105) and ambipolar
behavior [27], together with the highest hole mobility ever
(4000 cm2/V s) for a 2D material apart from graphene [28].
Phosphorene’s pliable waved structure also allows for strain
engineering of both effective masses and band gaps [29]. Strain
can even induce a semiconductor to metal transition [23].

In this paper, we show that a VHS is present at the
phosphorene Fermi energy, and we investigate the consequent
ferromagnetic instability in both the unstrained and strained
cases.

The paper is organized as follows: after introducing the
computational methodology, in Sec. III A we present the
electronic structure of phosphorene near the VHS, in Sec. III B
we study the ferromagnetic instability (without strain), and
finally in Sec. III C we investigate the effect of strain on the
critical temperature Tc of the ferromagnetic transition.

II. COMPUTATIONAL DETAILS

The calculations involve the following three steps.
(i) A density functional theory (DFT) calculation is per-

formed with a plane wave basis set, as implemented in the
QUANTUM ESPRESSO package [30]. We use the PBEsol func-
tional [31] for the exchange and correlation energy. A plane-
wave basis set with a kinetic energy cutoff of 70 Ry (280 Ry)
is used to represent the electronic wave function (charge
density). The core electrons are described via the projected-
augmented wave (PAW) [32] method; 12.9 Å of vacuum are
added in the direction normal to the monolayer to avoid
spurious interactions between periodic replicas. Both lattice
parameters and atomic positions are relaxed until the forces
on each atom are less than 10−3 eV/Å and the pressure is less
than 1 kbar. After lattice relaxation, the phosphorene crystal
parameters are ax = 3.28 Å and ay = 4.44 Å, in agreement
with a previous study [23]. The optimized configuration of
the phosphorene monolayer is presented in Fig. 1(a). In this
DFT calculation, the Brillouin Zone (BZ) is sampled using
a �-centered 60 × 48 × 1 Monkhorst-Pack (MP) grid [33].
This calculation will serve as a benchmark for the Wannier
interpolation of the band structure [Figs. 1(b) and 1(c)].
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FIG. 1. (Color online) (a) Crystal structure of phosphorene and
its projections on the y-z, x-y, and x-z planes. (b) DFT-PBEsol elec-
tronic band structure (solid black line) and its Wannier interpolation
(dashed red line). The Brillouin zone is also shown. (c) Detail of the
electronic band structure and (d) DOS in a small region near the VHS.
The energy at the VHS is set to zero.

(ii) Using the self-consistent charge density obtained from
step (i), we evaluate the required input quantities for the
Wannier calculation (energy eigenvalues, overlap matrices,
and projections [34]) on a relatively coarse 10 × 8 × 1 mesh
for the unstrained case (Secs. III A and III B), and a 30 × 8 × 1
mesh for the strained case (Sec. III C). These k-point meshes
are fine enough to provide converged Wannier functions. The
calculations are performed with QUANTUM ESPRESSO and its
postprocessing subroutine PW2WANNIER90.

The aim of the two previous steps is to obtain the maximally
localized Wannier functions [34,35] (MLWFs) to be later used
for the very dense k-point sampling around the VHS.

(iii) With the energy eigenvalues, overlap matrices, and
projections obtained from step (ii), we construct the MLWFs
according to the procedure presented in Refs. [34,36]. The
resulting Wannier functions consist of three p orbitals centered
on each P atom, leading to the Wannierization of six valence
and six conduction bands (there are four P atoms in the
phosphorene unit cell).

One of the main advantages of the maximally localized
Wannier representation of the DFT orbitals is that quantities
calculated on a coarse reciprocal-space grid can be used to
interpolate on a much finer grid with low computational
cost. The Wannier interpolation is particularly useful when
a fine BZ sampling is required to converge the quantity of
interest. In this work, such quantities are the DOS and the
valence band in a small region around the VHS. For the DOS
calculation, an extremely dense Wannier interpolated mesh of
(4 × 104) × (3.2 × 104) × 1—corresponding to ∼1.3 billion
k points in the BZ—is used to capture the sharp peak in the
DOS due to the VHS. We use a smearing of 7 × 10−4 eV.
Similarly, a Wannier interpolation with a reciprocal lattice
spacing of �kx,y = (2 × 10−3) × 2π/ax,y corresponding to a
500 × 500 × 1 MP grid is employed for the contour plot of

the valence band around the VHS. All MLWF calculations are
performed with the WANNIER90 package [37].

To further validate the PBEsol results, we have performed
additional calculations with the local LDA functional [38],
the semilocal Perdew-Burke-Ernzerhof (PBE) functional [39],
the screened-hybrid HSE06 functional [40], and the GW

method [41,42] in order to elucidate the position of the valence
band maximum. In particular, the HSE06 functional and the
GW method are known to provide a more accurate description
of the electronic properties of semiconductors and insulators
than local or semilocal density functionals [43,44].

In local density approximation (LDA) and PBE calcula-
tions, atomic positions and lattice parameters are relaxed until
the forces are less than 10−3 eV/Å and the pressure less
than 1 kbar. The BZ is sampled with a �-centered 60 × 48 ×
1 MP grid as in the case of PBEsol calculations. The HSE06
corrections are instead calculated self-consistently using the
PBE relaxed lattice parameters and atomic positions, together
with a 12 × 12 × 1 MP grid. The band structure is then
obtained using the derived Wannier functions in a similar
fashion to the PBEsol calculations outlined above.

The GW calculations are performed in two steps. First,
atomic positions and relaxed lattice geometries are calculated
with the PBE functional and norm-conserving Troullier-
Martins pseudopotentials [45]. Then the GW corrections are
computed following the method proposed by Hybertsen and
Louie [41]. We include 138 bands in the evaluation of the
dielectric matrix and the self-energy, with a cutoff of 4 Ry for
the dielectric matrix; convergence was checked including up to
384 bands. A supercell of 20 Å in the direction perpendicular
to the monolayer and a slab-truncation potential [46] are used
in these GW calculations to avoid spurious interactions with
periodic replicas of the system. A fine MP grid is employed in
the direction of the VHS (100 × 8 × 1) to distinguish the top of
the valence band from the � point, thus providing evidence for
the presence of the VHS. All GW calculations are performed
with the plane-wave based ABINIT package [47].

III. RESULTS AND DISCUSSION

A. Electronic band structure and Van Hove singularity

Phosphorene is a semiconductor with a relatively large
band gap that is underestimated (0.72 eV) at the PBEsol
level (a well-known deficiency of local and semilocal DFT
functionals [48]), and enlarged at 1.6–2.0 eV when GW

corrections [41,42] are included [49–51]. The electronic band
structure of phosphorene, calculated with the PBEsol func-
tional, is shown in Fig. 1(b). The black solid line represents a
standard plane-wave DFT calculation, while the red dotted line
is the band structure obtained through a Wannier interpolation.
Our Wannier interpolation is very accurate, over a broad range
of energies. In particular, at � point, the DFT band structure
and the Wannier interpolation differ by less than 10−5 eV.

In agreement with recent studies [23,51,52], we find that the
top of the valence band is slightly away from the � point for
the LDA, PBE, and PBEsol functionals. Using these three
DFT functionals, we consistently find that the top of the
valence band is displaced from � along the �-X direction,
which is the direction along the phosphorene zigzag ridges
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TABLE I. Position of the valence band maximum, kmax, and its energy, Emax, relative to the � point [see Fig. 1(c)] calculated with different
computational methods and various strains, xstr, along the x direction of the phosphorene lattice. When kmax = 0 (and thus Emax = 0) the top
of the valence band coincides with the � point, and therefore the VHS is not present.

LDA PBE PBEsol HSE06 GW

kmax Emax kmax Emax kmax Emax kmax Emax kmax Emax

(A−1) (meV) (A−1) (meV) (A−1) (meV) (A−1) (meV) (A−1) (meV)

xstr = −8% 0.256 79.4 0.275 62.3 0.260 73.3 0.271 54.4 0.269 53.8
xstr = −6% 0.212 51.9 0.213 32.9 0.211 44.9 0.168 28.9 0.206 25.5
xstr = −4% 0.175 33.1 0.161 15.1 0.175 27.8 0.129 13.0 0.147 8.9
xstr = −2% 0.145 20.2 0.113 5.1 0.136 14.0 0.092 3.6 0.083 1.1
xstr = 0% 0.119 11.6 0.063 0.7 0.105 6.6 0.029 0.05 0.000 0.0
xstr = +4% 0.067 1.9 0.000 0.0 0.033 0.1 0.000 0.0 0.000 0.0

[see Fig. 1(a)]. The detailed symmetry analysis presented in
Ref. [52] attributes the absence of direct band gap to the
counteracting effects (in the k · p̂ approximation [53]) of states
of different symmetries on the valence band around the zone
center.

To further validate these results, we have carried out calcula-
tions using the screened hybrid HSE06 functional and the GW

approximation, which are known to improve the description
provided by local or semilocal DFT functionals (such as
LDA, PBE, and PBEsol), not only regarding band gaps, but
also concerning the band dispersion in semiconductors and
insulators [43,44,54–58].

To quantitatively characterize the valence band maximum,
we define kmax ≡ (kmax,0) as the wave vector at which the
valence band has a maximum, and Emax as the difference in
energy between the valence band maximum and the value
of the valence band at the � point. The results obtained
with various computational methods and different strains are
reported in Table I. As mentioned before, in absence of strain,
LDA, PBE, and PBEsol gives a valence band top slightly away
from the � point, with Emax ranging approximately from 1 to
12 meV. With the HSE06 functional, the valence band top
is slightly displaced from �; however, the calculated value
of Emax is so small (0.05 meV) that it can be considered
zero. Also the GW method—in the absence of strain—predicts
phosphorene to be a direct band-gap semiconductor.

We then apply strain along the x direction, changing
the lattice parameter ax to be ax(1 + xstr), where a positive
(negative) value of xstr indicates tensile (compressive) strain.
The results are shown in Table I. Application of compressive
strain moves the valence band top away from the � point
in all computational methods. In particular, with the HSE06
functional and the GW method, the top of the valence band
is displaced from the � point with a 2% strain; larger strains
monotonically increase both kmax and Emax with Emax ∼ 54
meV for a strain of 8% according to the GW method.
In contrast, tensile strain moves the top of the valence
band towards the � point, and eventually removes the VHS
singularity.

Having established that a VHS near the phosphorene Fermi
energy is either present or can be strain induced using a
wide range of electronic structure descriptions, hereafter we
consider as an explanatory example the case of the PBEsol

functional. Other functionals and the GW method are expected
to yield similar general results.

A magnification of the valence band maximum is shown
in Fig. 1(c). From Fig. 1(c), we notice that the valence band
has a saddle point at �. In the reciprocal-space neighborhood
of this point, the principal curvature is electronlike along the
�-X path [from the left in Fig. 1(c)], while it is holelike in
the �-Y path [from the right in Fig. 1(c)]. Thus, at the � point
there is a crossover from electronlike to holelike conduction
that originates at the VHS. The DOS, calculated on an ultrafine
grid of ∼1.3 billion k points, is shown in Fig. 1(d). It exhibits
a divergent behavior at the energy position of the VHS, as
expected for a 2D lattice. In contrast to the saddle-point
behavior at �, the valence band has a maximum at kmax

and therefore the DOS shows a steplike drop to zero at this
point [59].

Three-dimensional (3D) and 2D plots of the phosphorene
valence band in the neighborhood of the VHS (� point) are
depicted in Figs. 2(a) and 2(b), respectively. The electronlike
dispersion along the �-X path [cut-x in Fig. 2(a)] and the
holelike dispersion in the �-Y path [Cut-y in Fig. 2(a)] are
evident. The VHS has indeed the topology of a 3D saddle point.
Moreover, the valence band is anisotropic at the � point, with
strong dispersion along �-Y [armchair direction; see Fig. 1(a)],
while it is nearly flat on �-X [zigzag direction; see Fig. 1(a)].
The large difference in magnitude of the effective masses along
the two directions gives to the VHS an extended structure, as
shown in Fig. 2(b). From a fitting of the local curvature of
the valence band around the � point, we obtain mx/my ∼ 27,
where mx and my are the effective masses on the �-X and �-Y
path, respectively.

In the limit of infinite mass in one direction (i.e., flat
band in one direction, vanishing curvature) the saddle point
becomes extended, giving rise to a so-called extended VHS
(EVHS). EVHSs have been experimentally observed in doped
graphene [60] and in some layered cuprate superconduc-
tors [61–63]. In 2D materials, the DOS is known to diverge
logarithmically at the VHS, while in an EVHS the energy
dispersion is quasi-one-dimensional, and the DOS has a much
stronger square-root divergence [59]. Therefore, due to the
anisotropy of the phosphorene band structure, the VHS has
an extended character that might amplify its effects on the
material properties.
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FIG. 2. (Color online) (a) 3D plot of the phosphorene valence
band around the VHS (� point) (PBEsol functional). Cut-x(y)
indicates the �-X(Y ) path used in the band structure calculation.
(b) 2D contour plot of the valence band in a larger region around �.
The contour lines are drawn at 2 meV intervals. The energy at the
VHS is set to zero in both plots.

B. Ferromagnetic instability

As mentioned in the Introduction, the presence of a VHS at
the Fermi energy can create ferromagnetic, antiferromagnetic,
or superconducting instabilities. In contrast to cuprates where
the VHS points are at (π,0) and (0,π ), in phosphorene the VHS
point is at � and therefore we can exclude antiferromagnetism
since no inter-VHS scattering can induce this instability.
Furthermore, for highly anisotropic masses (see Sec. III A),
mx/my � 1, similar to the t − t ′ Hubbard model with large
t ′/t (>0.276), the ferromagnetic instability will win over
other instabilities [4,7,64]. As a result, we can omit also
superconductivity and consider only ferromagnetism.

The extremely fine structure of the VHS in phosphorene
requires a very high resolution calculation of the band
structure. To make the calculation accessible, instead of
using the band structure from the Wannier interpolation,
we approximate it here by an analytic single-band model.
Consistent with Fig. 1(c) and Fig. 2, the low-energy physics in
the neighborhood of the VHS can be described by

E(kx,ky) = 1
2αk2

x − 1
4βk4

x − 1
2α′k2

y, (1)

which characterizes the saddle point at � (opposite signed
band masses along kx and ky) and band inflection along kx . As
in the previous section, the VHS energy at �, EVHS, is set to
zero while the band maximum at kmax is Emax. To fit the DFT-
PBEsol calculations, the band parameters follow the relations:

α′/α = mx/my = 27.02,
√

α/β = |kmax| = 0.104 Å
−1

, and
α2/4β = Emax = 6.6 meV.

This simple model captures the energy dispersion behavior
near the VHS and, since the parameters of the model are

determined directly from the DFT calculation, it allows us
to investigate the magnetic instability quantitatively.

Obviously, a ferromagnetic instability can take place only in
metallic or semimetallic systems, and therefore some amount
of doping is required for phosphorene to exhibit metallic
behavior. To study the effects arising from the presence of
the VHS, hereafter we thus assume the Fermi energy to be
exactly at the VHS, EVHS = 0, unless otherwise stated. In the
case of the PBEsol functional, the amount of (hole) doping
necessary to reach the VHS (from the top of the valence band
Emax) is found to be approximately 4.2 × 10−3 electrons per
unit cell, corresponding to a surface doping concentration of
1.4 × 1012 cm−2 for each spin.

Given the energy dispersion in Eq. (1), it is possible to
derive an exact analytical expression for the DOS, N (E) (see
Appendix A for a complete derivation):

N (E) =
⎧⎨
⎩

−
√

2
βα′

axay

π2k+
K(

√
1 − p−2) if E � 0

−
√

2
βα′

axay

π2|k−|
1√

|p|2+1
K

(√
1

1+|p|−2

)
if E < 0,

(2)

where we have defined

k± = kmax

√
1 ±

√
1 − E/Emax, p2 = k2

+
k2−

(3)

and K(k) is the complete elliptic integral of the first kind. The
quantities ax and ay are the phosphorene lattice parameters, as
defined in Sec. II.

Since we are mainly interested in the behavior of the DOS
at the VHS, we take the limit E → 0 in Eq. (2) to obtain (see
Appendix A)

N (E → 0±) = axay

2π2
√

αα′ [ln(Emax/E) + O(1)]. (4)

The model of Eq. (1) therefore exhibits a logarithmically
divergent DOS and it is proportional to the geometric mean
mass,

√
mxmy ∝ 1/

√
αα′, so in the limit of small energies we

can approximate the DOS as

N (E) ≈ N0 ln(�/E), (5)

where N0 = axay

2π2
√

αα′ = 0.0588 eV−1, and � is an energy cutoff
of the order of Emax. In this approximation, the DOS only
includes contributions from states around �. This is fully
justified since the behavior of the DOS near the VHS is
obviously governed by its divergence at E = 0 (� point),
and therefore finite (not diverging) contributions from other
regions in the Brillouin zone can be neglected.

With the logarithmic DOS one can derive (see Appendix B)
an expression for the bare spin susceptibility that shows a
dependence on the logarithm of the inverse temperature,

χ (T ) = −
∫

BZ

d2k

(2π )2

∂nF(Ek)

∂Ek

(6)

≈ N0 ln(ωD/T ), (7)

where nF is the Fermi distribution, Ek are the energy (Kohn-
Sham) eigenvalues, and ωD is a fitting constant of the order
of Emax. We also set the Boltzmann constant kB to unity.
The logarithmic divergence at low temperatures [Eq. (7)] is
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FIG. 3. (Color online) (a) Temperature dependence of the bare
spin susceptibility χ calculated directly from Eq. (6) (blue dots) or
approximated with the logarithmic divergence in Eq. (7) (dashed red
line). The low-temperature behavior for T < T ∗ ∼ 1.5 meV is seen
in the inset to follow the logarithmic law. The dashed red line is fitted
to Eq. (7) with ωD = 0.5004 eV. The Fermi level is set to EVHS = 0.
(b) Spin susceptibilities χ at different Fermi energies μ. Away from
the VHS, the low-temperature logarithmic behavior stops at T ≈ μ

and turns into Pauli susceptibility.

confirmed by explicit calculation of the spin susceptibility
using Eq. (6), as shown in Fig. 3(a).

Notably, the logarithmic behavior is present only when
the temperature is lower than T ∗, which is defined as
the temperature above which the spin susceptibility starts
deviating from the logarithmic behavior. Thus, above T ∗ ∼
17 K (corresponding to an energy scale of 1.5 meV), we
observe deviation of the susceptibility from the logarithmic
law as seen in the inset of Fig. 3(a). This temperature T ∗
is related to the energy scale Emax. We have checked this
apparent relationship between T ∗ and Emax by comparing
susceptibilities for different band parameters β (and thus Emax)
in Eq. (1), and we indeed see proportionality between T ∗
and Emax (not shown). It is also found that the susceptibility
increases with Emax as expected from the energy cutoff and
fitting constant dependence in Eqs. (5) and (7), respectively.

Next, we examine the effect of doping on the ferromagnetic
instability, considering various chemical potential shifts μ. The
susceptibility was calculated numerically and the results are
presented in Fig. 3(b), in which the Fermi energy is shifted
to μ above EVHS (the energy of the VHS, or �). Figure 3(b)

shows that even away from the VHS point, the logarithmic-T
behavior of the susceptibility is still preserved for T < T ∗.
However, for each value of μ, we see that the logarithmic
increase of χ with decreasing T stops at μ, below which the
susceptibility becomes constant suggesting a transition to Pauli
paramagnetism at low temperatures. This different behavior
for large and small T (with respect to μ) can thus be understood
directly from the expression of the bare spin susceptibility as
outlined in Appendix B.

It is in fact possible to obtain analytical estimates for χ

in both regimes (please refer to Appendix B for a complete
derivation). For T � μ, the susceptibility has the form

χ (T � μ) ≈ N0 ln(ωD/T ) cosh−2(μ/2T ). (8)

We observe the logarithmic-T behavior, typical of Liftshitz
phase transitions. Moreover, for μ/T → 0, cosh−2(μ/2T ) →
1 and therefore, in this limit, χ for the doped system has
precisely the same behavior as in the undoped case, as
confirmed by the numerical results presented in Fig. 3(b).
In contrast, for T � μ the susceptibility is found to be
independent of T :

χ (T � μ) ≈ N0 ln(�̄/μ), (9)

where �̄ is an energy cutoff �̄ < Emax. This saturation of χ

agrees well with the numerical results presented in Fig. 3(b),
and it originates from the infrared cutoff of the excitations due
to the shifted thermal distribution (see Appendix B).

Now we estimate the ferromagnetic transition temperature.
Let us assume a Hubbard interaction of strength U between
intraorbital spins. According to the Stoner criterion [65], the
magnetic transition occurs when Uνχ (T ) = 1. Here Uν , which
is defined by U times the average weight Wν at the Fermi
energy for a particular orbital ν, is regarded as the effective
interaction of orbital ν.

According to the BCS theory [66], for a metal, the
superconductivity arises as a result of introducing an infinites-
imal (attractive) interaction between the electrons at zero
temperature. Analogously, in our system, as the density of
states diverges, we expect that infinitesimal interactions can
drive the ferromagnetic transition at zero temperature. From
the Stoner criterion, the critical temperature thus follows the
BCS form,

Tc = ωD exp(−1/N0Uν), (10)

where the geometric mean mass, appearing in N0 [as indicated
below Eq. (5)], determines the DOS at the Fermi energy.
Equation (10) is also consistent with the renormalization group
result for the spin susceptibility, which exhibits the same
logarithmic temperature behavior [64,67]. Here, the quantity
ωD is a suitable energy bound for the model. In general, it could
be, for example, the interaction strength or the bandwidth (the
scale of the VHS logarithmic tail). In our case, since the VHS
is close to the valence band maximum, Emax (above which
a large gap from the conduction band is present), the VHS
logarithmic tail ends at Emax, and therefore ωD ≈ Emax. Using
the BCS formula in Eq. (10), one can obtain the magnetization
directly.

The effective interaction Veff can be evaluated using
the Kohn-Sham orbitals from the DFT calculation. Let us
define orbital operators ψm and band operators φν . The
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relation between them is a unitary transformation ψm(k) =∑
ν Am,ν(k)φν(k) where A(k) is the unitary matrix that

diagonalizes the Bloch Hamiltonian. The Hubbard on-site
(intraorbital) interaction is

HU = U
∑
R,m

ψ
†
m↑(R)ψm↑(R)ψ†

m↓(R)ψm↓(R), (11)

where R is the real space lattice vector and ψm↑,↓ are the
Kohn-Sham spin orbitals.

Since only the valence band (VB) is included in our
low-energy model [Eq. (1)], we include only the intraband
scattering terms from the Hubbard model. Moreover, at
T = 0, only states from the Fermi surface contribute to
the susceptibility. After these considerations, the effective
interaction Veff for ν = VB is

Veff ≈ Uν

∑
k1,k2,k3

φ
†
ν↑(k1)φν↑(k2)φ†

ν↓(k3)φν↓(k1 + k3 − k2),

(12)

where the momenta k1, k2 and k3 are in the neighborhood of
the Fermi surface and the interaction strength

Uν = UWν = U

〈∑
m

|Am,ν(k)|4
〉

FS

(13)

is averaged on the Fermi surface in the sense that the
momentum dependence can be neglected since the Fermi
surface around the VHS is small.

From the DFT results, we obtain an average weight, Wν ,
for the contributing orbitals of about 0.2. This orbital weight
significantly reduces the critical temperature. For example,
using the criterion Uνχ (Tc) = 0.8 and at U = 4 eV, the critical
temperature Tc for ferromagnetism is only about 4 μK.

Doping can destroy ferromagnetism even at zero tem-
perature when N0Uν ln(ωD/μ) < 1. Although interorbital
interactions might slightly enhance Tc, the Stoner criterion
applied to the bare susceptibility typically overestimates the
critical temperature since particle-particle correlations would
give large corrections to the self-energy [67–69]. As a result,
this ferromagnetic state would be difficult to reach.

C. Effect of strain on the Van Hove singularity
and on the critical temperature

Strain can have a large effect on phosphorene’s pliable
waved structure, and therefore it represents a natural way to
tune the band parameters of the VHS, in order to increase
Tc. In particular, from Eq. (10) we notice that, for a fixed
effective interaction, the critical temperature can be varied in
two ways. One way is to increase ωD (or equivalently Emax; see
Sec. III B), which will cause a linear increase in Tc. The second
and more prominent way is to increase N0, which will result in
an exponential increase in Tc. This can be accomplished, for
instance, by reducing the dispersion in both x and y directions
near the � point [see Eqs. (1) and (5)].

We find that strain along the armchair direction [y axis in
Fig. 1(a)] does not significantly alter the critical temperature,
with a modest ninefold increase in Tc (∼36 μK) for a tensile
strain of 3%.

TABLE II. Parameters related to the VHS for different strains
on the zigzag direction [x axis in Fig. 1(a)]. For T < T ∗, the
susceptibility follows the logarithmic temperature dependence of
Eq. (7). The PBEsol functional is used.

xstr = −4% xstr = 0% xstr = +4%

kmax (1/Å) (0.175,0) (0.105,0) (0.033,0)
Emax (meV) 27.8 6.6 0.1
N0 (eV−1) 0.0374 0.0588 0.1909
T ∗ (K) 97 17 0.23
Tc (K) 5×10−7 4×10−6 5×10−2

The situation, however, is significantly different for strain
along the zigzag ridge direction [x axis in Fig. 1(a)]. The most
relevant quantities for representative x-strain values are listed
on Table II.

Compressive x strain of 4% slightly reduces N0 (see
Table II), and leads to a decrease in Tc to only 0.5 μK. In
contrast to this N0, we see from Table II that Emax increases
with this compressive x strain. Due to the proportionality
between Emax and T ∗, the spin susceptibility starts to follow
the logarithmic-T behavior—the signature of the VHS—at
higher temperatures than the unstrained case. For example, we
see that a compressive x strain of 4% leads to T ∗ of about 97 K
(8.4 meV) [see Fig. 4(a), yellow squares]. Due to the relatively
high temperatures involved, the logarithmic-T behavior
in the spin susceptibility could in principle be observable
experimentally, thus providing compelling evidence for the
presence of the VHS.

(a) (b)

x-strain (%)

T
 (

K
)

c

0 +1 +2 +3 +4

10-5

10-3

10-1

(c)

T
 (

K
)

c

N  (eV)0
-1

5 10 15

10-5

10-3

10-1

T (eV)
10-7 10-5 10-3 10-1

χ
(e

V
-1

)

0

1

2
0%
+4%
- 4%

FIG. 4. (Color online) Effect of zigzag ridge [x axis in Fig. 1(a)]
strain on the VHS. (a) Temperature dependence of the bare spin sus-
ceptibility χ for different strains. The arrows indicate the temperature
T ∗ at which the susceptibility starts to deviate from the logarithmic
behavior. (b) Critical temperature Tc as a function of strain. (c) Tc

versus N−1
0 . The behavior of Tc still follows the exponential law of

Eq. (10) even if strain is applied.
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In contrast, tensile x strain has the opposite effect on
the band parameters: while Emax diminishes, N0 is greatly
enhanced. Notably, the critical temperature exhibits an expo-
nential dependence on tensile strain, as depicted in Fig. 4(b).
For a 4% strain, the critical temperature is about 0.05 K.
Even though this corresponds to a 104-fold increase in Tc with
respect to the unstrained case, this magnetic state will hardly be
seen experimentally due to the very low temperatures required.
We also observe that the logarithmic divergence becomes the
dominant contribution at around T ∗ ∼ 0.23 K (0.002 meV)
[Fig. 4(a), orange crosses], a much lower value compared
to the unstrained case resulting from the flattening of the
valence band (and consequently diminished Emax), caused by
the applied stress.

The physics behind the strain dependence of the VHS
is simple. The act of stretching will decrease the hoppings
between phosphorus atomic orbitals, thus reducing the band-
width. As the dispersion decreases, we expect that α and α′
in Eq. (1) become smaller and hence the density of states N0

increases. The act of compressing will show the opposite trend.
Because the band inflection is along kx , x strain has a larger
effect on α compared to y strain, explaining our findings.

Finally, we observe that the critical temperature still follows
the exponential law of Eq. (10), even when strain is applied,
as shown in Fig. 4(c). For higher stress, Tc could deviate from
Eq. (10), since Emax diminishes (∼10−4 eV for a 4% tensile
strain) and therefore narrows the VHS divergence, limiting the
increase of the critical temperature.

IV. CONCLUSIONS

We have used Wannier-function-based interpolation tech-
niques to investigate the VHS at the � point near the
phosphorene Fermi energy with more than a billion k points.
Thanks to this extreme resolution, we are able to present
compelling numerical evidence for the presence of a VHS
near the phosphorene Fermi energy. As a result of its close
proximity to the valence band maximum, the VHS can be
reached with a hole doping concentration on the order of
1012 cm−2, easily achievable by chemical doping or ionic-
liquid gating [70].

Furthermore, we have calculated an exact expression for the
DOS near the VHS, and we have demonstrated that the spin
susceptibility presents a logarithmic-T behavior, signature of
the VHS, and consequent Lifshitz phase transition.

We have also shown that the critical temperature can be
increased up to 0.05 K by applying a modest strain to the phos-
phorene pliable waved structure. Although this ferromagnetic
state would be very difficult to reach experimentally, the loga-
rithmic temperature behavior of the spin susceptibility due to
the presence of the VHS could be observed because it persists
at higher temperatures (T ∗ ∼ 17 K for the unstrained case, and
T ∗ ∼ 97 K for a 4% tensile strain along the zigzag ridges).

There are numerous experimental techniques able to detect
the presence of VHSs. For example, the scanning tunnel-
ing microscope (STM) measures the tunneling differential
conductance, which is proportional to the local DOS [71],
and therefore represents an ideal tool to detect VHSs. This
technique has been used to observe VHSs in other 2D
materials such as twisted multilayer graphene [72], or the

cuprate superconductor Bi-2201 [63]. Furthermore, angle-
resolved photoemission spectroscopy (ARPES) can detect
saddle points in the single-particle energy dispersion, as
employed for numerous cuprate compounds [61,62,73,74] and
doped graphene [60]. Finally, the Knight shift [75] in nuclear
magnetic resonance experiments could provide evidence for
the change in spin susceptibility in proximity of the VHS.
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APPENDIX A: EXACT DERIVATION OF THE DENSITY
OF STATES

In this Appendix, we present an analytical derivation of the
DOS for phosphorene around the VHS. According to Eq. (1),
the dispersion relation of the valence band around the � point
has the form

Ek = 1
2αk2

x − 1
4βk4

x − 1
2α′k2

y (A1)

with α,β,α′ > 0. The valence band has its energy extreme
at Emax = α2/4β when (kx,ky) = (kmax,0) and kmax = √

α/β.
Moreover, there is a VHS at energy EVHS = 0 originating from
states near kx = 0.

By definition, the DOS per spin per unit area is

N (E) =
∫

dkxdky

(2π )2
δ(E − Ek)

= 2

(2π )2

∫
dkx

∫
ky�0

dky

1∣∣∂ky
Ek

∣∣δ(ky − kE
y

)

= 1√
2α′π2

∫
kx�0

dkx

1√
α
2 k2

x − β

4 k4
x − E

, (A2)

where kE
y satisfies E = 1

2αk2
x − 1

4βk4
x − 1

2α′(kE
y )

2
.

The integration range is limited by the fact that the square-
root term has to be real. After some algebra, one can show that
the integral range is k ∈ [max(0,k−),k+] with

k± =

√√√√α

β
±

√(
α

β

)2

− 4E

β
= kmax

√
1 ±

√
1 − E/Emax.

(A3)

Thus, if E < 0, k− is not purely real, and the lower bound is
zero. Therefore, we have∫ k+

0
dkx

1√
α
2 k2

x − β

4 k4
x − E

=
∫ k+

0
dkx

1√( − β

4

)(
k2
x − k2+

)(
k2
x − k2−

)
085423-7
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= −2i√
βk−

∫ 1

0
dx

1√
(1 − x2)(1 − p2x2)

= −2i√
βk−

F

(
π

2
,p

)
= −2i√

βk−
K(p), (A4)

where we have defined

p2 ≡ k2
+

k2−
= Emax

E

(
1 +

√
1 − E

Emax

)2

(A5)

and introduced F (φ,k) the incomplete elliptic integral of the
first kind and K(k) the complete elliptic integral of the first
kind. They are related here by F (π

2 ,k) = K(k).
On the other hand, if E > 0 (k− > 0), the lower bound is

k− and we will deal with∫ k+

k−
dkx

1√
α
2 k2

x − β

4 k4
x − E

=
∫ k+

k−
dkx

1√( − β

4

)(
k2
x − k2+

)(
k2
x − k2−

)
= −2i√

βk−

∫ 1

p−1
dx

1√
(1 − x2)(1 − p2x2)

= −2i√
βk−

(−i

p

)
F

(
π

2
,
√

1 − p−2

)

= −2√
βk+

K(
√

1 − p−2). (A6)

In Eqs. (A4) and (A6), we have used the integral formulas:∫ u

0
dx

1√
(1 − x2)(1 − p2x2)

= 1

2

∫ u2

0
dz

1√
z(1 − z)(1 − p2z)

= F ( arcsin(u),p), (A7)∫ 1

u

dx
1√

(1 − x2)(1 − p2x2)

= 1

2

∫ 1

u2
dz

1

ip
√

z(1 − z)(z − p−2)

= −i

p
F

⎛
⎝arcsin

⎛
⎝

√
1 − u2

1 − p−2

⎞
⎠,

√
1 − p−2

⎞
⎠. (A8)

For negative energies, E < 0,

k− = i

√√
1 + |E|/Emax − 1 = i|k−|, (A9)

p = i

√
Emax

|E|

(
1 +

√
1 + |E|

Emax

)
= i|p|, (A10)

and therefore we will use the relation

K(ik) = 1√
k2 + 1

K

⎛
⎝

√
k2

k2 + 1

⎞
⎠ (A11)

in Eq. (A4).

In conclusion, the density of states for E < 0 and E > 0
are, respectively,

N (E < 0) = 1√
2α′π2

∫ k+

0
dkx

1√
α
2 k2

x − β

4 k4
x − E

= − i

√
2

βα′
1

π2i|k−|K(i|p|)

= −
√

2

βα′
1

π2|k−|
1√

|p|2 + 1
K

(√
1

1 + |p|−2

)

(A12)

and

N (E > 0) = 1√
2α′π2

∫ k+

k−
dkx

1√
α
2 k2

x − β

4 k4
x − E

= −
√

2

βα′
1

π2k+
K(

√
1 − p−2). (A13)

The final step is to analyze the asymptotic behavior of the
DOS. Since K will show a logarithmical divergence when

K(k = 1 − η)
η→0−→ 1

2 ln |η| + O(1), (A14)

for E → 0, both the quantities
√

1
1+|p|−2 and

√
1 − p−2

approach one. By using k± → √
2kmax, |k−| → kmax

√
|E|

2Emax
,

|p| → 2
√

Emax
|E| , and 1√

|p|2+1
→ 1

2

√
|E|

Emax
, we obtain the DOS

at the VHS as

N (E → 0−) = 1

2π2

√
1

αα′

[
ln

(
Emax

|E|
)

+ O(1)

]
(A15)

and similarly,

N (E → 0+) = 1

2π2

√
1

αα′

[
ln

(
Emax

E

)
+ O(1)

]
. (A16)

After multiplication by the unit cell area ax × ay , we obtain
the result reported in Eq. (4).

APPENDIX B: BARE SPIN SUSCEPTIBILITY AT THE VHS
AND THE EFFECT OF DOPING

First, we derive the bare susceptibility when the Fermi
energy is at EVHS = 0 (μ = 0). The spin susceptibility is given
by

χ (T ) = axay

(2π )2

∫
d2k

1

4T
cosh−2

(
Ek

2T

)

= 1

4T

∫ Emax

−∞
dE N (E) cosh−2

(
E

2T

)

≈ 1

4T

∫ �

−�

dE N0 ln

(
�̄

|E|
)

cosh−2

(
E

2T

)

= 1

2
N0

∫ �/2T

−�/2T

dx ln

(
�̄/2T

|x|
)

cosh−2 x

085423-8
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= −N0

∫ �/2T

0
dx

ln x

cosh2 x

+ N0 ln

(
�̄

2T

) ∫ �/2T

0
dx cosh−2 x,

where we have considered only the contribution from the VHS
and the logarithmic behavior applies when |E| < � and �̄ is
another energy cutoff �̄ < Emax.

If we then consider the limit � � T and use the formulas∫ ∞

0
dx

ln x

cosh2 x
= log

π

4
− γe ≡ −C = −0.8188 (B1)

(γe is the Euler-Mascheroni constant) and∫ �/2T

0
dx cosh−2 x = tanh

�

2T
≈ 1, (B2)

we obtain the following expression for the bare susceptibility:

χ (T ) ≈ N0C + N0 ln

(
�̄

2T

)
≡ N0 ln(ωD/T ), (B3)

which is Eq. (7) in the main text.
Then, we discuss the effect of doping on the susceptibility.

When we shift the Fermi energy from zero (EVHS) to μ, the
VHS will change to −μ, and therefore we can replace the DOS
by N (E) ≈ N0 ln �

|E+μ| for |E + μ| < �. The susceptibility
thus becomes

χ (T ) ≈ 1

4T
N0

∫ �−μ

−�−μ

dE ln

(
�̄

|E + μ|
)

cosh−2

(
E

2T

)

= 1

4T
N0

∫ �

−�

dE ln
�̄

|E| cosh−2

(
E − μ

2T

)
. (B4)

We will now consider two regimes: T � μ and T � μ.
Let us start with the case T � μ. By using the expansion

cosh

(
E − μ

2T

)
= cosh

(
E

2T

)
cosh

( μ

2T

)
+

− sinh

(
E

2T

)
sinh

( μ

2T

)
, (B5)

and the approximation

cosh−2

(
E − μ

2T

)
≈ cosh−2

(
E

2T

)
cosh−2

( μ

2T

)
, (B6)

the susceptibility can be written as

χ (T � μ) ≈ 1

4T
N0

∫ �

−�

dE ln
�̄

|E| cosh−2

(
E

2T

)

× cosh−2
( μ

2T

)
(B7)

= N0 ln (ωD/T ) cosh−2
( μ

2T

)
≈ N0 ln (ωD/T ) (B8)

and therefore, in this regime, the susceptibility is the same as
the undoped case [compare to Eq. (B3)].

On the other hand, when T � μ, the function cosh−2(E−μ

2T
)

decreases proportionally to exp(μ−E

T
) for |E − μ| �

T . Therefore it is a good approximation to replace

ln �̄
|E| cosh−2(E−μ

2T
) by ln �̄

|μ| cosh−2(E−μ

2T
) in the integrand in

Eq. (B4). As a result,

χ (T � μ) ≈ 1

4T
N0

∫ �

−�

dE ln
�̄

|E| cosh−2

(
E − μ

2T

)

= 1

4T
N0

∫ �

0
dE ln

�̄

|E|
[

cosh−2

(
E − μ

2T

)

× cosh−2

(
E + μ

2T

)
+ cosh−2

(
E + μ

2T

)]

≈ 1

4T
N0

∫ �

0
dE ln

�̄

μ

[
cosh−2

(
E − μ

2T

)

× cosh−2

(
E + μ

2T

)
+ cosh−2

(
E + μ

2T

)]
.

(B9)

Then, using

∫ �

0
dE cosh−2

(
E ± μ

2T

)

= 2T

[
tanh

(
� ∓ μ

2T

)
± tanh

( μ

2T

)]
(B10)

we obtain

χ (T � μ) =1

2
N0 ln

�̄

μ

[
tanh

(
� + μ

2T

)
+ tanh

(
� − μ

2T

)]

=1

2
N0 ln

�̄

μ

sinh �
T

cosh �+μ

2T
cosh �−μ

2T

≈N0 ln
�̄

μ
tanh

�

T
≈ N0 ln

�̄

μ
. (B11)

The final result of Eq. (B11) indicates that, in this regime, the
bare spin susceptibility is independent of temperature, as seen
in Fig. 3(b). This behavior originates from the infrared cutoff
of the excitations due to the thermal distribution. Let us in fact
consider the integrand in Eq. (B9):

ln
�̄

|E|
[

cosh−2

(
E − μ

2T

)
+ cosh−2

(
E + μ

2T

)]

� ln
�̄

|E| cosh−2

(
E − μ

2T

)
. (B12)

Due to the chemical potential shift μ, the thermal distribution
function cosh−2(E−μ

2T
) ∼ exp[− 1√

2
(E−μ

2T
)2] is now centered at

E = μ and not at E = 0 like in the undoped case. Therefore,
the integration around E = 0, where the logarithmic function
diverges, now makes essentially no contribution to the total
integral, giving rise to the flattening of the susceptibility
observed for T � μ.
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