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transition-metal dichalcogenides
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We discuss the linear and two-photon spectroscopic selection rules for spin-singlet excitons in monolayer
transition-metal dichalcogenides. Our microscopic formalism combines a fully k-dependent few-orbital band
structure with a many-body Bethe-Salpeter equation treatment of the electron-hole interaction, using a
model dielectric function. We show analytically and numerically that the single-particle, valley-dependent
selection rules are preserved in the presence of excitonic effects. Furthermore, we definitively demon-
strate that the bright (one-photon allowed) excitons have s-type azimuthal symmetry and that dark p-
type excitons can be probed via two-photon spectroscopy. The screened Coulomb interaction in these
materials substantially deviates from the 1/ε0r form; this breaks the “accidental” angular momentum
degeneracy in the exciton spectrum, such that the 2p exciton has a lower energy than the 2s exciton
by at least 50 meV. We compare our calculated two-photon absorption spectra to recent experimental
measurements.
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I. INTRODUCTION

The transition-metal dichalcogenides (TMDCs) are a fam-
ily of layered semiconducting crystals that includes MoS2,
MoSe2, WS2, and WSe2. Isolated monolayers of TMDCs have
been recently investigated for two major reasons. First, the
emergent direct band gap occurs at the corners of the hexagonal
Brillouin zone (so-called valleys) [1,2] and the nearby band
structure topology leads to valley-dependent optical selection
rules [3–5]. Second, the carrier confinement and reduced
dielectric screening leads to large many-body effects, such
as the formation of strongly bound excitons [6–10], trions
[6,11–13], and biexcitons [14] with very large binding ener-
gies. A unified understanding of the optical properties must
treat both of these aspects on equal footing, and significant
effort is now being focused on investigating the detailed
spectroscopy of excitons in monolayer TMDCs.

In the ongoing effort to understand excitons in these mate-
rials, multiple spectroscopic techniques have been employed,
including reflectance [9,10,15], photoluminescence excitation
spectroscopy [16], scanning tunneling spectroscopy [17,18],
and two-photon luminescence [9,19,20]. A rigorous knowl-
edge of the spectroscopic selection rules for excitons in
monolayer TMDCs is crucial for the proper interpretation
of these and future experiments. In this paper, we develop
a model-based framework which is sufficiently detailed to
provide quantitative results, but also sufficiently simple to al-
low precise statements about symmetry-determined selection
rules. We describe the connection to our previous work based
on an effective mass theory of excitons [6], and identify the
key microscopic physical factors that determine the properties
of excitons and their interaction with photons. We also provide
the first theoretical treatment of two-photon absorption in
monolayer TMDCs.

The outline of the paper is as follows. In Sec. II we
will discuss simple microscopic models of the single-particle

band structure in monolayer TMDCs, and in particular we
will analyze the transition matrix elements which completely
determine the independent-electron absorption and partially
determine the excitonic absorption. We will then in Sec. III
analyze the linear optical properties and present selection
rules, both in the absence and presence of exciton effects,
definitively finding that s-type excitons are optically bright.
Last, in Sec. IV we will calculate the two-photon absorption
signal which will be shown to probe p-type excitons and we
will discuss some of the implications for recent experiments.
We conclude in Sec. V, and make connection to other recent
theoretical works. We note that a preliminary version of this
work appeared in Ref. [21].

II. SINGLE-PARTICLE BAND STRUCTURE

We will consider two models for the single-particle
band structure. First, we will consider a widely used long-
wavelength, two-band model [3]. In particular, this minimal
model allows for a largely analytical treatment, which exposes
many of the subtleties of the theory, including selection rules
and exciton effects. Second, we will use a recently presented
nonlinear three-band model [22], which requires a numerical
treatment but captures higher-order effects. This also ensures
that our conclusions are generally valid and not specifically
dependent on the simplified two-band picture. For simplicity
we will henceforth neglect spin-orbit coupling, though it can
be straightforwardly included in the single-particle descrip-
tion [3,22,23]. Specifically, in all models of the band structure,
the spin projection sz is still a good quantum number in the
presence of spin-orbit coupling. In this sense, the following
discussion applies to the A exciton (and not the B exciton) and
conventional factors of 2 for spin will not appear. At this level
of theory, the formalism for the B exciton is identical, and its
contribution is simply shifted to higher energies.
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A. Two-band model

The first model considered has the form of a conventional
two-band, massive Dirac Hamiltonian,

Hτ (k) =
(

Eg/2 at(τqx − iqy)
at(τqx + iqy) −Eg/2

)
. (1)

The variable τ = ±1 indexes the two “valleys,” known as the
K and K ′ (or K and −K) points, which occur at alternating
corners of the hexagonal first Brillouin zone. The Hamiltonian
has been linearized in the wavevector difference with respect
to the nearest K point, i.e., q = k − K . This is a gapped
version of the conventional graphene Hamiltonian [24]. In
graphene, the spinor basis corresponds to carbon pz orbitals
on the two distinct sublattices; in the TMDCs, the basis
corresponds to the transition-metal |dz2〉 ≡ |φc〉 orbital and the
metal symmetry-adapted |dx2−y2〉 + iτ |dxy〉 ≡ |φτ

v 〉 orbital.
The above Hamiltonian was first used for TMDCs by Xiao
et al. [3] who predicted optical selection rules leading to
spin-valley coupling. Such spin-valley coupling was quickly
confirmed experimentally, by monitoring the circular polar-
ization of photoluminescence [4,5].

The eigenvalues of the two-band Hamiltonian are

Ec/v(k) = ± 1
2

√
E2

g + 4(atq)2 ≡ ±ε(k) (2)

and the eigenvectors are

∣∣ψτ
c,k

〉 = 1√
2

[√
α+(k)|φc〉 + √

α−(k)eiτφk
∣∣φτ

v

〉]
, (3a)

∣∣ψτ
v,k

〉 = 1√
2

[−√
α−(k)|φc〉 + √

α+(k)eiτφk
∣∣φτ

v

〉]
. (3b)

where α±(k) = 1 ± Eg/[2ε(k)] and tan φk = qy/qx . The rela-
tive phase appearing within each eigenvector is associated with
an electronic “chirality” (related to Berry’s phase), which is
well known in graphene [24–26]. Note that the overall phase of
each eigenvector is arbitrary, and the phase convention chosen
here is such that the first element of each eigenvector is purely
real.

B. Three-band model

A more detailed Hamiltonian—using three bands derived
from the transition-metal |dz2〉, |dxy〉, and |dx2−y2〉 atomic
orbitals—was given recently by Liu et al. [22]. The form of the
matrix elements and material-specific parameters can be found
in Ref. [22]. We note than in addition to using three bands
instead of two, this Hamiltonian has not been linearized with
respect to wavevector near the K and K ′ points, which gives
a more accurate description throughout the entire Brillouin
zone. While it cannot be so easily diagonalized analytically,
the Hamiltonian can be straightforwardly diagonalized numer-
ically. For phase consistency in later calculations, we enforce
the same phase convention as for the two-band eigenvectors,
i.e., that the first element of each eigenvector is purely real,
which is sufficient to ensure continuity in k-space. In Fig. 1,
the band structure predicted by these two models is compared
to the band structure calculated by density functional theory
with the local density approximation.
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FIG. 1. (Color online) Single-particle band structure of MoS2

predicted by a linearized two-band model (blue solid) and a nonlinear
three-band model (red dashed) compared to first-principles density
functional theory with the local density approximation (DFT, solid
black).

C. Transition matrix elements

An analysis of optical selection rules requires the momen-
tum matrix elements between single-particle states. In the
present model Hamiltonians, the momentum matrix elements
normal to the layer are zero by symmetry. Here we focus on the
momentum in the plane. By using the commutation relation
p = (−im/�)[r,H ], we can write these momentum matrix
elements as

Pvc(k) = −im

�
〈ψv,k|[r,H ]|ψc,k〉

= m

�
(Ec,k − Ev,k)〈ψv,k|∇k|ψc,k〉, (4)

where we have used the k-space representation of the position
operator, r = i∇k. We can now use a generalized Feynman-
Hellman theorem to write this as

Pvc(k) = m

�
〈ψv,k|∇kH (k)|ψc,k〉 (5)

(note that this expression neglects the on-site, intra-atomic con-
tribution [27], however this vanishes here for d-d transitions).
For the simple two-band Hamiltonian, this gives

∇kH (k) =
(

0 at(τ x̂ − iŷ)
at(τ x̂ + iŷ) 0

)
. (6)

The appropriate matrix element can then be taken between the
conduction and valence band eigenstates of the Hamiltonian,
yielding a transition dipole vector Pvc(k) with linear x- and
y-polarization components

P vc
x (k) = τ

mat

2�
[α+(k)e−iτφk − α−(k)eiτφk ], (7)

P vc
y (k) = i

mat

2�
[α+(k)e−iτφk + α−(k)eiτφk ]. (8)

The same procedure can be done for the three-band Hamilto-
nian, by taking the gradient and calculating (numerically) the
appropriate matrix element between conduction and valence
bands. A comparison of the real and imaginary parts of the
x and y components of the two different models of the band
structure is shown in Fig. 2 throughout the entire first Brillouin
zone.
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FIG. 2. (Color online) Valence to lowest conduction band momentum matrix elements for a linearized two-band model (top) and a nonlinear
three-band model (bottom). Blue is positive, red is negative, and white is zero. The results are qualitatively very similar in the immediate
vicinity of the K and K ′ points, but differ elsewhere in the Brillouin zone.

Valley-dependent selection rules have been shown to arise
specifically for the case of circularly polarized light [3]. For
circular polarizations, the above expressions can be combined
to give, in the two-band case,

P vc
± (k) = 1√

2

[
P vc

x (k) ± iP vc
y (k)

]

= ∓ mat√
2�

(
1 ∓ τ

Eg

2ε(k)

)
e±iφk , (9)

leading to the valley-dependent intensities,

|P vc
± (k)|2 = m2a2t2

2�2

(
1 ∓ τ

Eg

2ε(k)

)2

. (10)

Near the K and K ′ points, 2ε(k) → Eg , such that P vc
± (k) ∝

(1 ∓ τ )e±iφk and |P vc
± (k)|2 ∝ (1 ∓ τ )2, i.e., circular polar-

ization can selectively excite electrons at the K or K ′
point. For example, right-handed circular polarization, P vc

− (k),
selectively excites at the K (τ = +1) point. Again, this
analysis can be carried out numerically for the three-band
model. A comparison of the the selection rules, |P vc

± (k)|2,
for the two models is shown in Fig. 3. Note that while the
matrix elements themselves have an ambiguity in the phase
(i.e., they are not observable), the squared matrix elements are
completely independent of the phase convention. In Sec. III B,
we will show how the nodal structure (p-type symmetry) of
the momentum matrix elements is canceled, leading to bright
s-type excitons which still respect the valley selectivity.
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FIG. 3. (Color online) Valence to lowest conduction band mo-
mentum matrix elements squared, for circular polarization, for a
linearized two-band model (top) and a nonlinear three-band model
(bottom). Black is positive and white is zero. The results are
qualitatively very similar in the immediate vicinity of the K and
K ′ points, but differ elsewhere in the Brillouin zone.
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III. LINEAR OPTICAL PROPERTIES
AND SELECTION RULES

In general, the transition probability per unit time is given
by

W (ω) = 2π

�

∑
F

|VIF |2δ(EF − EI − �ω), (11)

where VIF is the matrix element which couples the initial
and final states with energies EI and EF . For the linear
(one-photon) absorption, we have V = (eA/mc)λ · p̂, where
A is the vector potential and λ is the polarization. Within the
presently considered model Hamiltonians, symmetry excludes
coupling to photons with electric vector polarized perpendic-
ular to the plane of the monolayer. Here we explicitly consider
the case with electric vector polarized in the plane. We will
evaluate this expression first in the independent particle picture
and then in the presence of excitonic effects.

A. Independent particle absorption

For an uncorrelated initial ground state |0〉 and an uncorre-
lated final excited state c

†
c,kcv,k|0〉, it is simple to show

VIF = eA

mc
〈0|λ · p̂c

†
c,kcv,k|0〉 = eA

mc
λ · Pcv(k), (12)

EF − EI = Ec(k) − Ev(k), (13)

and therefore

W (ω) = 2π

�

(
eA

mc

)2 ∑
cv,k

|λ · Pcv(k)|2

× δ(Ec(k) − Ev(k) − �ω). (14)

The imaginary part of the dielectric function follows as [28]1

ε2(ω) = 4π2e2

m2ω2

∑
cv

∫
BZ

d2k

(2π )2
|λ · Pvc(k)|2

× δ(Ec(k) − Ev(k) − �ω), (15)

where we have taken the infinite-system limit. Let us specif-
ically consider the linearized two-band model with right-
handed circular polarization, λ · Pvc(k) = P vc

− (k), for which
we can carry out the integration in Eq. (15) semi-analytically.
Considering only one valley (say τ = +1), we can change to
polar coordinates about the K point,

εK
2 (ω) = 2πe2

m2ω2

∫ ∞

0
k|P vc

− (k)|2δ(2ε(k) − �ω)dk. (16)

Note that by integrating out to infinity, we are incurring an
error at large wavevectors (energies). Since the dispersion
relation is monotonic, we can change variables, k dk =
ε dε/a2t2, and use the squared matrix element from above to

1Strictly, this is a 2D dielectric function, with units of length, akin
to a sheet polarizability per unit area.

find

εK
2 (ω) = πe2

�2ω2

∫ ∞

0
dε θ (2ε − Eg)ε

(
1 + Eg

2ε

)2

δ(2ε − �ω)

= πe2

4�ω
θ (�ω − Eg)

(
1 + Eg

�ω

)2

. (17)

Accounting for the other valley, ε2(ω) = εK
2 (ω) + εK ′

2 (ω),
yields

ε2(ω) = πe2

4�ω
θ (�ω − Eg)

[(
1 + Eg

�ω

)2

+
(

1 − Eg

�ω

)2]

= πe2

2�ω
θ (�ω − Eg)

(
1 + E2

g

(�ω)2

)
. (18)

At energies just above the gap, the dielectric function is like
that of a conventional two-dimensional (2D) semiconductor,
i.e., ω2ε2(ω) = const, but at higher energies it behaves like
graphene (due to the linear dispersion), i.e., ωε2(ω) = const.
However, the linear dispersion is unrealistic for TMDCs, as
can be seen in the full band structure (Fig. 1).

B. Exciton absorption and the Bethe-Salpeter equation

We now consider the spin-singlet optical properties includ-
ing the excitonic effects arising from the strong electron-hole
interaction. The correlated excited states within the single-
excitation approximation can be written as

|X〉 =
BZ∑
k

∑
vc

AX
vc(k) c

†
c,kcv,k|0〉, (19)

where |0〉 is again an uncorrelated (determinental) ground
state. This form for the excited state wavefunction underlies
the time-dependent Hartree-Fock and Bethe-Salpeter equation
(BSE) formalisms; here we will pursue the latter, which is a
many-body perturbative theory in the screened two-particle
interaction. For a periodic crystal exciton wavefunction,
Eq. (19), the BSE is an eigenvalue problem [29] for the exciton
energy EX,

EXAX
vc(k) = (Ec,k − Ev,k)AX

vc(k)

+ 1

A

BZ∑
k′

∑
v′,c′

〈ψv,kψc,k|Keh|ψv′,k′ψc′,k′ 〉AX
v′c′ (k′).

(20)

The electron-hole interaction kernel Keh is the sum of a
frequency-dependent screened Coulomb interaction and an
unscreened exchange interaction [29],

〈ψv,kψc,k|Keh,d |ψv′,k′ψc′,k′ 〉

= −
∫

dd r
∫

dd r ′ψ∗
c,k(r)ψc′,k′ (r)W (r,r ′,ω)

×ψv,k(r ′)ψ∗
v′,k′(r ′), (21a)

〈ψv,kψc,k|Keh,x |ψv′,k′ψc′,k′ 〉

=
∫

dd r
∫

dd r ′ψ∗
c,k(r)ψv,k(r)|r − r ′|−1

×ψc′,k′(r ′)ψ∗
v′,k′(r ′). (21b)
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If we (i) neglect the exchange interaction, (ii) neglect the
frequency-dependence and local-field effects of the screened
direct interaction, i.e., W (r,r ′,ω) ≈ W (r − r ′,ω = 0), and
(iii) make a “zero differential overlap” approximation for the
atomic orbitals, we find

〈ψv,kψc,k|Keh|ψv′,k′ψc′,k′ 〉
≈ −〈ψc,k|ψc′,k′ 〉〈ψv′,k′ |ψv,k〉W (k − k′). (22)

In the above, we have neglected the possible orbital structure
to the screened interaction Wij (r − r ′).

At this point, we wish to emphasize that the orbital overlap
prefactor in the screened interaction is crucially important. As
an explicit example, in the two-band picture, we have

〈
ψτ

c,k

∣∣ψτ
c,k′

〉 = 1
2

[√
α+(k)α+(k′) +

√
α−(k)α−(k′)e−iτ (φk−φk′ )

]
,

(23a)
〈
ψτ

v,k′
∣∣ψτ

v,k

〉 = 1
2

[√
α−(k′)α−(k) +

√
α+(k′)α+(k)eiτ (φk−φk′ )

]
.

(23b)

As before, near the K and K ′ points, 2ε(k) → Eg , [i.e.
α+(k) ≈ 1 and α−(k) ≈ 0], and in this limit,

〈
ψτ

c,k

∣∣ψτ
c,k′

〉 ≈ 1 (24a)〈
ψτ

v,k′
∣∣ψτ

v,k

〉 ≈ eiτ (φk−φk′ ). (24b)

The BSE, Eq. (20), then yields a Wannier-like, two-band
picture with an unusual phase factor in the screened interaction,

EXAX
vc(k) = (Ec,k − Ev,k)AX

vc(k)

− 1

A

BZ∑
k′

W (k − k′)eiτ (φk−φk′ )AX
vc(k′). (25)

Multiplying through by e−iτφk gives a conventional Wannier
equation for the pseudo-wavefunction ÃX

vc(k) = e−iτφkAX
vc(k).

If the bands can be approximated as parabolic, this means
that the energy spectrum of the BSE is identical to that
of a corresponding real-space Wannier equation with a
screened interaction W (r), as we have employed in previous
work [6,10],

[EX − Eg]ÃX
vc(r) =

[
− 1

2μ
∇2

r − W (r)

]
ÃX

vc(r). (26)

However, as explained in a recent work by Srivastava and
Imamoglu [30], systematically continuing the expansion of
Eqs. (24) for small k − k′ leads to additional terms in the
Coulomb interaction that weakly break certain degeneracies
(see below). In this case, the spectrum of Eqs. (25) and (26)
is no longer identical to that of the BSE with the screened
interaction given in Eq. (22).

It remains to be shown whether the exciton wavefunctions
of the original problem, as described by the BSE (25), have
the same selection rules or the same spatial symmetries as
the wavefunction of the real-space Wannier equation (26). To
analyze the spatial symmetries, we can calculate the real-space

wavefunction corresponding to the solution of the BSE, with
the hole position fixed at the origin. We find

�X(re,rh = 0) ≡
∑

k

AX
vc(k)ψc,k(re)ψ∗

v,k(0)

≈
∑

k

AX
vc(k)e−iτφkeik·re = ÃX

vc(re), (27)

demonstrating that the wavefunction which solves the real-
space equation (26) is indeed (approximately) the same as the
real-space BSE wavefunction. At a less approximate level, the
spatial symmetries (s, p, d, etc.) will be identical. This is one
of the main conclusions of this work.

To determine the selection rules, we now consider the
optical absorption in the presence of correlated excitonic
effects. Assuming as before an uncorrelated initial (ground)
state |I 〉 = |0〉, but now using a Wannier-like final exciton
state |X〉 as in Eq. (19) gives

〈I |λ · p̂|X〉 =
∑

k

AX
vc(k)λ · Pvc(k), (28)

which leads to the dielectric function

ε2(ω) = 4π2e2

m2ω2

∑
X

∣∣∣∣∣
∑

k

AX
vc(k)λ · Pvc(k)

∣∣∣∣∣
2

δ(�ω − EX).

(29)

Recall that for right-handed circular polarization, the momen-
tum matrix element near the K ′ (τ = −1) point is nearly zero
and near the K (τ = 1) point it is given by

λ · Pvc(k) = P vc
− (k) ≈

√
2mat

�
e−iφk ≡ P0e

−iφk . (30)

Therefore we can restrict our attention to k near K , which
gives

〈I |λ · p̂|X〉 = P0

∑
k∼K

AX
vc(k)e−iφk = P0Ã

X
vc(r = 0) (31)

and therefore

ε2(ω) = 4π2e2P 2
0

m2ω2

∑
X

|Ãvc(r = 0)|2δ(�ω − EX), (32)

which is just the usual Elliott formula for the excitonic absorp-
tion [31]. In particular, the selection rules are conventional in
that they are determined by the behavior of the wavefunction
at the origin in real space, leading to bright states with s-type
azimuthal symmetry. We emphasize that the phase factor
appearing in the momentum matrix element is essentially
canceled by the conjugate phase factor in the exciton envelope
wavefunction, which itself originates from the change of basis
in the screened interaction, Eq. (22). Therefore, not only can
the excitons be labeled in analogy with the hydrogen series
in terms of their spatial symmetries but, to lowest order, they
also obey identical selection rules. This is the second main
conclusion of this work.

As usual, the same analysis cannot be done analytically on
the three-band model, but it can be straightforwardly carried
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FIG. 4. (Color online) Imaginary part of the dielectric function
for MoS2 calculated in the presence of excitonic effects. The band
gap has been rigidly increased to 2.41 eV such that the 1s exciton
peak occurs near 2.0 eV (spin-orbit splitting into A and B peaks
is neglected, as described in the text). A Gaussian broadening of
50 meV (FWHM) has been applied to all peaks.

out numerically. The dielectric function calculated via Eq. (29)
for the two considered band structure models of MoS2 is
plotted in Fig. 4; in particular, the orbital overlaps in Eq. (22)
are calculated numerically, without the approximation given in
Eqs. (24). As described in Refs. [6,10], the screened interaction
used in the calculations is given by

W (k) = 2πe2

k(1 + 2πχ2Dk)
(33)

with χ2D = 6.6 Å for intrinsic MoS2. Results are presented
for a 120 × 120 sampling of the Brillouin zone, which
we have found necessary to converge the binding energy
to roughly 0.1 eV accuracy, in agreement with the fully
ab initio BSE study presented in Ref. [7]. Specifically, for
MoS2 this sampling gives a 1s exciton binding energy of
0.41 eV, however an extrapolation to the infinite sampling
limit gives approximately 0.52 eV, in good agreement with
our prior result obtained in Ref. [6] (0.54 eV). In Fig. 4, the
conduction bands have been rigidly shifted to increase the band
gap to 2.41 eV, such that the 1s exciton peak occurs near its
experimentally observed value of 2.0 eV (due to the spin-orbit
interaction, this peak is actually split into the so-called A and
B peaks at about 1.9 and 2.0 eV respectively [2]). An important
conclusion to be drawn from Fig. 4 is that the more realistic
band structure generates only minor quantitative differences
in ε2(ω), compared to that generated by the two-band model.

The labeling of states in Fig. 4 is done via inspection
of the wavefunction, in either reciprocal or real space. For
example, in Fig. 5 we show the selection-rule-determining
product AX

vc(k)P vc
− (k) [which is closely related to the pseudo-

wavefunction ÃX
vc(k)] for right-handed polarization. The sym-

metries of the exciton wavefunctions are apparent, and the
valley selectivity is also recovered in the presence of excitonic
effects.

Focusing on the features in the ε2(ω) spectrum that derive
from the s-type exciton states, the Rydberg series is nonhy-
drogenic, as discussed in detail in Refs. [10,16]. This follows
from the unusual form of the screened Coulomb interaction for
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FIG. 5. (Color online) Reciprocal space plots of the selection-
rule-determining product AX

vc(k)P vc
− (k). In the presence of right-

handed circular polarization, it is seen that excitons are only created
at the K point, and not at the K ′ point, as was found in Ref. [3] and
in Sec. II C in the absence of exciton effects.

these monolayer-thick materials. In particular, it deviates sub-
stantially from the 1/ε0r form that dominates in conventional
semiconductors. The Hamiltonian with this latter interaction
has additional symmetry which leads to the “accidental”
angular momentum degeneracy in the hydrogen spectrum.
Here that symmetry is broken: we find that for a given principal
quantum number, the larger angular momentum states are
more strongly bound, i.e., E1s < E2p < E2s < E3d and so
on. The same behavior has been recently observed in a fully
ab initio BSE calculation [19], and the present work provides
a simple physical explanation for this behavior in terms of the
effective screened interaction (see also Refs. [32,33] for similar
findings). To verify this unconventional disposition of dark
exciton states requires a nonlinear spectroscopic measurement,
which we discuss in the next section. Furthermore, we also
note a small splitting of the 2p, 3d, and 3p dark exciton
states. In particular, the 20 meV splitting of the 2p states is
in good agreement with recent results [30,32]. As mentioned
before, Srivastava and Imamoglu have traced this degeneracy
breaking to the orbital overlaps in Eq. (22) and explained the
effect in terms of Berry curvature in the single-particle band
structure [30].

IV. TWO-PHOTON ABSORPTION

Our theoretical framework for the two-photon absorption
essentially follows the early work of Mahan [34] for 3D semi-
conductors and Shimizu [35] for 2D quantum wells including
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explicit consideration of excitons. For a two-photon process,
the transition rate is again given by Eq. (11), except we now
have two perturbing fields, Vi = (eAi/mc)λi · p̂ (i = 1,2),
where Ai is the vector potential, λi is the polarization, and �ωi

is the photon energy. The matrix element of the perturbation
can be evaluated by a sum over intermediate states |M〉,

VIF =
(

e

mc

)2

A1A2

∑
M

[ 〈I |λ2 · p̂|M〉〈M|λ1 · p̂|F 〉
EM − EI − �ω1

+ 〈I |λ1 · p̂|M〉〈M|λ2 · p|F 〉
EM − EI − �ω2

]
. (34)

The two-photon spectroscopy of single-particle states is
trivial, and so we restrict our analysis to the excitonic case.
As in the one-photon exciton absorption, Eq. (31) holds for
the matrix element connecting the ground and intermediate
exciton states. In contrast, the matrix element between two
exciton states (intermediate and final) is

〈M|λ1 · p̂|F 〉 = �

∑
k

AM∗
vc (k)λ1 · kAF

vc(k)

= �

∑
k

ÃM∗
vc (k)e−iτφkλ1 · kÃF

vc(k)eiτφk

= −i�

∫
d2rÃM∗

vc (r)λ1 · ∇rÃ
F
vc(r). (35)

In the above, we have restricted the analysis to two bands (c,v)
and used the facts that the expectation value of p̂ is zero in a
Slater determinant and that p̂ is diagonal in reciprocal space.
To have a nonzero Eq. (35) requires that the real-space exciton
wavefunctions AF and AM have orbital angular momenta
which differ by ±1; this is the same two-photon selection
rule as found in conventional semiconductors including con-
sideration of exciton effects. Combined with the result of the
previous section—that one-photon absorption produces s-type
excitons—we conclude that two-photon absorption produces
only p-type excitons. With these results, the two-photon
absorption essentially follows the early work of Mahan [34]
for 3D semiconductors or Shimizu [35] for 2D quantum wells.

The primary complication in the evaluation of two-photon
absorption is the evaluation of the internal sum over intermedi-
ate states in Eq. (34). We follow the approximation introduced
by Mahan [34] and used by Shimizu [35] that allows the
sum to be eliminated with a completeness relation. Explicitly
incorporating the above results, the first term in Eq. (34) can
be written as (the second term is analogous)

−i�P0

∫
d2r

∑
M

ÃM
vc(r = 0)ÃM∗

vc (r)

EM − EI − �ω1
λ1 · ∇rÃ

F
vc(r)

≈ −i�P0

Eg − 〈Eb〉 − �ω1

[
λ1 · ∇rÃ

F
vc(r)

]
r=0, (36)

where 〈Eb〉 is an average intermediate (s-type) exciton energy
introduced to facilitate the (complete) sum over intermediate
states; for simplicity we will henceforth set 〈Eb〉 to zero
as its primary influence is to simply alter the prefactor. In
contrast to the hydrogenic exciton case, where further results
can be obtained analytically, the matrix elements here must be
evaluated numerically.

The two-photon transition rate is thus given by

W () = 2π�

(
e

mc

)4

(A1A2)2(�P0)2

×
∑
F

∣∣∣∣∣
[
λ1 · ∇rÃ

F
vc(r)

]
r=0

Eg − �ω1
+ {1 ↔ 2}

∣∣∣∣∣
2

× δ(� − EF ), (37)

where � = �ω1 + �ω2. The simplest case to consider is when
λ1 = λ2 and �ω1 = �ω2 ≈ Eg/2, which gives

W () = W0

∑
F

∣∣λ · ∇rÃ
F
vc(r)

∣∣2
r=0δ(� − EF ), (38)

where

W0 = 32π�
3e4A2

1A
2
2P

2
0

m4c4E2
g

. (39)

If both photons have the same circular polarization, then this
experiment probes valley-selective p-type excitons, which are
dark in the linear measurement. Using photons with opposite
polarizations would create p-type excitons in both valleys.

Motivated by recent nonlinear spectroscopic measurements
on WSe2 [9] and WS2 [19], in Fig. 6 we show the results of a
numerical evaluation of Eq. (38) for these two materials; the
exciton wavefunctions and their derivatives have been obtained
from the real-space effective mass treatment of the two-band
model (i.e., the small splitting of the p excitons is neglected).
The agreement with experiment, for both the linear and
nonlinear response, is seen to be quite good. In the calculations,
we have used the same screening length, χ2D = 7.0 Å for
both materials, which yields an exciton binding energy of
0.48 eV (in accord with our previous results [6]). We note
that this exciton binding energy is slightly larger than that
determined in Refs. [9,10] (0.37 and 0.32 eV for WSe2 and
WS2 respectively).

In the narrow linewidth limit, the two-photon absorption
identifies the p-type excitons with energies slightly below that
of the corresponding s-type exciton. For a larger linewidth, the
2p transition is still resolved and responsible for the main peak
seen in experiment, while the remaining transitions merge to
yield a weak feature before the continuum onset. Importantly,
ratio between the 2p peak height and the higher-energy signal
(near the continuum onset) is determined by the spectral
linewidth. It is thus encouraging that our simulated spectrum
simultaneously reproduces the 2p linewidth and this intensity
ratio; the required broadening suggests that it should be
difficult to observe the 3p transition at this resolution. This
leaves open the origin of the small feature observed near 2.5 eV
in the experimental spectrum for WS2.

Finally, we point out that a recent study on WSe2 using
one- and two-photon photoluminescence excitation spec-
troscopy [20] has identified the 2s and 2p transitions to have
the same energy to meV accuracy. This is in quite stark contrast
with the results of the present work, which suggest that the
2p exciton should be lower in energy by at least 50 meV. We
hope that future work, both experimental and theoretical, is
devoted to investigating this discrepancy.
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FIG. 6. (Color online) Two-photon absorption (TPA) intensity
for monolayer (a) WSe2 and (b) WS2 evaluated numerically with
Eq. (38) (blue lines). The spectra have been artificially broadened with
a Gaussian linewidth (FWHM) of 80 meV (thicker line) and 20 meV
(thinner line). The experimental two-photon photoluminescence
excitation (TPPLE) spectrum for WSe2 [9] and WS2 [19] is included
for comparison (blue circles). The theoretical linear absorption
spectrum from the same model (FWHM of 50 meV) is overlaid
for reference (grey lines) along with the experimental result (gray
circles) for WSe2 [9] and WS2 [15].

V. CONCLUSIONS

In this work, we have expanded the effective mass theory
presented in Refs. [6,10] to include a fully k-dependent
model of the band structure, in harmony with other recent
works [8,32,36]. This extension allows for deviations from
parabolicity, including trigonal warping behavior which has
been emphasized in other contexts [23,37]. We find that two-
and three-band models of the single-particle band structure

give nearly identical results for the exciton properties within a
simplified BSE formalism, suggesting that trigonal warping
is a secondary effect. Furthermore, our numerical results
are nearly identical to those of the effective mass treatment
from our previous work [6,10], justifying its use in those
contexts. We have definitively proved that spin-singlet excitons
with s-type azimuthal symmetry, which have been the most
studied [6,8,10], are indeed the optically bright excitons. As
in our previous work [10,16], we confirm that the disposition
of bright exciton states is distinctly nonhydrogenic.

The dark spin-singlet excitons have also been investigated
and found to exhibit another deviation from the hydrogen
model, in the form of a broken angular momentum degeneracy.
Using an approach similar to ours, the authors of Refs. [32,33]
have identified the same qualitative behavior. This observation
will be key in future analyses of two-photon spectroscopies on
TMDCs. A recent paper contains results from a fully ab initio
BSE calculation on WS2 and also finds this peculiar angular
momentum behavior [19]. It is clearly encouraging that our
simple low-energy theory—featuring a few-band representa-
tion of the single-particle states and an appropriate treatment of
screening with a model dielectric function—is able to correctly
reproduce the optical selection rules, the character of bright and
dark exciton states, the broken angular momentum degeneracy,
the quantitatively large exciton binding energies, and the
spectral features of the nonlinear two-photon absorption. In
this regard, we believe the model presented here represents
perhaps the simplest predictive minimal model capable of
unifying these wide-ranging features in monolayer TMDCs.

Note added. As discussed in the main text, a recent preprint
analyzes the impact of the band overlap factors in the effective
Coulomb interaction, Eq. (22), and systematically develops
the next order terms in k − k′, demonstrating signatures of
the Berry curvature in the exciton spectra [30]. Our numerical
results agree with their analysis and with their estimate for
the splitting of the 2p exciton levels. Figure 4 was updated to
reflect these splittings.
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[8] G. Berghäuser and E. Malic, Phys. Rev. B 89, 125309
(2014).

085413-8

http://dx.doi.org/10.1021/nl903868w
http://dx.doi.org/10.1021/nl903868w
http://dx.doi.org/10.1021/nl903868w
http://dx.doi.org/10.1021/nl903868w
http://dx.doi.org/10.1103/PhysRevLett.105.136805
http://dx.doi.org/10.1103/PhysRevLett.105.136805
http://dx.doi.org/10.1103/PhysRevLett.105.136805
http://dx.doi.org/10.1103/PhysRevLett.105.136805
http://dx.doi.org/10.1103/PhysRevLett.108.196802
http://dx.doi.org/10.1103/PhysRevLett.108.196802
http://dx.doi.org/10.1103/PhysRevLett.108.196802
http://dx.doi.org/10.1103/PhysRevLett.108.196802
http://dx.doi.org/10.1038/nnano.2012.95
http://dx.doi.org/10.1038/nnano.2012.95
http://dx.doi.org/10.1038/nnano.2012.95
http://dx.doi.org/10.1038/nnano.2012.95
http://dx.doi.org/10.1038/nnano.2012.96
http://dx.doi.org/10.1038/nnano.2012.96
http://dx.doi.org/10.1038/nnano.2012.96
http://dx.doi.org/10.1038/nnano.2012.96
http://dx.doi.org/10.1103/PhysRevB.88.045318
http://dx.doi.org/10.1103/PhysRevB.88.045318
http://dx.doi.org/10.1103/PhysRevB.88.045318
http://dx.doi.org/10.1103/PhysRevB.88.045318
http://dx.doi.org/10.1103/PhysRevLett.111.216805
http://dx.doi.org/10.1103/PhysRevLett.111.216805
http://dx.doi.org/10.1103/PhysRevLett.111.216805
http://dx.doi.org/10.1103/PhysRevLett.111.216805
http://dx.doi.org/10.1103/PhysRevB.89.125309
http://dx.doi.org/10.1103/PhysRevB.89.125309
http://dx.doi.org/10.1103/PhysRevB.89.125309
http://dx.doi.org/10.1103/PhysRevB.89.125309


BRIGHT AND DARK SINGLET EXCITONS VIA LINEAR . . . PHYSICAL REVIEW B 92, 085413 (2015)

[9] K. He, N. Kumar, L. Zhao, Z. Wang, K.-F. Mak, H. Zhao, and
J. Shan, Phys. Rev. Lett. 113, 026803 (2014).

[10] A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li,
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